Skip to main content

Channel Modeling for Visible Light Communications

  • Chapter
  • First Online:
Optical Wireless Communications

Abstract

In this chapter, we present a novel and realistic channel modeling approach for visible light communications that overcomes the limitations of previous works. In our work, we consider wavelength dependency, effect of realistic light sources as well as different types of reflections such as specular and mixed cases of diffuse and specular. We use nonsequential ray tracing algorithms to calculate the detected power and path lengths from source to detector for each ray. These are then processed to yield the channel impulse responses for various indoor environments. We further present a channel characterization study where channel parameters such as channel DC gain, root mean square delay spread, coherence bandwidth, mean excess delay are calculated for different environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In [21], spectral reflectance of floor is given without additional information regarding the name and type of its material.

References

  1. Arnon, S., Barry, J.R., Karagiannidis, G.K., Schober, R., Uysal, M.: Advanced Optical Wireless Communication. 1st ed, pp. 353–368. Cambridge University Press (2012)

    Google Scholar 

  2. Komine, T., Nakagawa, M.: Fundamental analysis for visible light communications using LED lights. IEEE Trans. Consum. Electron. 50(1), 100–107 (2004)

    Article  Google Scholar 

  3. Hong, Y., Chen, J., Wang, Z., Yu, C.: Performance of a precoding MIMO system for decentralized multiuser indoor visible light communications. IEEE Photon. J. 5(4) (2013)

    Google Scholar 

  4. Jovicic, A., Li, J., Richardson, T.: Visible light communication: opportunities, challenges and the path to market. IEEE Commun. Mag. 51(12), 26–32 (2013)

    Article  Google Scholar 

  5. Gancarz, J., Elgala, H., Little, T.D.C.: Impact of lighting requirements on VLC systems. IEEE Commun. Mag. 51(12), 34–41 (2013)

    Article  Google Scholar 

  6. Bykhovsky, D., Arnon, S.: Multiple access resource allocation in visible light communication systems. J. Lightw. Technol. 32(8), 1594–1600 (2014)

    Article  Google Scholar 

  7. Barry, J.R., Kahn, J.M., Krause, W.J., Lee, E.A., Messerschmitt, D.G.: Simulation of multipath impulse response for wireless optical channels. IEEE J. Sel. Areas Commun. 11, 367–379 (1993)

    Article  Google Scholar 

  8. Carruthers, J.B., Kahn, J.M.: Modelling of non-directed wireless infrared channels. IEEE Trans. Commun. 45, 1260–1268 (1997)

    Article  Google Scholar 

  9. Lopez-Hermandez, F.J., Betancor, M.J.: DUSTIN: algorithm for calculation of impulse response on IR wireless indoor channels. IEEE Electron. Lett. 33(21), 1804 (1806)

    Article  Google Scholar 

  10. Perez-Jimenez, R., Berges, J., Betancor, M.J. (1997) Statistical model for the impulse response on infrared indoor diffuse channels. IEEE Electron. Lett. 33(15), 1298, 1300

    Google Scholar 

  11. Perez-Jimenez, R., Melian, V.M., Betancor, M.J.: Analysis of multipath impulse response of diffuse and quasi-diffuse optical links for IR-WLAN. In: Proceedings of the Fourteenth Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 2, pp. 924, 930 (1995)

    Google Scholar 

  12. Lopez-Hernandez, F.J., Perez-Jimeniz, R., Santamaria, A.: Monte Carlo calculation of impulse response on diffuse IR wireless indoor channels. IEEE Electron. Lett. 34(12), 1260, 1262 (1998)

    Google Scholar 

  13. Lopez-Hernandez, F.J., Perez-Jimenez, R., Santamaria, A.: Modified Monte Carlo scheme for high-efficiency simulation of the impulse response on diffuse IR wireless indoor channels. IEEE Electron. Lett. 34(19), 1819–1820 (1998)

    Article  Google Scholar 

  14. Carruthers, J.B., Kannan, P.: Iterative site-based modeling for wireless infrared channels. IEEE Trans. Antennas Propag. 50(5), 759–765 (2002)

