Skip to main content

Performance Analysis of FSO Communications Under Correlated Fading Conditions

  • Chapter
  • First Online:
Optical Wireless Communications

Abstract

This chapter considers performance evaluation of space-diversity free-space optical (FSO) communication systems over correlated Gamma-Gamma (\(\Gamma \Gamma\)) fading channels. To do this, we firstly describe in detail the \(\Gamma \Gamma\) model and explain how to model space-diversity FSO channels. Next, we investigate the fading correlation existing in real space-diversity FSO systems using wave-optics simulations. To integrate the fading correlation into the \(\Gamma \Gamma\) channel model, we decompose the correlation coefficient into large- and small-scale correlation coefficients. Then, the generation of correlated \(\Gamma \Gamma\) random variables (RVs) corresponding to the correlated FSO channel fading coefficients is presented for evaluating the system performance via Monte-Carlo simulations. Because Monte-Carlo simulations are in general highly time-consuming, analytical performance evaluation methods are also introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here, a sub channel refers to the channel between a pair of transmit-receive apertures.

  2. 2.

    The loss of spatial coherence of an initially coherent laser beam is caused by the atmospherice. The spatial coherence radius \(\rho_{0}\) is defined as the \({1 \mathord{\left/ {\vphantom {1 e}} \right. \kern-0pt} e}\) point of the wave complex degree of coherence, Considering the plane wave model, \(\rho_{0}\) is given by \(\left( {1.46\,C_{n}^{2} k^{2} L} \right)^{{ - {3 \mathord{\left/ {\vphantom {3 5}} \right. \kern-0pt} 5}}}\) with k represending the optical wave number (see [3, Sect. 6.4]). In weak-to moderate turbulence regime, the irradiance fluctuations are mainly induced by the turbulence cells of size smaller than \(\rho_{0}\) [1].

  3. 3.

    At the transmitter, the diameter of the transmitted beam hard aperture is set as \(D_{T} = 2\sqrt 2 W_{0}\), where \(W_{0}\) is the beam waist [15].

  4. 4.

    Here, \({\mathbf{R}}_{{\mathbf{H}}} (1,\;:)\) represents the first row of the correlation matrix \({\mathbf{R}}_{{\mathbf{H}}}\). Given the symmetry of \({\mathbf{R}}_{{\mathbf{H}}}\), i.e., \({\mathbf{R}}_{{\mathbf{H}}} (i,\;j) = {\mathbf{R}}_{{\mathbf{H}}} (j,\;i)\) and \({\mathbf{R}}_{{\mathbf{H}}} (i,\;j) = {\mathbf{R}}_{{\mathbf{H}}} (i \pm\,k,\;j \pm\,k)\), one could easily deduce the entire \({\mathbf{R}}_{{\mathbf{H}}}\) matrix entries.

References

  1. Khalighi, M.A., Uysal, M.: Survey on free space optical communication: a communication theory perspective. IEEE Commun. Surv. Tuts 16, 2231–2258 (2014). doi:10.1109/COMST.2014.2329501

    Article  Google Scholar 

  2. Ghassemlooy, Z., Popoola, W., Rajbhandari, S.: Optical Wireless Communications: System and Channel Modelling with MATLAB. CRC Press, Boca Raton (2013)

    Google Scholar 

  3. Andrews, L.C., Phillips, R.L.: Laser Beam Propagation Through Random Media. SPIE Press, Washington (2005)

    Book  Google Scholar 

  4. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover Publications, New York (1965)

    MATH  Google Scholar 

  5. Khalighi, M.A., Schwartz, N., Aitamer, N., Bourennane, S.: Fading reduction by aperture averaging and spatial diversity in optical wireless systems. IEEE/OSA J. Opt. Commun. Networking 1, 580–593 (2009). doi:10.1364/JOCN.1.000580

    Article  Google Scholar 

  6. Peppas, K.P.: A simple, accurate approximation to the sum of GammaGamma variates and applications in MIMO free-space optical systems. IEEE Photonics Technol. Lett. 23, 839–841 (2011). doi:10.1109/LPT.2011.2135342

    Article  Google Scholar 

  7. Anguita, J.A., Neifeld, M.A., Vasic, B.V.: Spatial correlation and irradiance statistics in a multiple-beam terrestrial free-space optical communication link. Appl. Opt. 46, 6561–6571 (2007). doi:10.1364/AO.46.006561

    Article  Google Scholar 

  8. Tellez, J.A., Schmidt, J.D.: Multiple transmitter performance with appropriate amplitude modulation for free-space optical communication. Appl. Opt. 50, 4737–4745 (2011). doi:10.1364/AO.50.004737

    Article  Google Scholar 

  9. Yang, G., Khalighi, M.A., Bourennane, S.: Performance of receive diversity FSO systems under realistic beam propagation conditions. In: IEEE, IET Intetnational Symposium CSNDSP, pp. 1–5, Poznan, Poland (2012). doi:10.1109/CSNDSP.2012.6292704

  10. Letzepis, N., Holland, I., Cowley, W.: The Gaussian free space optical MIMO channel with Q-ary pulse position modulation. IEEE Trans. Wireless Commun. 7, 1744–1753 (2008). doi:10.1109/TWC.2008.061002

    Article  Google Scholar 

  11. Navidpour, S.M., Uysal, M., Kavehrad, M.: BER performance of freespace optical transmission with spatial diversity. IEEE Trans. Wireless Commun. 6, 2813–2819 (2007). doi:10.1109/TWC.2007.06109

    Article  Google Scholar 

  12. Uysal, M., Navidpour, S.M., Jing, L.: Error rate performance of coded free-space optical links over strong turbulence channels. IEEE Commun. Lett. 8, 635–637 (2004). doi:10.1109/LCOMM.2004.835306

    Article  Google Scholar 

  13. Peppas, K.P., Alexandropoulos, G.C., Datsikas, C.K., Lazarakis, F.I.: Multivariate Gamma-Gamma distribution with exponential correlation and its applications in radio frequency and optical wireless communications. IET Microwaves Antennas Propag. 5, 364–371 (2011). doi:10.1049/iet-map.2010.0188

    Article  Google Scholar 

  14. Schmidt, J.D.: Numerical Simulation of Optical Wave Propagation With Examples in MATLAB. SPIE Press, Washington (2010)

    Book  Google Scholar 

  15. Vetelino, F.S., Young, C., Andrews, L.C., Recolons, J.: Aperture averaging effects on the probability density of irradiance fluctuations in moderate-to-strong turbulence. Appl. Opt. 46, 2099–2108 (2007). doi:10.1364/AO.46.002099

    Article  Google Scholar 

  16. Yang, G., Khalighi, M.A., Ghassemlooy, Z., Bourennane, S.: Performance evaluation of receive-diversity free-space optical communications over correlated Gamma–Gamma fading channels. Appl. Opt. 52, 5903–5911 (2013). doi:10.1364/AO.52.005903

    Article  Google Scholar 

  17. Wheelon, A.D.: Electromagnetic Scintillation:Weak Scattering, vol. 2. Cambridge University Press, New York (2003)

    Book  Google Scholar 

  18. Shapiro, J.H., Puryear, A.L.: Reciprocity-enhanced optical communication through atmospheric turbulence—part I: Reciprocity proofs and far-field power transfer optimization. IEEE/OSA J. Opt. Commun. Networking 4, 947–954 (2012). doi:10.1364/JOCN.4.000947

    Article  Google Scholar 

  19. Kermoal, J.P., Schumacher, L., Pedersen, K.I., Mogensen, P.E., Frederiksen, F.: A stochastic MIMO radio channel model with experimental validation. IEEE J. Sel. Areas Commun. 20, 1211–1226 (2002). doi:10.1109/JSAC.2002.801223

    Article  Google Scholar 

  20. Hjorungnes, A., Gesbert, D., Akhtar, J.: Precoding of space-time block coded signals for joint transmit-receive correlated MIMO channels. IEEE Trans. Wireless Commun. 5, 492–497 (2006). doi:10.1109/TWC.2006.1611076

    Google Scholar 

  21. Zhang, Q.T.: A decomposition technique for efficient generation of correlated Nakagami fading channels. IEEE J. Sel. Areas Commun. 18, 2385–2392 (2000). doi:10.1109/49.895043

    Article  Google Scholar 

  22. Zhang, K., Song, Z., Guan, Y.L.: Simulation of Nakagami fading channels with arbitrary cross-correlation and fading parameters. IEEE Trans. Wireless Commun. 3, 1463–1468 (2004). doi:10.1109/TWC.2004.833469

    Article  Google Scholar 

  23. Xu, F., Khalighi, M.A., Caussé, P., Bourennane, S.: Channel coding and time-diversity for optical wireless links. Opt. Express 17, 872–887 (2009). doi:10.1364/OE.17.000872

    Article  Google Scholar 

  24. Khalighi, M.A., Xu, F., Jaafar, Y., Bourennane, S.: Double-laser differential signaling for reducing the effect of background radiation in free-space optical systems. IEEE/OSA J. Opt. Commun. Networking 3, 145–154 (2011). doi:10.1364/JOCN.3.000145

    Article  Google Scholar 

  25. Xu, F., Khalighi, M.A., Bourennane, S.: Impact of different noise sources on the performance of PIN- and APD-based FSO receivers. IEEE ConTEL, pp. 279–286, Graz, Austria (2011)

    Google Scholar 

  26. Yang, G., Khalighi, M.A., Virieux, T., Bourennane, S., Ghassemlooy, Z.: Contrasting space-time schemes for MIMO FSO systems with noncoherent modulation. In: International Workshop Optical Wireless Communication, Pisa, Italy (2012). doi:10.1109/IWOW.2012.6349694

  27. Yacoub, M.D.: The α-µ distribution: a physical fading model for the stacy distribution. IEEE Trans. Veh. Technol. 56, 27–34 (2007). doi:10.1109/TVT.2006.883753

    Article  Google Scholar 

  28. Yang, G., Khalighi, M.A., Bourennane, S., Ghassemlooy, Z.: Approximation to the sum of two correlated Gamma-Gamma variates and its applications in free-space optical communications. IEEE Wireless Commun. Lett. 1, 621–624 (2012). doi:10.1109/WCL.2012.091312.120469

    Article  Google Scholar 

  29. Yang, G., Khalighi, M.A., Bourennane, S., Ghassemlooy, Z.: Fading correlation and analytical performance evaluation of the space-diversity free-space optical communications system. IOP J. Opt. 16, 1–10 (2014). doi:10.1088/2040-8978/16/3/035403

    Google Scholar 

  30. Yang, G., Khalighi, M.A., Ghassemlooy, Z., Bourennane, S.: Performance analysis of space-diversity free-space optical systems over the correlated Gamma-Gamma fading channel using padé approximation method. IET Commun. 8, 2246–2255 (2014). doi:10.1049/iet-com.2013.0962

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad-Ali Khalighi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yang, G., Khalighi, MA., Ghassemlooy, Z., Bourennane, S. (2016). Performance Analysis of FSO Communications Under Correlated Fading Conditions. In: Uysal, M., Capsoni, C., Ghassemlooy, Z., Boucouvalas, A., Udvary, E. (eds) Optical Wireless Communications. Signals and Communication Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-30201-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30201-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30200-3

  • Online ISBN: 978-3-319-30201-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics