Skip to main content

An Overview of Optical Wireless Communications

Part of the Signals and Communication Technology book series (SCT)

Abstract

We are continuously witnessing the emergence of new data services and applications in wireless transmission systems, in particular mobile broadband services, which require enhancing user’s experience. The existing radio frequency based wireless communications are facing challenges in so far as being able to cope with these varied, sophisticated and bandwidth hungry services and applications. The ever evolving optical wireless communications (OWC) technology with its unique features such as a license-free frequency spectrum, an inherent security, and significantly higher transmission rates is seen as a potential alternative and complementary to the radio frequency based wireless communications, which can address some of these challenges. This technology can be used for short to long distance applications as in indoor visible light communications, ultra-violet, and free space optics. The chapter gives an overview of the OWC system focusing on the historical development and current status, as well as existing and envisioned applications areas.

Keywords

  • Optical wireless communications
  • Visible light communications
  • Free space optics
  • Infrared communications
  • History of optical wireless communication
  • Satellite communications
  • Applications of optical wireless communications

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-30201-0_1
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   189.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-30201-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   249.99
Price excludes VAT (USA)
Hardcover Book
USD   249.99
Price excludes VAT (USA)
Fig. 1.1
Fig. 1.2
Fig. 1.3
Fig. 1.4
Fig. 1.5
Fig. 1.6
Fig. 1.7
Fig. 1.8
Fig. 1.9
Fig. 1.10
Fig. 1.11

References

  1. Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., Maternia, M., Queseth, O., Schellmann, M., Schotten, H., Taoka, H., Tullberg, H., Uusitalo, M., Timus, B., Fallgren, M.: Scenarios for 5G mobile and wireless communications: the vision of the METIS project. IEEE Commun. Mag. 52(5), 26–35 (2014)

    CrossRef  Google Scholar 

  2. Jungnickel, V., Manolakis, K., Zirwas, W., Panzner, B., Sternad, M., Svensson, T.: The role of small cells, coordinated multi-point and massive MIMO in 5G. IEEE Commun. Mag. 52(5), 44–51 (2014)

    CrossRef  Google Scholar 

  3. Rappaport, T.S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., Wong, G.N., Schulz, J.K., Sammi, M., Guiterrez, F.: Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access 1, 335–349 (2013)

    CrossRef  Google Scholar 

  4. Etkin, R., Parekh, A., Tse, D.: Spectrum sharing for unlicensed bands. IEEE J. Sel. Areas Commun. 25(3), 517–528 (2007)

    CrossRef  Google Scholar 

  5. Arnon, S., Barry, J.R., Karagiannidis, G.K., Schober, R., Uysal, M. (eds.): Advanced Optical Wireless Communication. Cambridge University Press (2012)

    Google Scholar 

  6. Ghassemlooy, Z., Popoola, W.O., Rajbhandari, S.: Optical Wireless Communications—System and Channel Modelling with Matlab. CRC publisher, USA (2012)

    Google Scholar 

  7. Tsukamoto, K., Hashimoto, A., Aburakawa, Y., Matsumoto, M.: The case for free space. IEEE Microw. Mag. 10, 84–92 (2009)

    CrossRef  Google Scholar 

  8. Arimoto, Y.: Compact free-space optical terminal for multi-gigabit signal transmissions with a single-mode fiber. In: Proceedings of SPIE, Free-Space Laser Communication Technologies, vol. XXI, pp. 719908(1)–(9) (2009)

    Google Scholar 

  9. Nakajima, A., Sako, N., Kamemura, M., Wakayama, Y., Fukuzawa, A., Sugiyama, H., Okada, N.: ShindaiSat : a visible light communication experimental micro-satellite. In: Proceedings of the International Conference on Space Optical Systems and Applications (ICSOS) 2012, 12–1. Ajaccio, Corsica, France, October 9–12 2012

    Google Scholar 

  10. Ghassemlooy, Z., Arnon, S., Uysal, M., Xu, Z., Cheng, J.: Emerging optical wireless communications–advances and challenges. IEEE J. Sel. Areas Commun. 33(9), 1738–1749 (2015)

    CrossRef  Google Scholar 

  11. Holzmann, G.J., Pehrson, B.: The Early History of Data Networks (Perspectives). Wiley (1994)

    Google Scholar 

  12. Forin, D.M., Incerti, G., Tosi Beleffi, G.M., Teixeira, A.L.J., Costa, L.N., De Brito Andrè, P.S., Geiger, B., Leitgeb, E., Nadeem, F.: Trends in Telecommunications Technologies, Chapter Free Space Optical Technologies, pp. 257–296. InTech (2010)

    Google Scholar 

  13. Goodwin, E.: A review of operational laser communication systems. Proc. IEEE 58(10), 1746–1752 (1970)

    CrossRef  Google Scholar 

  14. Begley, D.L.: Free-space laser communications: a historical perspective. In: Proceedings of the 15th Annual Meeting of the IEEE Lasers and Electro-Optics Society (LEOS) (2002)

    Google Scholar 

  15. http://www.irda.org/. Accessed 7 June 2014

  16. Electronicast Consultants: http://www.electronicast.com

  17. Khalighi, M.A., Uysal, M.: Survey on free space optical communication: a com-munication theory perspective. IEEE Commun. Surv. Tutor. 16(8), 2231–2258 (2014)

    CrossRef  Google Scholar 

  18. Ciaramella, E., Arimoto, Y., Contestabile, G., Presi, M., D’Errico, A., Guarino, A., Matsumoto, M.: 1.28-Tb/s (32x40 Gb/s) free-space optical WDM transmission system. IEEE Photonics Technol. Lett. 21(16), 1121–1123 (2009)

    CrossRef  Google Scholar 

  19. Parca, G., Shahpari, A., Carrozzo, V., Tosi Beleffi, G., Teixeira, A.J.: Optical wireless transmission at 1.6-tbit/s (16 × 100 gbit/s) for next-generation convergent urban infrastructures. Opt. Eng. 0001; 52(11), 116102–116102

    Google Scholar 

  20. Yamazato, T., Takai, I., Okada, H., Fujii, T., Yendo, T., Arai, S.-T., Andoh, M., Harada, T., Yasutomi, K., Kagawa, K., Kawahito, S.: Image-sensor-based visible light communication for automotive applications. IEEE Common. Mag. 88–97 (2014)

    Google Scholar 

  21. Komine, T., Nakagawa, M.: Fundamental Analysis, for visible-light communication system using LED lightings. IEEE Trans. Consum. Electron. 50(1), 100–107 (2004)

    CrossRef  Google Scholar 

  22. Ghassemlooy, Z., Popoola, W.O., Rajbhandari, S.: Chapter 8 Visible light Communications, Optical Wireless Communications—System and Channel Modelling with Matlab. CRC publisher, USA (2012)

    Google Scholar 

  23. Tanaka, Y., Haruyama, S., Nakagawa, M.: Wireless optical transmissions with white colored LED for wireless home links. In: Proceedings of the IEEE International Symposium on PIMRC, London, UK, pp. 1325–1329 (2000)

    Google Scholar 

  24. IEEE 802.15.7—standard for short-range wireless optical communication using visible light (2011)

    Google Scholar 

  25. Boucouvalas, A., Chatzimisios, P., Ghassemlooy, Z., Uysal, M., Yiannopoulos, K.: Standards for indoor optical wireless communications. IEEE Commun. Mag. 53(3), 24–31 (2015)

    CrossRef  Google Scholar 

  26. Haigh, P.A., Ghassemlooy, Z., Rajbhandari, S., Papakonstantinou, I.: Visible light communications using organic light emitting diodes. IEEE Commun. Mag. 51(8), 148–154 (2013)

    CrossRef  Google Scholar 

  27. Gabriel, C., Khalighi, M.A., Bourennane, S., Léon, P., Rigaud, V.: Monte-carlo-based channel characterization for underwater optical communication systems. IEEE/OSA J. Opt. Commun. Networking (JOCN) 5(1), 1–12 (2013)

    CrossRef  Google Scholar 

  28. Feldman, M.R., Esener, S.C., Guest, C.C., Lee, S.H.: Comparison between optical and electrical interconnects based on power and speed considerations. Appl. Opt. 27, 1742–1751 (1988)

    CrossRef  Google Scholar 

  29. Plant, D.V., Venditti, M.B., Laprise, E., Faucher, J., Razavi, K., Chateauneuf, M., Kirk, A.G., Ahearn, J.S.: 256-channel bidirectional optical interconnect using VCSELs and photodiodes on CMOS. J. Lightwave Technol. 19(8), 1093–1103 (2001)

    CrossRef  Google Scholar 

  30. Haney, M.W., Christensen, M.P., Milojkovic, P., Fokken, G.J., Vickberg, M., Gilbert, B.K., Rieve, J., Ekman, J., Chandramani, P., Kiamilev, F.: Description and evaluation of the FAST-Net smart pixel-based optical interconnection prototype. Proc. IEEE 88, 819–828 (2000)

    CrossRef  Google Scholar 

  31. Ciftcioglu, B., Berman, R., Wang, S., Hu, J., Savidis, I., Jain, M., Moore, D., Huang, M., Friedman, E., Wicks, G., Wu, H.: 3-D integrated heterogeneous intra-chip free-space optical interconnect. Opt. Express 20, 4331–4345 (2012)

    CrossRef  Google Scholar 

  32. Xue, J., Garg, A., Ciftcioglu, B., Hu, J., Wang, S., Savidis, I., Jain, M., Berman, R., Liu, P., Huang, M., Wu, H., Friedman, E., Wicks, G., Moore, D.: An intra-chip free-space optical interconnect. SIGARCH Comput. Archit. News 38, 94–105 (2010)

    CrossRef  Google Scholar 

  33. Kachris, C., Bergman, K., Tomkos, I. (eds.): Optical Interconnects for Future Data Center Networks. Springer (2013)

    Google Scholar 

  34. Kachris, C., Tomkos, I.: A survey on optical interconnects for data centers. IEEE Commun. Surveys Tutor. 14(4), 1021–1036 (2012)

    CrossRef  Google Scholar 

  35. Taubenblatt, M.A.: Optical interconnects for high-performance computing. J. Lightwave Technol. 30(4), 448–457 (2012)

    CrossRef  Google Scholar 

  36. Vervaeke, M., Debaes, C., Erps, J.V., Thienpont, H., Karppinen, M., Tanskanen, A., Aalto, T., Harjanne, M.: Optical interconnects for satellite payloads : sizing up the state of the art. SPIE Newsroom, Optoelectron. Commun. (2010). doi: 10.1117/2.1201003.002685

  37. Kirk, A.G.: Free-space optical interconnects. In: Book Chapter in Optical Interconnects: The Silicon Approach. Springer (2006)

    Google Scholar 

  38. Hamedazimi, N., Qazi, Z., Gupta, H., Sekar, V., Das, S.R., Longtin, J.P., Shah, H., Tanwer, A.: FireFly: a reconfigurable wireless data center fabric using free-space optics. In: Proceedings of the 2014 ACM conference on SIGCOMM (SIGCOMM ‘14). ACM, New York, NY, USA, pp. 319–330

    Google Scholar 

  39. http://cir-inc.com/. Accessed 6 July 2014

  40. Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., Jamalipour, A.: Wireless body area networks, a survey. IEEE Commun. Surveys Tutor. 16(3), 1658–1686 (2014)

    CrossRef  Google Scholar 

  41. IEEE 802.15.6 standard for local and metropolitan area networks—part 15.6: wireless body area network. https://standards.ieee.org/findstds/standard/802.15.6-2012.html (2012)

  42. Lawrentschuk, N., Bolton, D.M.: Mobile phone interference with medical equipment and its clinical relevance: a systematic review. Med. J. Aust. 181(3), 145–149 (2004)

    Google Scholar 

  43. Hong, H., Ren, Y., Wang, C.: Information illuminating system for healthcare institution. In: Proceedings of the 2nd International Conference on Bioinformatics and Biomedical Engineering, pp. 801–804 (2008)

    Google Scholar 

  44. Rajagopal, S., Roberts, R.D., Lim, S.-K.: IEEE 802.15.7 visible light communication: modulation schemes and dimming support. IEEE Commun. Mag. 50(3), 72–82 (2012)

    CrossRef  Google Scholar 

  45. Dhatchayeny, D.R., Sewaiwar, A., Tiwari, S.V., Chung, Y.H.: Experimental biomedical EEG signal transmission using VLC. IEEE Sens. J. 15(10), 5386–5387 (2015)

    Google Scholar 

  46. Danakis, C., Afgani, M., Povey, G., Underwood, I., Haas, H.: Using a CMOS camera sensor for visible light communication. In: Proceedings of the IEEE Globecom Workshop on OWC (2012)

    Google Scholar 

  47. Stefan, I., Haas, H.: Area spectral efficiency performance comparison between VLC and RF femtocell networks. In: Proceedings of the IEEE International Communications Conference (ICC’13) 2013

    Google Scholar 

  48. Cossu, G., Khalid, A., Choudhury, P., Corsini, R., Ciaramella, E.: 3.4 Gbit/s visible optical wireless transmission based on RGB LED. Opt. Express 20, B501–B506 (2012)

    CrossRef  Google Scholar 

  49. Tsonev, D., Hyunchae, C., Rajbhandari, S., McKendry, J.J.D., Videv, S., Gu, E., Haji, M., Watson, S., Kelly, A.E., Faulkner, G., Dawson, M.D., Haas, H., O’Brien, D.: A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride µLED. IEEE Photonics Technol. Lett. 26(7), 637–640 (2014)

    CrossRef  Google Scholar 

  50. Yu, S.H., Shih, O., Tsai, H.M., Roberts, R.: Smart automotive lighting for vehicle safety. IEEE Commun. Mag. 51(12), 50–59 (2013)

    CrossRef  Google Scholar 

  51. Takai, I., Ito, S., Yasutomi, K., Kagawa, K., Andoh, M., Kawahito, S.: LED and CMOS image sensor based optical wireless communication system for automotive applications. IEEE Photonics J. 5, 6801418–6801418 (2013)

    Google Scholar 

  52. Luo, P., Ghassemlooy, Z., Le Minh, H., Tang, X., Tsai, H.-M.: Undersampled phase shift on-off keying for camera communication. In: Proceedings of the Wireless Communications and Signal Processing (WCSP), 2014 Sixth International Conference on, pp. 1–6, 23–25 Oct. 2014

    Google Scholar 

  53. Hanson, F., Radic, S.: High bandwidth underwater optical communication. Appl. Opt. 47(2), 277–283 (2008)

    CrossRef  Google Scholar 

  54. Simpson, J.A., Hughes, B.L., Muth, J.F.: Smart transmitters and receivers for underwater free-space optical communication. IEEE J. Sel. Areas Commun. 30(5), 964–974 (2012)

    CrossRef  Google Scholar 

  55. Tipmongkolsilp, O., Zaghloul, S., Jukan, A.: The evolution of cellular backhaul technologies: current issues and future trends. Commun. Surveys Tutor. 13, 97–113 (2011)

    CrossRef  Google Scholar 

  56. WiMAX.com: Backhaul for WiMAX: top 8 technical considerations. http://www.wimax.com/microwave-backhaul/backhaul-for-wimax-top-8-technical-considerations (2012)

  57. Jones, D.: 4G: can’t stand the rain. http://www.lightreading.com/document.asp?doc_id=154434

  58. Shahpari, A., Ferreira, R., Ribeiro, V., Sousa, A., Ziaie, S., Tavares, A., Vujicic, Z., Guiomar, F.P., Reis, J.D., Pinto, A.N., Teixeira, A.: Coherent ultra-dense wavelength division multiplexing passive optical networks [Invited paper]. In: Optical Fiber Technology. Elsevier. doi:10.1016/j.yofte.2015.07.001 (2015)

  59. Shahpari, A., Ferreira, R., Sousa, A., Ribeiro, V., Reis, J.D., Lima, M., Teixeira, A.: Optimization criteria for coherent PONs with video overlay and hybrid ODN. In: Optical Fiber Communication Conference (OFC), Los Angeles, CA, paper Th3I.2 (2015)

    Google Scholar 

  60. Abdulhussein, A., Oka, A., Nguyen, T.T., Lampe, L.: Rateless coding for hybrid free-space optical and radio-frequency communication. IEEE Trans. Wireless Commun. 9, 907–913 (2010)

    CrossRef  Google Scholar 

  61. Lee, I.E., Ghassemlooy, Z., Ng, W.P., Gourdel, V., Khalighi, M.A., Zvanovec, S., Uysal, M.: Practical implementation and performance study of a hard-switched hybrid FSO/RF link under controlled fog environment. In: Proceedings of the 9th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Manchester, UK, pp. 368–373 (2014)

    Google Scholar 

  62. Tapse, H., Borah, D.: Hybrid optical/RF channels: characterization and performance study using low density parity check codes. IEEE Trans. Commun. 57, 3288–3297 (2009)

    CrossRef  Google Scholar 

  63. Haan, H., Gerken, M., Tausendfreund, M.: Long-range laser communication terminals: technically interesting, commercially incalculable. In: Proceedings of the 8th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP) (2012)

    Google Scholar 

  64. Koepf, G.A., Marshalek, R.G., Begley, D.L.: Space laser communications: a review of major programs in the United States. Int. J. Electron. Commun. 56, 232–242 (2002)

    CrossRef  Google Scholar 

  65. Furch, B., Sodnik, Z., Lutz, H.: Optical communications in space—a challenge for Europe. Int. J. Electron. Commun. 56, 223–231 (2002)

    CrossRef  Google Scholar 

  66. Sodnik, Z., Furch, B., Lutz, H.: The ESA optical ground station—ten years since first light. ESA Bull. 132, 34–40 (2007)

    Google Scholar 

  67. Fujiwara, Y., Mokuno, M., Jono, T., et al.: Optical inter-orbit communications engineering test satellite (OICETS). Acta Astronaut. 61, 63–175 (2007). doi:10.1016/j.actaastro.2007.01.021

    CrossRef  Google Scholar 

  68. Jono, T., Takayama, Y., Shiratama, K.: Overview of the inter-orbit and orbit-to-ground laser communication demonstration by OICETS. In: Free-Space Laser Communication Technologies XIX and Atmospheric Propagation of Electromagnetic Waves, Proceedings of the SPIE. doi:10.1117/12.708864 (2007)

  69. Kovalik, J., Biswas, A., Wilson, K., et al.: Data products for the OCTL to OICETS optical link experiment. In: Proceedings of SPIE 7587 (Free-Space Laser Communication Technologies XXII) (2007)

    Google Scholar 

  70. Toyoshima, M., Takizawa, K., Kuri, T., et al.: Ground-to-OICETS laser communication experiments. In: Proceedings of SPIE (Free-Space Laser Communications VI), vol. 6304 (2006)

    Google Scholar 

  71. T. Tolker-Nielsen and G. Oppenhauser, “In-Orbit Test Result of an Operational Intersatellite Link between ARTEMIS and SPOT 4,” Proceedings of SPIE Free-Space Laser Communication Technologies XIV, vol. 4639, Jan. 2002

    Google Scholar 

  72. http://www.esa.int/Our_Activities/Telecommunications_Integrated_Applications/EDRS. Accessed 6 July 2014

  73. http://esc.gsfc.nasa.gov/267/271.html. Accessed 07 June 2104

  74. Belmonte, A., Kahn, M.I.: Efficiency of complex modulation methods in coherent free-space optical links. Opt. Express 18, 3928–3937 (2010)

    CrossRef  Google Scholar 

  75. Belmonte, A., Kahn, M.J.: Sequential optimization of adaptive arrays in coherent laser communications. J. Lightwave Technol. 31, 1383–1387 (2013)

    Google Scholar 

  76. Fields, R., Kozlowski, D., Yura, H., et al.: 5.625 Gbps bidirectional laser communications measurements between the NFIRE satellite and an optical ground station. In: Proceedings of the 2011 International Conference on Space Optical Systems and Applications, pp. 44–53 (2011)

    Google Scholar 

  77. Hauschildt, H., Garat, F., Greus, H., et al.: European data relay system—one year to go! In: Proceedings of the International Conference on Space Optical Systems and Applications (ICSOS) (2014)

    Google Scholar 

  78. Poliak, J., Giggenbach, D., Moll, F., et al.: Terabit-throughput GEO satellite optical feeder link testbed. In: Proceedings of 13th ConTEL (2015)

    Google Scholar 

  79. Smith, S.L.: NASA beams ’hello, world!’ video from space via laser. http://www.jpl.nasa.gov/news/news.php?release=2014-177 (2014)

  80. Grechukhin, I.A., Grigoriev, V., Danileiko, N., et al.: Russian free-space laser communication experiment SLS. In: Proceedings of the 18th International Workshop on Laser Ranging (2013)

    Google Scholar 

  81. Sodnik, Z., Smit, H., Sans, M., et al.: Results from a lunar laser communication experiment between NASA’s LADEE satellite and ESA’s optical ground station. In: Proceedings of the International Conference on Space Optical Systems and Applications (ICSOS) (2014)

    Google Scholar 

  82. Chan, V.J., Arnold, R.L.: Results of one GBPS aircraft-to-ground lasercom validation demonstration. In: Proceedings of SPIE 2990, Free-Space Laser Communication Technologies IX. pp. 52–59 (1997)

    Google Scholar 

  83. Stotts, B.: Optical communications in atmospheric turbulence. In: Proceedings of SPIE, Free-Space Laser Communications IX 7464 (2009)

    Google Scholar 

  84. Ortiz, G.G., Lee, S., Monacos, S.P., et al.: Design and development of a robust ATP subsystem for the Altair UAV-to-ground lasercomm 2.5-Gbps demonstration. In: Proceedings of SPIE 4975 (Free-Space Laser Communication Technologies XV). doi:10.1117/12.478939 (2003)

  85. Moll, F., Horwath, J., Shrestha, A., et al.: Demonstration of high-rate laser communications from a fast airborne platform. In: Proceedings of the IEEE Journal on Selected Areas in Communications, vol. 33, pp. 1985–1995 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Uysal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ghassemlooy, Z. et al. (2016). An Overview of Optical Wireless Communications. In: Uysal, M., Capsoni, C., Ghassemlooy, Z., Boucouvalas, A., Udvary, E. (eds) Optical Wireless Communications. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-30201-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30201-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30200-3

  • Online ISBN: 978-3-319-30201-0

  • eBook Packages: EngineeringEngineering (R0)