    Article  Google Scholar 

  15. Lopez-Hernandez, F.J., Perez-Jimenez, R., Santamaria, A.: Ray tracing algorithms for fast calculation of the channel impulse response on diffuse IR wireless indoor channels. Opt. Eng. 39(10), 2775–2780 (2000)

    Article  Google Scholar 

  16. Sakib Chowdhury, M.I., Zhang, W., Kavehrad, M.: Combined deterministic and modified monte carlo method for calculating impulse responses of indoor optical wireless channels. J. Lightw. Technol. 32(18), 3132–3148 (2014)

    Article  Google Scholar 

  17. Chun, H., Chiang C, O’Brien D.: Visible light communication using OLEDs: illumination and channel modeling. Int. Workshop Opt. Wireless Commun. 1–3 (2012)

    Google Scholar 

  18. Nguyen, H.Q., et al.: A MATLAB-Based simulation program for indoor visible light communication system. CSNDSP 2010, 537–540 (2010)

    Google Scholar 

  19. Komine, T., Nakagawa, M.: Performance evaluation on visible-light wireless communication system using white LED lightings. In: Proceedings of Ninth IEEE Symposium on Computers and Communications, vol. 1, pp. 258–263 (2004)

    Google Scholar 

  20. Long, S., Khalighi, M.A., Wolf, M., Bourennane, S., Ghassemlooy, Z.: Channel characterization for indoor visible light communications. Opt. Wireless Commun. (IWOW) 75–79 (2014)

    Google Scholar 

  21. Lee, K., Park, H., Barry, J.R.: Indoor channel characteristics for visible light communications. IEEE Commun. Lett. 15(2) (2011)

    Google Scholar 

  22. Sarbazi, E., Uysal, M., Abdallah, M., Qaraqe, K.: Ray tracing based channel modeling for visible light communications. In: IEEE 22nd Signal Processing, Communication and Applications Conference (SIU), Trabzon, Turkey (2014)

    Google Scholar 

  23. Sarbazi, E., Uysal, M., Abdallah, M., Qaraqe, K.: Indoor channel modeling and characterization for visible light communications. In: Invited Paper, 16th International Conference on Transparent Optical Networks (ICTON), Graz, Austria (2014)

    Google Scholar 

  24. Miramirkhani, F., Uysal, M., Panayirci, E.: Novel channel models for visible light communications. SPIE Photonics West, Broadband Access Communication Technologies IX p.93870Q (2015)

    Google Scholar 

  25. Miramirkhani, F., Uysal, M.: Channel modeling and characterization for visible light communications. IEEE Photon. J. 7(6), 1–16 (2015)

    Google Scholar 

  26. Zemax® 13 Release 2, Radiant Zemax® LLC. www.radiantzemax.com/zemax

  27. Ghassemlooy, Z., Popoola, W., Rajbhandari, S.: Optical Wireless Communications. Taylor & Francis, Boca Raton, FL, USA (2012)

    Google Scholar 

  28. Rodríguez Pérez, S., Pérez Jiménez, R., López Hernández, F.J., González Hernández, O.B., Ayala Alfonso, A.J.: Reflection model for calculation of the impulse response on IR-wireless indoor channels using ray-tracing algorithm. Microw. Opt. Technol. Lett. 32, 296–300 (2002)

    Article  Google Scholar 

  29. Smitha, K., Sivabalan, A., John, J.: Estimation of channel impulse response using modified ceiling bounce model in non-directed indoor optical wireless systems. Wireless Pers. Commun. 45(1), 1–10 (2008)

    Article  Google Scholar 

  30. GrabCAD models. https://grabcad.com

  31. Abtahi, M., Hashemi, H.: Simulation of indoor propagation channel at infrared frequencies in furnished office environments. In: PIMRC, pp. 306–310 (1995)

    Google Scholar 

Download references

Acknowledgments

This work was supported by TUBITAK research grant No. 113E307.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshad Miramirkhani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Miramirkhani, F., Uysal, M., Panayirci, E. (2016). Channel Modeling for Visible Light Communications. In: Uysal, M., Capsoni, C., Ghassemlooy, Z., Boucouvalas, A., Udvary, E. (eds) Optical Wireless Communications. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-30201-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30201-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30200-3

  • Online ISBN: 978-3-319-30201-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics