Skip to main content

Optical Camera Communications

  • Chapter
  • First Online:
Optical Wireless Communications

Part of the book series: Signals and Communication Technology ((SCT))

Abstract

Visible light communications (VLC) has been evolving at a much faster rate because of the development of high energy efficient white light emitting diodes (LED). For the first time, we see a unique device which offers triple functionalities of illumination, data communications and indoor localization, thus opening up the opportunities for applications at homes, offices, planes, trains, etc. In modern vehicles with LED-based head and tail lights, VLC can be used for car-to-car communications to convey regular traffic information to other vehicles as well as the road side infrastructure. Cameras are also being widely used in vehicles for monitoring speed, collision detection avoidance, traffic sign and object recognition. The VLC technology employing the camera as a receiver opens up new possibilities offering multiple functionalities including data communications. This chapter gives an overview of the optical camera communications and outlines the technological concept behind it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Herrmann, C.S.: Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Exp. Brain Res. 137(3–4), 346–353 (2001)

    Article  Google Scholar 

  2. Liu, H., Darabi, H., Banerjee, P., Liu, J.: Survey of wireless indoor positioning techniques and systems. IEEE Trans. Syst Man Cybern. Part C Appl. Rev. 37(6), 1067–1080 (2007)

    Article  Google Scholar 

  3. Ghassemlooy, Z., Popoola, W., Rajbhandari, S.: Optical Wireless Communications: System and Channel Modelling with Matlab®. CRC Press (2012)

    Google Scholar 

  4. Degiorgio, V., Cristiani, I.: Electromagnetic optics. In: Photonics. Undergraduate Lecture Notes in Physics. Springer International Publishing, pp 1–23 (2014). doi:10.1007/978-3-319-02108-9_1

    Google Scholar 

  5. Wang, K., Nirmalathas, A., Lim, C., Skafidas, E.: High-speed optical wireless communication system for indoor applications. IEEE Photonics Technol. Lett. 23(Compendex), 519–521 (2011)

    Google Scholar 

  6. Jovicic, A., Li, J., Richardson, T.: Visible light communication: opportunities, challenges and the path to market. Commun. Mag. IEEE 51(12), 26–32 (2013). doi:10.1109/MCOM.2013.6685754

    Article  Google Scholar 

  7. Karunatilaka, D., Zafar, F., Kalavally, V., Parthiban, R.: LED based indoor visible light communications: state of the art. IEEE Commun. Surv. Tutorials (99), 1–1 (2015). doi:10.1109/COMST.2015.2417576

    Google Scholar 

  8. Tsonev, D., Videv, S., Haas, H.: Towards a 100 Gb/s visible light wireless access network. Opt. Express 23(2), 1627–1637 (2015). doi:10.1364/OE.23.001627

    Article  Google Scholar 

  9. Canon: The Canon EOS-1Ds MARK II: the absolute pinnacle of D-SLR design and performance (2004)

    Google Scholar 

  10. Schöberl, M., Brückner, A., Foessel, S., Kaup, A.: Photometric limits for digital camera systems. ELECTIM 21(2), 020501–020503 (2012). doi:10.1117/1.JEI.21.2.020501

    Google Scholar 

  11. Armstrong, J., Sekercioglu, Y.A., Neild, A.: Visible light positioning: a roadmap for international standardization. IEEE Commun. Mag. 51(12), 68–73 (2013). doi:10.1109/MCOM.2013.6685759

    Article  Google Scholar 

  12. Danakis, C., Afgani, M., Povey, G., Underwood, I., Haas, H.: Using a CMOS camera sensor for visible light communication. In: Globecom Workshops (GC Wkshps), pp. 1244–1248. IEEE, 3–7 Dec 2012. doi:10.1109/GLOCOMW.2012.6477759

  13. Roberts, R.D.: Undersampled frequency shift ON-OFF keying (UFSOOK) for camera communications (CamCom). In: Wireless and Optical Communication Conference (WOCC), 2013 22nd, pp. 645–648. IEEE (2013)

    Google Scholar 

  14. Roberts, R.D.: A MIMO protocol for camera communications (CamCom) using undersampled frequency shift ON-OFF keying (UFSOOK). In: Globecom Workshops (GC Wkshps), pp. 1052–1057. IEEE, 9–13 Dec (2013). doi:10.1109/GLOCOMW.2013.6825131

  15. Wu, D., Ghassemlooy, Z., Le Minh, H., Rajbhandari, S., Khalighi, M.-A.: Optimisation of Lambertian order for indoor non-directed optical wireless communication. In: 2012 1st IEEE International Conference on Communications in China Workshops (ICCC), pp 43–48. IEEE (2012)

    Google Scholar 

  16. Zhang, W., Chowdhury, M.S., Kavehrad, M.: Asynchronous indoor positioning system based on visible light communications. Opt. Eng. 53(4), 045105–045105 (2014)

    Google Scholar 

  17. Taguchi, T.: Present status of white LED lighting technologies in Japan. J. Light Visual Env. 27(3), 131–139 (2003). doi:10.2150/jlve.27.131

    Article  MathSciNet  Google Scholar 

  18. Wang, A., Ma, S., Hu, C., Huai, J., Peng, C., Shen, G.: Enhancing reliability to boost the throughput over screen-camera links. In: Proceedings of the 20th Annual International Conference on Mobile Computing and Networking, Maui, Hawaii, USA, 2014. vol. 2639135, pp 41–52. ACM (2014). doi:10.1145/2639108.2639135

  19. Woo, G., Lippman, A., Raskar, R.: VRCodes: unobtrusive and active visual codes for interaction by exploiting rolling shutter. In: 2012 IEEE International Symposium on, Mixed and Augmented Reality (ISMAR), pp 59–64. 5–8 Nov 2012. doi:10.1109/ISMAR.2012.6402539

  20. Takai, I., Ito, S., Yasutomi, K., Kagawa, K., Andoh, M., Kawahito, S.: LED and CMOS Image Sensor Based Optical Wireless Communication System for Automotive Applications. Photonics Journal, IEEE 5(5), 6801418–6801418 (2013). doi:10.1109/JPHOT.2013.2277881

    Google Scholar 

  21. Cheremkhin, P., Lesnichii, V., Petrov, N.: Use of spectral characteristics of DSLR cameras with Bayer filter sensors. In: Journal of Physics: Conference Series, p. 012021, vol. 1. IOP Publishing (2014)

    Google Scholar 

  22. Green, B.: Sensor artifacts and CMOS rolling shutter. http://dvxuser.com/jason/CMOS-CCD/ (2015)

  23. LaBelle, R.: Global-shutter versus rolling-shutter readouts. Bio Photonics 25–28 (2014)

    Google Scholar 

  24. Nava, G.P., Kamamoto, Y., Sato, T.G., Shiraki, Y., Harada, N., Moriya, T.: Image processing techniques for high speed camera-based free-field optical communication. In: 2013 IEEE International Conference on, Signal and Image Processing Applications (ICSIPA), pp 384–389. IEEE (2013)

    Google Scholar 

  25. Burton, A., Minh, H.L., Ghassemlooy, Z., Bentley, E., Botella, C.: Experimental demonstration of 50-Mb/s visible light communications using 4 × 4 MIMO. IEEE Photonics Technol. Lett. 26(9), 945–948 (2014). doi:10.1109/LPT.2014.2310638

    Article  Google Scholar 

  26. Ingwer, P., Gassen, F., Püst, S., Duhn, M., Schälicke, M., Müller, K., Ruhm, H., Rettig, J., Hasche, E., Fischer, A.: Practical usefulness of structure from motion (SfM) point clouds obtained from different consumer cameras. In: IS&T/SPIE Electronic Imaging, 2015. International Society for Optics and Photonics, pp. 941102–941111 (2015)

    Google Scholar 

  27. Permalink: Field of View (FOV) of cameras in iOS devices. http://www.boinx.com/chronicles/2013/3/22/field-of-view-fov-of-cameras-in-ios-devices/ (2013)

  28. Vishay: VBPW34S, VBPW34SR datasheet http://www.vishay.com/docs/81128/vbpw34s.pdf (2015)

  29. Roberts, R.D.: Space-time forward error correction for dimmable undersampled frequency shift ON-OFF keying camera communications (CamCom). In: 2013 Fifth International Conference on, Ubiquitous and Future Networks (ICUFN), pp. 459–464. 2–5 July 2013. doi:10.1109/ICUFN.2013.6614861

  30. Iwasaki, S., Premachandra, C., Endo, T., Fujii, T., Tanimoto, M., Kimura, Y.: Visible light road-to-vehicle communication using high-speed camera. In: 2008 IEEE Intelligent Vehicles Symposium, pp. 13–18. IEEE (2008)

    Google Scholar 

  31. CASIO: Picalico. http://picalico.casio.com/en/ (2015)

  32. Luo, P., Ghassemlooy, Z., Minh, H.L., Tang, X., Tsai, H.-M.: Undersampled phase shift ON-OFF keying for camera communication. In: 2014 Sixth International Conference on, Wireless Communications and Signal Processing (WCSP), pp. 1–6. 23–25 Oct 2014. doi:10.1109/WCSP.2014.6992043

  33. Rajagopal, N., Lazik, P., Rowe, A.: Visual light landmarks for mobile devices. In: Proceedings of the 13th International Symposium on Information Processing in Sensor Networks, pp 249–260. IEEE Press (2014)

    Google Scholar 

  34. Tkachenko, I., Puech, W., Strauss, O., Gaudin, J.M., Destruel, C., Guichard, C.: Improving the module recognition rate of high density QR codes (Version 40) by using centrality bias. In: 2014 4th International Conference on, Image Processing Theory, Tools and Applications (IPTA), pp. 1–6. 14–17 Oct 2014. doi:10.1109/IPTA.2014.7001950

  35. Junhao, H., Shin, F.C.P., Kwok Yuen, S., Changyuan, Y.: LED-camera communication system with RGB coding. In: Photonics Global Conference (PGC), pp. 1–4. 13–16 Dec 2012. doi:10.1109/PGC.2012.6458082

  36. Chvojka, P., Zvanovec, S., Haigh, P.A., Ghassemlooy, Z.: Channel characteristics of visible light communications within dynamic indoor environment. J. Lightwave Technol. 33(9), 1719–1725 (2015). doi:10.1109/Jlt.2015.2398894

    Article  Google Scholar 

  37. Komarek, D.: Influence of People on Visible Light Communications. Czech Technical University in Prague (2015)

    Google Scholar 

  38. Papadimitratos, P., La Fortelle, A., Evenssen, K., Brignolo, R., Cosenza, S.: Vehicular communication systems: enabling technologies, applications, and future outlook on intelligent transportation. IEEE Commun. Mag. 47(11), 84–95 (2009). doi:10.1109/MCOM.2009.5307471

    Article  Google Scholar 

  39. Bai, F., Stancil, D.D., Krishnan, H.: Toward understanding characteristics of dedicated short range communications (DSRC) from a perspective of vehicular network engineers. In: Proceedings of the Sixteenth Annual International Conference on Mobile Computing and Networking, pp. 329–340. ACM (2010)

    Google Scholar 

  40. Saito, T., Haruyama, S., Nakagawa, M.A.: New tracking method using image sensor and photo diode for visible light road-to-vehicle communication. In: 10th International Conference on, Advanced Communication Technology, 2008. ICACT 2008. Gangwon-Do, pp. 673–678. 17–20 Feb 2008

    Google Scholar 

  41. Luo, P., Ghassemlooy, Z., Hoa Le, M., Khalighi, A., Zhang, X., Zhang, M., Changyuan, Y.: Experimental demonstration of an indoor visible light communication positioning system using dual-tone multi-frequency technique. In: Optical Wireless Communications (IWOW), 2014 3rd International Workshop in, Funchal, pp. 55–59. 17–17 Sept 2014. doi:10.1109/IWOW.2014.6950776

  42. You, S.H., Chang, S.H., Lin, H.M., Tsai, H.M.: Visible light communications for scooter safety. In: Proceeding of the 11th Annual International Conference on Mobile Systems, Applications, and Services, pp. 509–510. ACM (2013)

    Google Scholar 

  43. Little, T.D.C., Agarwal, A., Chau, J., Figueroa, M., Ganick, A., Lobo, J., Rich, T., Schimitsch, P.: Directional communication system for short-range vehicular communications. In: 2010 IEEE Vehicular Networking Conference (VNC), pp. 231–238. 13–15 Dec 2010. doi:10.1109/VNC.2010.5698230

  44. Ji, P., Tsai, H.-M., Wang, C., Liu, F.: Vehicular visible light communications with LED taillight and rolling shutter camera. In: IEEE Vehicular Technology Conference 2014 Spring (2014)

    Google Scholar 

  45. Yamazato, T., Takai, I., Okada, H., Fujii, T., Yendo, T., Arai, S., Andoh, M., Harada, T., Yasutomi, K., Kagawa, K., Kawahito, S.: Image-sensor-based visible light communication for automotive applications. IEEE Commun. Mag. 52(7), 88–97 (2014). doi:10.1109/MCOM.2014.6852088

    Article  Google Scholar 

  46. Arnon, S.: Visible Light Communication. Cambridge University Press (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengfei Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ghassemlooy, Z., Luo, P., Zvanovec, S. (2016). Optical Camera Communications. In: Uysal, M., Capsoni, C., Ghassemlooy, Z., Boucouvalas, A., Udvary, E. (eds) Optical Wireless Communications. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-30201-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30201-0_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30200-3

  • Online ISBN: 978-3-319-30201-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics