Skip to main content

Biobutanol—“A Renewable Green Alternative of Liquid Fuel” from Algae

  • Chapter
  • First Online:

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

Increasing global energy demand, concern over global climate changes, and unstable and expensive petroleum resources, have led to the development of renewable energy sources that have driven research toward the utilization of biomass resources for the production of energy and fuels. In this context algae appear to be an emerging source of biomass for biobutanol that has the potential to give an alternative green solution to replace fossil fuel and reduce environmental issues. Biochemical production of butanol, a four carbon aliphatic alcohol, is promising due to its superior fuel properties as compared to ethanol. This chapter presents a comprehensive review on sustainable bioproduction and utilization of butanol as a biofuel and provides a glimpse on different potential biomass and microorganism for biochemical production of butanol. Main bottlenecks in biochemical production and recovery using conventional anaerobic acetone–butanol–ethanol (ABE) fermentation and corresponding recent counteractive steps to overcome these challenges were discussed systematically. A special emphasis has been given on the production of butanol a green alternative solution to fossil fuel using both micro- and macroalgae as potential biomass.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams JM, Gallagher JA, Donnison IS (2009) Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. J Appl Phycol 21:569–574

    Article  Google Scholar 

  • Atsumi S, Cann AF, Connor MR, Shen CR, Smith KM, Brynildsen MP et al (2008) Metabolic engineering of Escherichia coli for 1-butanol production. Metab Eng 10:305–311

    Article  Google Scholar 

  • Blanch HW, Simmons BA, Klein-Marcuschamer D (2011) Biomass deconstruction to sugars. Biotechnol J 6:1086–1102

    Article  Google Scholar 

  • Borowitzka MA (2008) Marine and halophilic algae for the production of biofuels. J Biotechnol 136:S7

    Article  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577

    Article  Google Scholar 

  • Cantrell KB, Ducey T, Ro KS, Hunt PG (2008) Livestock waste-to-bioenergy generation opportunities. Bioresour Technol 99:7941–7953

    Article  Google Scholar 

  • Cascone R (2008) Biobutanol: a replacement for bioethanol? Chem Eng Prog 104(8)

    Google Scholar 

  • Chen C-K, Blaschek H (1999) Acetate enhances solvent production and prevents degeneration in Clostridium beijerinckii BA101. Appl Microbiol Biotechnol 52:170–173

    Article  Google Scholar 

  • Chen P, Min M, Chen Y, Wang L, Li Y, Chen Q et al (2010) Review of biological and engineering aspects of algae to fuels approach. Int J Agric Bio Eng 2:1–30

    Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  Google Scholar 

  • Chisti Y (2010) Fuels from microalgae. Biofuels 1:233–235

    Article  Google Scholar 

  • Couto RM, Simões PC, Reis A, Da Silva TL, Martins VH, Sánchez-Vicente Y (2010) Supercritical fluid extraction of lipids from the heterotrophic microalga Crypthecodinium cohnii. Eng Life Sci 10:158–164

    Google Scholar 

  • Cravotto G, Boffa L, Mantegna S, Perego P, Avogadro M, Cintas P (2008) Improved extraction of vegetable oils under high-intensity ultrasound and/or microwaves. Ultrason Sonochem 15:898–902

    Article  Google Scholar 

  • Demirbaş A (2008) Production of biodiesel from algae oils. Energy Sources Part A Recovery Utilization Environm Eff 31:163–168

    Article  Google Scholar 

  • Dubey KK, Dhingra AK, Rana S (2015) Optimisation of process parameters for enhanced biobutanol production from Sargassum wightii hydrolysate. Int J Energy Technol Policy 11:303–311

    Article  Google Scholar 

  • Dürre P (1998) New insights and novel developments in clostridial acetone/butanol/isopropanol fermentation. Appl Microbiol Biotechnol 49:639–648

    Article  Google Scholar 

  • Dürre P (2007) Biobutanol: an attractive biofuel. Biotechnol J 2:1525–1534

    Article  Google Scholar 

  • Ellis JT, Hengge NN, Sims RC, Miller CD (2012) Acetone, butanol, and ethanol production from wastewater algae. Bioresour Technol 111:491–495

    Article  Google Scholar 

  • Ezeji T, Qureshi N, Blaschek HP (2007) Production of acetone–butanol–ethanol (ABE) in a continuous flow bioreactor using degermed corn and Clostridium beijerinckii. Process Biochem 42:34–39

    Article  Google Scholar 

  • Ezeji T, Milne C, Price ND, Blaschek HP (2010) Achievements and perspectives to overcome the poor solvent resistance in acetone and butanol-producing microorganisms. Appl Microbiol Biotechnol 85:1697–1712

    Article  Google Scholar 

  • Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O et al (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360

    Article  Google Scholar 

  • Formanek J, Mackie R, Blaschek HP (1997) Enhanced butanol production by Clostridium beijerinckii BA101 grown in semidefined P2 medium containing 6 percent maltodextrin or glucose. Appl Environ Microbiol 63:2306–2310

    Google Scholar 

  • Green EM (2011) Fermentative production of butanol—the industrial perspective. Curr Opin Biotechnol 22:337–343

    Article  Google Scholar 

  • Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energy Rev 14:1037–1047

    Article  Google Scholar 

  • He Q, Chen H (2013) Improved efficiency of butanol production by absorbed lignocellulose fermentation. J Biosci Bioeng 115:298–302

    Article  Google Scholar 

  • Higashide W, Li Y, Yang Y, Liao JC (2011) Metabolic engineering of Clostridium cellulolyticum for production of isobutanol from cellulose. Appl Environ Microbiol 77:2727–2733

    Article  Google Scholar 

  • Hirano A, Ueda R, Hirayama S, Ogushi Y (1997) CO2 fixation and ethanol production with microalgal photosynthesis and intracellular anaerobic fermentation. Energy 22:137–142

    Article  Google Scholar 

  • Hirayama S, Nakayama H, Sugata K, Ueda R (1996) Process for the production of ethanol from microalgae. Google Patents

    Google Scholar 

  • Horn S, Aasen I, Østgaard K (2000) Production of ethanol from mannitol by Zymobacter palmae. J Ind Microbiol Biotechnol 24:51–57

    Article  Google Scholar 

  • Hossain AS, Salleh A, Boyce AN, Chowdhury P, Naqiuddin M (2008) Biodiesel fuel production from algae as renewable energy. Am J Biochem Biotechnol 4:250–254

    Article  Google Scholar 

  • Huang H, Liu H, Gan Y-R (2010) Genetic modification of critical enzymes and involved genes in butanol biosynthesis from biomass. Biotechnol Adv 28:651–657

    Article  Google Scholar 

  • Huesemann M, Benemann J (2009) Biofuels from microalgae: review of products, processes and potential, with special focus on Dunaliella sp. The Alga Dunaliella: Biodiversity, Physiology, Genomics and Biotechnology’ Science Publishers, New Hampshire

    Google Scholar 

  • Huo Y-X, Cho KM, Rivera JGL, Monte E, Shen CR, Yan Y et al (2011) Conversion of proteins into biofuels by engineering nitrogen flux. Nat Biotechnol 29:346–351

    Article  Google Scholar 

  • Ikegami T, Negishi H, Sakaki K (2011) Selective separation of n-butanol from aqueous solutions by pervaporation using silicone rubber-coated silicalite membranes. J Chem Technol Biotechnol 86:845–851

    Article  Google Scholar 

  • Jang YS, Lee J, Malaviya A, Seung DY, Cho JH, Lee SY (2012) Butanol production from renewable biomass: rediscovery of metabolic pathways and metabolic engineering. Biotechnol J 7:186–198

    Article  Google Scholar 

  • Jeong TS, Choi W, Lee J, Oh KK (2010) Production of biobutanol from hydrolysate of red algae (Gelidium amansii) treated with acid saccharification. In: 32nd Symposium on biotechnology for fuels and chemicals, Hilton Clearwater Beach, Clearwater Beach, Florida, US

    Google Scholar 

  • Jernigan A, May M, Potts T, Rodgers B, Hestekin J, May PI et al (2013) Effects of drying and storage on year-round production of butanol and biodiesel from algal carbohydrates and lipids using algae from water remediation. Environ Prog Sustain Energy 32:1013–1022

    Article  Google Scholar 

  • Jones DT, Woods DR (1986) Acetone-butanol fermentation revisited. Microbiol Rev 50:484

    Google Scholar 

  • Kassim M, Potumarthi R, Tanksale A, Srivatsa S, Bhattacharya S (2014) Enzymatic saccharification of dilute alkaline pre-treated microalgal (Tetraselmis suecica) biomass for biobutanol production. Int J Biol Vet Agric Food Eng 6

    Google Scholar 

  • Kim Y-S (2009) Pretreatment of Gelidium amansii for the production of bioethanol. In: The 31st Symposium on biotechnology for fuels and chemicals

    Google Scholar 

  • Klasson K, Ackerson M, Clausen E, Gaddy J (1991) Bioreactors for synthesis gas fermentations. Resour Conserv Recycl 5:145–165

    Article  Google Scholar 

  • Köpke M, Held C, Hujer S, Liesegang H, Wiezer A, Wollherr A et al (2010) Clostridium ljungdahlii represents a microbial production platform based on syngas. Proc Natl Acad Sci 107:13087–13092

    Article  Google Scholar 

  • Lan EI, Liao JC (2012) ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proc Natl Acad Sci 109:6018–6023

    Article  Google Scholar 

  • Lee Y-K (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13:307–315

    Article  Google Scholar 

  • Lee SY, Park JH, Jang SH, Nielsen LK, Kim J, Jung KS (2008) Fermentative butanol production by Clostridia. Biotechnol Bioeng 101:209–228

    Article  Google Scholar 

  • Li H, Opgenorth PH, Wernick DG, Rogers S, Wu T-Y, Higashide W et al (2012) Integrated electromicrobial conversion of CO2 to higher alcohols. Science 335:1596

    Google Scholar 

  • Liew S, Arbakariya A, Rosfarizan M, Raha A (2006) Production of solvent (acetone-butanol-ethanol) in continuous fermentation by Clostridium saccharobutylicum DSM 13864 using gelatinised sago starch as a carbon source. Malays J Microbiol 2:42–50

    Google Scholar 

  • Lü J, Sheahan C, Fu P (2011) Metabolic engineering of algae for fourth generation biofuels production. Energy Environ Sci 4:2451–2466

    Article  Google Scholar 

  • Lütke-Eversloh T, Bahl H (2011) Metabolic engineering of Clostridium acetobutylicum: recent advances to improve butanol production. Curr Opin Biotechnol 22:634–647

    Article  Google Scholar 

  • Machado C (2010) Technical characteristics and current status of butanol production and use as biofuel. V Seminario Latinoamericano y del Caribe de Biocombustibles

    Google Scholar 

  • Maeda K, Owada M, Kimura N, Omata K, Karube I (1995) CO2 fixation from the flue gas on coal-fired thermal power plant by microalgae. Energy Convers Manage 36:717–720

    Article  Google Scholar 

  • Mariano AP, Qureshi N, Ezeji TC (2011) Bioproduction of butanol in bioreactors: new insights from simultaneous in situ butanol recovery to eliminate product toxicity. Biotechnol Bioeng 108:1757–1765

    Article  Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232

    Article  Google Scholar 

  • Matsumoto M, Yokouchi H, Suzuki N, Ohata H, Matsunaga T (2003) Saccharification of marine microalgae using marine bacteria for ethanol production. Biotechnology for fuels and chemicals. Springer, Berlin, pp 247–254

    Google Scholar 

  • Matsumura M, Kataoka H, Sueki M, Araki K (1988) Energy saving effect of pervaporation using oleyl alcohol liquid membrane in butanol purification. Bioprocess Eng 3:93–100

    Article  Google Scholar 

  • Mohn F (1980) Experiences and strategies in the recovery of biomass from mass cultures of microalgae. Algae biomass: production and use/[sponsored by the National Council for Research and Development, Israel and the Gesellschaft fur Strahlen-und Umweltforschung (GSF), Munich, Germany]; Gedaliah S, Soeder CJ (eds)

    Google Scholar 

  • Nakas J, Schaedle M, Parkinson C, Coonley C, Tanenbaum S (1983) System development for linked-fermentation production of solvents from algal biomass. Appl Environ Microbiol 46:1017–1023

    Google Scholar 

  • Nielsen DR, Leonard E, Yoon S-H, Tseng H-C, Yuan C, Prather KLJ (2009) Engineering alternative butanol production platforms in heterologous bacteria. Metab Eng 11:262–273

    Article  Google Scholar 

  • Nigam PS, Singh A (2011) Production of liquid biofuels from renewable resources. Prog Energy Combust Sci 37:52–68

    Article  Google Scholar 

  • Nobe R, Sakakibara Y, Fukuda N, Yoshida N, Ogawa K, Suiko M (2003) Purification and characterization of laminaran hydrolases from Trichoderma viride. Biosci Biotechnol Biochem 67:1349–1357

    Article  Google Scholar 

  • Packer M (2009) Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy. Energy Policy 37:3428–3437

    Article  Google Scholar 

  • Papoutsakis ET (2008) Engineering solventogenic clostridia. Curr Opin Biotechnol 19:420–429

    Article  Google Scholar 

  • Pfromm PH, Amanor-Boadu V, Nelson R, Vadlani P, Madl R (2010) Bio-butanol vs. bio-ethanol: a technical and economic assessment for corn and switchgrass fermented by yeast or Clostridium acetobutylicum. Biomass Bioenergy 34:515–524

    Article  Google Scholar 

  • Pierrot P, Fick M, Engasser J (1986) Continuous acetone-butanol fermentation with high productivity by cell ultrafiltration and recycling. Biotechnol Lett 8:253–256

    Article  Google Scholar 

  • Pittman JK, Dean AP, Osundeko O (2011) The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol 102:17–25

    Article  Google Scholar 

  • Potts T, Du J, Paul M, May P, Beitle R, Hestekin J (2012) The production of butanol from Jamaica bay macro algae. Environ Prog Sustain Energy 31:29–36

    Article  Google Scholar 

  • Qureshi N, Maddox I (1987) Continuous solvent production from whey permeate using cells of Clostridium acetobutylicum immobilized by adsorption onto bonechar. Enzym Microb Technol 9:668–671

    Article  Google Scholar 

  • Qureshi N, Blaschek H (2000) Butanol production using Clostridium beijerinckii BA101 hyper-butanol producing mutant strain and recovery by pervaporation. Twenty-first symposium on biotechnology for fuels and chemicals. Springer, Berlin, pp 225–235

    Google Scholar 

  • Qureshi N, Lai L, Blaschek H (2004) Scale-up of a high productivity continuous biofilm reactor to produce butanol by adsorbed cells of Clostridium beijerinckii. Food Bioprod Process 82:164–173

    Article  Google Scholar 

  • Qureshi N, Annous BA, Ezeji TC, Karcher P, Maddox IS (2005) Biofilm reactors for industrial bioconversion processes: employing potential of enhanced reaction rates. Microb Cell Fact 4:24

    Article  Google Scholar 

  • Qureshi N, Ezeji TC, Ebener J, Dien BS, Cotta MA, Blaschek HP (2008a) Butanol production by Clostridium beijerinckii. Part I: use of acid and enzyme hydrolyzed corn fiber. Bioresour Technol 99:5915–5922

    Article  Google Scholar 

  • Qureshi N, Saha BC, Hector RE, Hughes SR, Cotta MA (2008b) Butanol production from wheat straw by simultaneous saccharification and fermentation using Clostridium beijerinckii: Part I—batch fermentation. Biomass Bioenergy 32:168–175

    Article  Google Scholar 

  • Radakovits R, Jinkerson RE, Darzins A, Posewitz MC (2010) Genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9:486–501

    Article  Google Scholar 

  • Rafiqul I, Hassan A, Sulebele G, Orosco C, Roustaian P, Jalal K (2003) Salt stress culture of blue green algae Spirulina fusiformis. Pak J Biol Sci 6:648–650

    Article  Google Scholar 

  • Ramey DE (1998) Continuous two stage, dual path anaerobic fermentation of butanol and other organic solvents using two different strains of bacteria. Google Patents

    Google Scholar 

  • Ray KH (2012) Cars could run on recycled newspaper, Tulane scientists say. Tulane University news webpage Tulane University Retrieved March 2011, p 14

    Google Scholar 

  • Rodjaroen S, Juntawong N, Mahakhant A, Miyamoto K (2007) High biomass production and starch accumulation in native green algal strains and cyanobacterial strains of Thailand. Kasetsart J (Nat Sci) 41:570–575

    Google Scholar 

  • Ryckebosch  E, Koenraad M, Imogen F (2012) Optimization of an analytical procedure for extraction of lipids from microalgae. J Am Oil Chem Soc 89:189–198.

    Google Scholar 

  • Samorì C, Torri C, Samorì G, Fabbri D, Galletti P, Guerrini F et al (2010) Extraction of hydrocarbons from microalga Botryococcus braunii with switchable solvents. Bioresour Technol 101:3274–3279

    Article  Google Scholar 

  • Shen Y, Yuan W, Pei Z, Wu Q, Mao E (2009) Microalgae mass production methods. Trans ASABE 52:1275–1287

    Article  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  Google Scholar 

  • Steen EJ, Chan R, Prasad N, Myers S, Petzold CJ, Redding A et al (2008) Metabolic engineering of Saccharomyces cerevisiae for the production of n-butanol. Microb Cell Fact 7:36

    Article  Google Scholar 

  • Subhadra B, Edwards M (2010) An integrated renewable energy park approach for algal biofuel production in United States. Energy Policy 38:4897–4902

    Article  Google Scholar 

  • Sukenik A,  Shelef G (1984) Algal autoflocculation—verification and proposed mechanism. Biotechnol Bioeng 26:142–147.

    Google Scholar 

  • Taconi KA, Venkataramanan KP, Johnson DT (2009) Growth and solvent production by Clostridium pasteurianum ATCC® 6013™ utilizing biodiesel-derived crude glycerol as the sole carbon source. Environ Prog Sustain Energy 28:100–110

    Article  Google Scholar 

  • Tashiro Y, Takeda K, Kobayashi G, Sonomoto K, Ishizaki A, Yoshino S (2004) High butanol production by Clostridium saccharoperbutylacetonicum N1-4 in fed-batch culture with pH-Stat continuous butyric acid and glucose feeding method. J Biosci Bioeng 98:263–268

    Article  Google Scholar 

  • Tashiro Y, Shinto H, Hayashi M, Baba S-I, Kobayashi G, Sonomoto K (2007) Novel high-efficient butanol production from butyrate by non-growing Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) with methyl viologen. J Biosci Bioeng 104:238–240

    Google Scholar 

  • Thang VH, Kanda K, Kobayashi G (2010) Production of acetone–butanol–ethanol (ABE) in direct fermentation of cassava by Clostridium saccharoperbutylacetonicum N1-4. Appl Biochem Biotechnol 161:157–170

    Article  Google Scholar 

  • Tran HTM, Cheirsilp B, Hodgson B, Umsakul K (2010) Potential use of Bacillus subtilis in a co-culture with Clostridium butylicum for acetone–butanol–ethanol production from cassava starch. Biochem Eng J 48:260–267

    Article  Google Scholar 

  • Tran HTM, Cheirsilp B, Umsakul K, Bourtoom T (2011) Response surface optimisation for acetone-butanol-ethanol production from cassava starch by co-culture of Clostridium butylicum and Bacillus subtilis. Maejo Int J Sci Technol 5(3)

    Google Scholar 

  • Ugwu C, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028

    Article  Google Scholar 

  • Vane LM (2005) A review of pervaporation for product recovery from biomass fermentation processes. J Chem Technol Biotechnol 80:603–629

    Article  Google Scholar 

  • Waltz E (2009) Biotech’s green gold? Nat Biotechnol 27:15–18

    Article  Google Scholar 

  • Wang Y, Guo W-Q, Lo Y-C, Chang J-S, Ren N-Q (2014) Characterization and kinetics of bio-butanol production with Clostridium acetobutylicum ATCC824 using mixed sugar medium simulating microalgae-based carbohydrates. Biochem Eng J 91:220–230

    Article  Google Scholar 

  • Wi SG, Kim HJ, Mahadevan SA, Yang D-J, Bae H-J (2009) The potential value of the seaweed Ceylon moss (Gelidium amansii) as an alternative bioenergy resource. Bioresour Technol 100:6658–6660

    Article  Google Scholar 

  • Yamaguchi D, Masaaki K, Satoshi S, Kiyotaka N, Hideki K, Michikazu H (2009) Hydrolysis of cellulose by a solid acid catalyst under optimal reaction conditions. J Phys Chem-C 113:3181–3188

    Google Scholar 

  • Yang Q, Song B (2008) Sustainability assessment of biofuels as alternative energy resources. IEEE International Conference on Sustainable energy technologies, 2008 ICSET 2008, IEEE; pp 1001–1006

    Google Scholar 

  • Yoon JJ, Kim YJ, Kim SH, Ryu HJ, Choi JY, Kim GS et al (2010) Production of polysaccharides and corresponding sugars from red seaweed. Adv Mater Res 93:463–466

    Article  Google Scholar 

  • Zilber-Rosenberg I, Rosenberg E (2008) Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev 32:723–735

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC, Discovery Grant 355254), MAPAQ (No. 809051) and Ministère des Relations Internationales du Québec (coopération Paraná-Québec 2010–2012; Quebec-Vietnam 2012–2015) are sincerely acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satinder Kaur Brar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Maiti, S., Maiti, D.C., Verma, M., Brar, S.K. (2016). Biobutanol—“A Renewable Green Alternative of Liquid Fuel” from Algae. In: Soccol, C., Brar, S., Faulds, C., Ramos, L. (eds) Green Fuels Technology. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-30205-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30205-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30203-4

  • Online ISBN: 978-3-319-30205-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics