Skip to main content

Engineering the Magnetoelectric Response in Piezocrystal-Based Magnetoelectrics: Basic Theory, Choice of Materials, Model Calculations

  • Chapter
  • First Online:
Nanostructures and Thin Films for Multifunctional Applications

Part of the book series: NanoScience and Technology ((NANO))

Abstract

This chapter presents a theoretical basis of the anisotropic magnetoelectric (ME) effect in tri-layers of metglas and piezoelectric (PE) single crystals. The properties of various common PE and magnetostrictive substances are discussed, and arguments for the choice of the most appropriate materials are made. A linear description of the ME effects in terms of electric, magnetic and elastic material fields and material constants is presented. An averaging quasi-static method is used to illustrate the relation between the material constants, their anisotropy and the transversal direct ME voltage and charge coefficients. Subsequently, the aforementioned model is employed in the calculation of the maximum expected direct ME voltage coefficient for a series of tri-layered Metglas/Piezocrystal/Metglas composites as a function of the PE crystal orientation. The ME effects are shown to be strongly dependent on the crystal orientation, which supports the possibility of inducing large ME voltage coefficients in composites comprising lead-free PE single crystals such as LiNbO3, LiTaO3, α-GaPO4, α-quartz, langatate and langasite through the optimization of the crystal orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. Debye, Bemerkung zu einigen neuen Versuchen über einen magneto-elektrischen Richteffekt. Z. Phys. 36(4), 300–301 (1926)

    Article  Google Scholar 

  2. T.H. O’Dell, The Electrodynamics of Continuous Media (North-Holland, Amsterdan, 1970)

    Google Scholar 

  3. L.D. Landau, L.P. Pitaevskii, E. M. Lifshitz, Electrodynamics of Continuous Media. 2nd edn. vol. 8 (Course of Theoretical Physics), Butterworth-Heinemann (1984)

    Google Scholar 

  4. M. Fiebig, N.A. Spaldin, Current trends of the magnetoelectric effect. Eur. Phys. J. B 71(3), 293–297 (2009)

    Article  Google Scholar 

  5. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442(7104), 759–765 (2006)

    Article  Google Scholar 

  6. C.-W. Nan, M.I. Bichurin, S. Dong, D. Viehland, G. Srinivasan, Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103(3), 031101–031135 (2008)

    Article  Google Scholar 

  7. M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D Appl. Phys. 38(8), R123–R152 (2005)

    Article  Google Scholar 

  8. S.-W. Cheong, M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6(1), 13–20 (2007)

    Article  Google Scholar 

  9. R. Ramesh, N.A. Spaldin, Multiferroics: progress and prospects in thin films. Nat. Mater 6(1), 21–29 (2007).\

    Google Scholar 

  10. R. Ramesh, Materials science: Emerging routes to multiferroics. Nature 461(7268), 1218–1219 (2009)

    Article  Google Scholar 

  11. N.A. Spaldin, M. Fiebig, The renaissance of magnetoelectric multiferroics. Science 309(5733), 391–392 (2005)

    Article  Google Scholar 

  12. M. Bichurin, D. Viehland, G. Srinivasan, Magnetoelectric interactions in ferromagnetic-piezoelectric layered structures: phenomena and devices. J. Electroceram. 19(4), 243–250 (2007)

    Article  Google Scholar 

  13. Y. Wang, J. Hu, Y. Lin, C.-W. Nan, Multiferroic magnetoelectric composite nanostructures. NPG Asia Mater. 2(2), 61–68 (2010)

    Google Scholar 

  14. J. Zhai, Z. Xing, S. Dong, J. Li, D. Viehland, Magnetoelectric laminate composites: an overview. J. Am. Ceram. Soc. 91(2), 351–358 (2008)

    Article  Google Scholar 

  15. S. Picozzi, C. Ederer, First principles studies of multiferroic materials. J. Phys.: Condens. Matter 21(30), 303201–303237 (2009)

    Google Scholar 

  16. M. Vopsaroiu, J. Blackburn, M.G. Cain, Emerging technologies and opportunities based on the magneto-electric effect in multiferroic composites. MRS Proc. 1161, 1161-I05-04 (2009)

    Google Scholar 

  17. J. Ryu, S. Priya, K. Uchino, H.-E. Kim, Magnetoelectric effect in composites of magnetostrictive and piezoelectric materials. J. Electroceram. 8(2), 107–119 (2002)

    Google Scholar 

  18. R.C. Kambale, D.-Y. Jeong, J. Ryu, Current status of magnetoelectric composite thin/thick films. Adv. Cond. Matter Physics 2012, 824643 (2012)

    Google Scholar 

  19. G. Lawes, G. Srinivasan, Introduction to magnetoelectric coupling and multiferroic films. J. Phys. D Appl. Phys. 44(24), 243001 (2011)

    Article  Google Scholar 

  20. G. Srinivasan, Magnetoelectric composites. Annu. Rev. Mater. Res. 40, 153–178 (2010)

    Article  Google Scholar 

  21. L.W. Martin, R. Ramesh, Multiferroic and magnetoelectric heterostructures. Acta Mater. 60(6–7), 2449–2470 (2012)

    Article  Google Scholar 

  22. S. Priya, R. Islam, S. Dong, D. Viehland, Recent advancements in magnetoelectric particulate and laminate composites. J. Electroceram. 19(1), 149–166 (2007)

    Article  Google Scholar 

  23. J. Ma, J. Hu, Z. Li, C.-W. Nan, Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv. Mater. 23(9), 1062–1087 (2011)

    Article  Google Scholar 

  24. M. Bichurin, V. Petrov, A. Zakharov, D. Kovalenko, S.C. Yang, D. Maurya, V. Bedekar, S. Priya, Magnetoelectric interactions in lead-based and lead-free composites. Materials 4(4), 651–702 (2011)

    Article  Google Scholar 

  25. R. Grössinger, G.V. Duong, R. Sato-Turtelli, The physics of magnetoelectric composites. J. Mag. Mag. Mat. 320(14), 1972–1977 (2008)

    Article  Google Scholar 

  26. Ü. Özgür, Y. Alivov, H. Morkoç, Microwave ferrites, part 2: passive components and electrical tuning. J. Mater. Sci.: Mater. Electron. 20(10), 911–951 (2009)

    Google Scholar 

  27. T.H. O’Dell, The field invariants in a magneto-electric medium. Phil. Mag. 8(87), 411–418 (1963)

    Article  Google Scholar 

  28. M.I. Bichurin, V.M. Petrov, D.A. Filippov, G. Srinivasan, Magnetoelectric Effect in Composite Materials (em russo). Veliki Noogorod (2005)

    Google Scholar 

  29. W.F. Brown, Jr., R.M. Hornreich, S. Shtrikman, Upper bound on the magnetoelectric susceptibility. Phys. Rev. 168(2), 574–577 (1968)

    Google Scholar 

  30. N.A. Spaldin, R. Ramesh, Electric-field control of magnetism in complex oxide thin films. MRS Bull. 33, 1047–1050 (2008)

    Article  Google Scholar 

  31. G.A. Gehring, On the microscopic theory of the magnetoelectric effect. Ferroelectrics 161(1), 275–285 (1994)

    Article  Google Scholar 

  32. N.A. Hill, Why are there so few magnetic ferroelectrics? J. Phys. Chem. B 104(29), 6694–6709 (2000)

    Article  Google Scholar 

  33. J.-P. Rivera, A short review of the magnetoelectric effect and related experimental techniques on single phase (multi-) ferroics. Eur. Phys. J. B 71(3), 299–313 (2009)

    Article  Google Scholar 

  34. J.P. Rivera, On definitions, units, measurements, tensor forms of the linear magnetoelectric effect and on a new dynamic method applied to Cr-Cl boracite. Ferroelectrics 161(1), 165–180 (1994)

    Article  Google Scholar 

  35. H. Grimmer, The forms of tensors describing magnetic, electric and toroidal properties. Ferroelectrics 161(1), 181–189 (1994)

    Article  Google Scholar 

  36. R.A. Islam, S. Priya, Progress in dual (Piezoelectric-Magnetostrictive) phase magnetoelectric sintered composites. Adv. Cond. Matter Phys. 2012, 1–29 (2012)

    Article  Google Scholar 

  37. J.V. Suchtelen, Product properties: a new application of composite materials. Philips Res. Rep. 27(1), 28–37 (1972)

    Google Scholar 

  38. J.V.D. Boomgard, A.M.J.G.V. Run, J.V. Suchtelen, Piezoelectric-piezomagnetic composites with magnetoelectric effect. Ferroelectrics 14(1), 727–728 (1976)

    Google Scholar 

  39. C.-W. Nan, Magnetoelectric effect in composites of piezoelectric and piezomagnetic phases. Phys. Rev. B 50(9), 6082–6088 (1994)

    Google Scholar 

  40. D.C. Lupascu, H. Wende, M. Etier, A. Nazrabi, I. Anusca, H. Trivedi, V.V. Shvartsman, J. Landers, S. Salamon, C. Schmitz-Antoniak, Measuring the magnetoelectric effect across scales. GAMM-Mitteilungen 38(1), 25–74 (2015)

    Article  Google Scholar 

  41. C.-W. Nan, Physics of inhomogeneous inorganic materials. Prog. Mater Sci. 37(1), 1–116 (1993)

    Article  Google Scholar 

  42. M.I. Bichurin, V.M. Petrov, G. Srinivasan, Theory of low-frequency magnetoelectric effects in ferromagnetic-ferroelectric layered composites. J. Appl. Phys. 92(12), 7681–7683 (2002)

    Article  Google Scholar 

  43. M.I. Bichurin, V.M. Petrov, G. Srinivasan, Theory of low-frequency magnetoelectric coupling in magnetostrictive-piezoelectric bilayers. Phys. Rev. B 68(5), 054402–054414 (2003)

    Article  Google Scholar 

  44. G.V. Duong, R. Groessinger, M. Schoenhart, D. Bueno-Basques, The lock-in technique for studying magnetoelectric effect. J. Mag. Mag. Mat. 316(2), 390–393 (2007)

    Article  Google Scholar 

  45. X. Zhuang, M.L.C. Sing, C. Cordier, S. Saez, C. Dolabdjian, J. Das, J. Gao, J. Li, D. Viehland, Analysis of noise in magnetoelectric thin-layer composites used as magnetic sensors. IEEE Sens. J. 11(10), 2183–2188 (2011)

    Article  Google Scholar 

  46. Y.J. Wang, J.Q. Gao, M.H. Li, Y. Shen, D. Hasanyan, J.F. Li, D. Viehland, A review on equivalent magnetic noise of magnetoelectric laminate sensors. Phil. Trans. R. Soc. A 372(2009), 20120455 (2014)

    Article  Google Scholar 

  47. Z.P. Xing, J.Y. Zhai, S.X. Dong, J.F. Li, D. Viehland, W.G. Odendaal, Modeling and detection of quasi-static nanotesla magnetic field variations using magnetoelectric laminate sensors. Meas. Sci. Technol. 19(1), 015206–015214 (2008)

    Article  Google Scholar 

  48. Y. Wang, D. Gray, D. Berry, J. Gao, M. Li, J. Li, D. Viehland, An extremely low equivalent magnetic noise magnetoelectric sensor. Adv. Mater. 23(35), 4111–4114 (2011)

    Article  Google Scholar 

  49. R. Jahns, H. Greve, E. Woltermann, E. Quandt, R.H. Knochel, Noise performance of magnetometers with resonant thin-film magnetoelectric sensors. IEEE T. Instrum. Meas. 60(8), 2995–3001 (2011)

    Article  Google Scholar 

  50. R.E. Newnham, D.P. Skinner, L.E. Cross, Connectivity and piezoelectric-pyroelectric composites. Mater. Res. Bull. 13(5), 525–536 (1978)

    Article  Google Scholar 

  51. S.N. Babu, T. Bhimasankaram, S.V. Suryanarayana, Magnetoelectric effect in metal-PZT laminates. Bull. Mater. Sci. 28(5), 419–422 (2004)

    Article  Google Scholar 

  52. C.P. Zhao, F. Fang, W. Yang, A dual-peak phenomenon of magnetoelectric coupling in laminated Terfenol-D/PZT/Terfenol-D composites. Smart Mater. Struct. 19(12), 125004–125010 (2010)

    Article  Google Scholar 

  53. J. Ryu, A.V. Carazo, K. Uchino, H.-E. Kim, Magnetoelectric properties in piezoelectric and magnetostrictive laminate composites. Jpn. J. Appl. Phys. 40(8), 4948–4951 (2001)

    Article  Google Scholar 

  54. IEEE Standard on Piezoelectricity. ANSI/IEEE Std 176-1987, pp. 1–74 (1988)

    Google Scholar 

  55. M. Zgonik, P. Bernasconi, M. Duelli, R. Schlesser, P. Günter, M.H. Garrett, D. Rytz, Y. Zhu, X. Wu, Dielectric, elastic, piezoelectric, electro-optic, and elasto-optic tensors of BaTiO_{3} crystals. Phys. Rev. B 50(9), 5941–5949 (1994)

    Article  Google Scholar 

  56. H. Xiao-Kang, Z. Li-Bo, W. Qiong-Shui, Z. Li-Yan, Z. Ke, L. Yu-Long, Determination of elastic, piezoelectric, and dielectric constants of an R:BaTiO3 single crystal by Brillouin scattering. Chin. Phys. B 21(6), 067801 (2012)

    Article  Google Scholar 

  57. R.S. Weis, T.K. Gaylord, Lithium niobate: summary of physical properties and crystal structure. Appl. Phys. A Mater. Sci. Process. 37(4), 191–203 (1985)

    Article  Google Scholar 

  58. P. Davulis, J.A. Kosinski, M.P. da Cunha, GaPO4 stiffness and piezoelectric constants measurements using the combined thickness excitation and lateral field technique. in International Frequency Control Symposium and Exposition, 2006 IEEE, 664–669 (2006)

    Google Scholar 

  59. W. Wallnöfer, P.W. Krempl, A. Asenbaum, Determination of the elastic and photoelastic constants of quartz-type GaPO4 by Brillouin scattering. Phys. Rev. B 49(15), 10075–10080 (1994)

    Article  Google Scholar 

  60. M. Šulca, J. Erharta, J. Noseka, Interferometric measurement of the temperature dependence of piezoelectric coefficients for PZN-8 %PT single crystals. Ferroelectrics 293(1), 283–290 (2003)

    Article  Google Scholar 

  61. D.-S. Paik, S.-E. Park, T.R. Shrout, W. Hackenberger, Dielectric and piezoelectric properties of perovskite materials at cryogenic temperatures. J. Mater. Sci. 34(3), 469–473 (1999)

    Article  Google Scholar 

  62. M. Shanthi, L.C. Lim, K.K. Rajan, J. Jin, Complete sets of elastic, dielectric, and piezoelectric properties of flux-grown [011]-poled Pb(Mg1∕3Nb2∕3)O3-(28–32)%PbTiO3 single crystals. Appl. Phys. Lett. 92(14), 142906 (2008)

    Article  Google Scholar 

  63. S.S. Guo, S.G. Lu, Z. Xu, X.Z. Zhao, S.W. Or, Enhanced magnetoelectric effect in Terfenol-D and flextensional cymbal laminates. Appl. Phys. Lett. 88(18), 182906–182908 (2006)

    Article  Google Scholar 

  64. J.G. Wan, Z.Y. Li, Y. Wang, M. Zeng, G.H. Wang, J.-M. Liu, Strong flexural resonant magnetoelectric effect in Terfenol-D∕epoxy-Pb(Zr, Ti)O3 bilayer. Appl. Phys. Lett. 86(20), 202504–202506 (2005)

    Article  Google Scholar 

  65. S. Dong, J.-F. Li, D. Viehland, Longitudinal and transverse magnetoelectric voltage coefficients of magnetostrictive/piezoelectric laminate composite: theory. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50(10), 1253–1261 (2003)

    Article  Google Scholar 

  66. S. Dong, J.-F. Li, D. Viehland, Ultrahigh magnetic field sensitivity in laminates of TERFENOL-D and Pb(Mg1/3Nb2/3)O3–PbTiO3 crystals. Appl. Phys. Lett. 83(11), 2265–2267 (2003)

    Article  Google Scholar 

  67. S. Dong, J. Cheng, J.F. Li, D. Viehland, Enhanced magnetoelectric effects in laminate composites of Terfenol-D/Pb(Zr, Ti)O3 under resonant drive. Appl. Phys. Lett. 83(23), 4812–4814 (2003)

    Article  Google Scholar 

  68. J. Zhai, S. Dong, Z. Xing, J. Li, D. Viehland, Giant magnetoelectric effect in Metglas/polyvinylidene-fluoride laminates. Appl. Phys. Lett. 89(8), 083507–083509 (2006)

    Article  Google Scholar 

  69. Y. Yang, J. Gao, Z. Wang, M. Li, J.-F. Li, J. Das, D. Viehland, Effect of heat treatment on the properties of Metglas foils, and laminated magnetoelectric composites made thereof. Mater. Res. Bull. 46(2), 266–270 (2011)

    Article  Google Scholar 

  70. U. Laletsin, N. Padubnaya, G. Srinivasan, C.P. DeVreugd, Frequency dependence of magnetoelectric interactions in layered structures of ferromagnetic alloys and piezoelectric oxides. Appl. Phys. A 78(1), 33–36 (2004)

    Article  Google Scholar 

  71. http://www.metglas.com/products/magnetic_materials/

  72. S. Dong, J. Zhai, J. Li, D. Viehland, Near-ideal magnetoelectricity in high-permeability magnetostrictive/piezofiber laminates with a (2-1) connectivity. Appl. Phys. Lett. 89(25), 252904–252906 (2006)

    Article  Google Scholar 

  73. G. Sreenivasulu, S.K. Mandal, S. Bandekar, V.M. Petrov, G. Srinivasan, Low-frequency and resonance magnetoelectric effects in piezoelectric and functionally stepped ferromagnetic layered composites. Phys. Rev. B 84(14), 144426–144431 (2011)

    Article  Google Scholar 

  74. J. Wang, Y. Zhang, J. Ma, Y. Lin, C.W. Nan, Magnetoelectric behavior of BaTiO3 films directly grown on CoFe2O4 ceramics. J. Appl. Phys. 104(1), 014101–014105 (2008)

    Article  Google Scholar 

  75. T. Kiyomiya, Y. Yamada, Y. Matsuo, H. Wakiwaka, Y. Torii, M. Makimura, Magnetostrictive properties of Tb-Fe and Tb-Fe-Co films. Electron. Comm. Jpn. 91(5), 49–55 (2008)

    Article  Google Scholar 

  76. G. Sreenivasulu, U. Laletin, V.M. Petrov, V.V. Petrov, G. Srinivasan, A permendur-piezoelectric multiferroic composite for low-noise ultrasensitive magnetic field sensors. Appl. Phys. Lett. 100(17), 173506–173510 (2012)

    Article  Google Scholar 

  77. M. Matsumoto, T. Kubota, M. Yokoyama, T. Okazaki, Y. Furuya, A. Makino, M. Shimada, Magnetic properties of rapidly solidified ribbon of Fe49Co49V2 and spark-plasma-sintered pellet of its powder. Mater. Trans. 51(10), 1883–1886 (2010)

    Article  Google Scholar 

  78. D.A. Burdin, D.V. Chashin, N.A. Ekonomov, L.Y. Fetisov, Y.K. Fetisov, G. Sreenivasulu, G. Srinivasan, Nonlinear magneto-electric effects in ferromagnetic-piezoelectric composites. J. Mag. Mag. Mat. 358–359, 98–104 (2014)

    Article  Google Scholar 

  79. A.E. Clark, M. Wun-Fogle, J.B. Restorff, T.A. Lograsso, J.R. Cullen, Effect of quenching on the magnetostriction on Fe < sub > 1-x </sub > Ga < sub > x</sub > (0.13x < 0.21). IEEE Trans. Magn. 37(4), 2678–2680 (2001)

    Article  Google Scholar 

  80. A.E. Clark, M. Wun-Fogle, J.B. Restorff, T.A. Lograsso, Magnetostrictive properties of galfenol alloys under compressive stress. Mater. Trans. 43(5), 881–886 (2002)

    Article  Google Scholar 

  81. S. Dong, J.-F. Li, D. Viehland, Magnetoelectric coupling, efficiency, and voltage gain effect in piezoelectric-piezomagnetic laminate composites. J. Mater. Sci. 41(1), 97–106 (2006)

    Article  Google Scholar 

  82. G. Srinivasan, I.V. Zavislyak, A.S. Tatarenko, Millimeter-wave magnetoelectric effects in bilayers of barium hexaferrite and lead zirconate titanate. Appl. Phys. Lett. 89(15), 152508–152510 (2006)

    Article  Google Scholar 

  83. G. Srinivasan, E.T. Rasmussen, J. Gallegos, R. Srinivasan, Y.I. Bokhan, V.M. Laletin, Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys. Rev. B 64(21), 214408–214413 (2001)

    Article  Google Scholar 

  84. G. Srinivasan, C.P. DeVreugd, C.S. Flattery, V.M. Laletsin, N. Paddubnaya, Magnetoelectric interactions in hot-pressed nickel zinc ferrite and lead zirconante titanate composites. Appl. Phys. Lett. 85(13), 2550–2552 (2004)

    Article  Google Scholar 

  85. G. Liu, C.-W. Nan, N. Cai, Y. Lin, Calculations of giant magnetoelectric effect in multiferroic composites of rare-earth-iron alloys and PZT by finite element method. Int. J. Solids Struct. 41(16–17), 4423–4434 (2004)

    Article  Google Scholar 

  86. S. Dong, J. Zhai, F. Bai, J.-F. Li, D. Viehland, Push-pull mode magnetostrictive/piezoelectric laminate composite with an enhanced magnetoelectric voltage coefficient. Appl. Phys. Lett. 87(6), 062502–062504 (2005)

    Article  Google Scholar 

  87. D.R. Tilley, J.F. Scott, Frequency dependence of magnetoelectric phenomena in BaMnF4. Phys. Rev. B 25(5), 3251–3260 (1982)

    Article  Google Scholar 

  88. M.I. Bichurin, V.M. Petrov, O.V. Ryabkov, S.V. Averkin, G. Srinivasan, Theory of magnetoelectric effects at magnetoacoustic resonance in single-crystal ferromagnetic-ferroelectric heterostructures. Phys. Rev. B 72(6), 060408–060411 (2005)

    Article  Google Scholar 

  89. M.I. Bichurin, V.M. Petrov, Y.V. Kiliba, G. Srinivasan, Magnetic and magnetoelectric susceptibilities of a ferroelectric/ferromagnetic composite at microwave frequencies. Phys. Rev. B 66(13), 134404–134413 (2002)

    Article  Google Scholar 

  90. S. Timoshenko, Vibration Problems in Engineering (D. Van Nostrand, New York, 1961)

    Google Scholar 

  91. U. Laletsin, N. Padubnaya, G. Srinivasan, C.P. DeVreugd, Frequency dependence of magnetoelectric interactions in layered structures of ferromagnetic alloys and piezoelectric oxides. Appl. Phys. A 78(1), 33–36 (2004)

    Article  Google Scholar 

  92. Y.K. Fetisov, K.E. Kamentsev, A.Y. Ostashchenko, G. Srinivasan, Wide-band magnetoelectric characterization of a ferrite-piezoelectric multilayer using a pulsed magnetic field. Solid State Commun. 132(1), 13–17 (2004)

    Article  Google Scholar 

  93. N. Cai, C.-W. Nan, J. Zhai, Y. Lin, Large high-frequency magnetoelectric response in laminated composites of piezoelectric ceramics, rare-earth iron alloys and polymer. Appl. Phys. Lett. 84(18), 3516–3518 (2004)

    Article  Google Scholar 

  94. H. Greve, E. Woltermann, H.-J. Quenzer, B. Wagner, E. Quandt, Giant magnetoelectric coefficients in (Fe90Co10)78Si12B10-AlN thin film composites. Appl. Phys. Lett. 96(18), 182501–182503 (2010)

    Article  Google Scholar 

  95. G. Liu, X. Li, J. Chen, H. Shi, W. Xiao, S. Dong, Colossal low-frequency resonant magnetomechanical and magnetoelectric effects in a three-phase ferromagnetic/elastic/piezoelectric composite. Appl. Phys. Lett. 101(14), 142904–142907 (2012)

    Article  Google Scholar 

  96. H. Greve, E. Woltermann, R. Jahns, S. Marauska, B. Wagner, R. Knöchel, M. Wuttig, E. Quandt, Low damping resonant magnetoelectric sensors. Appl. Phys. Lett. 97(15), 152503–152505 (2010)

    Article  Google Scholar 

  97. Y. Zhang, G. Liu, H. Shi, W. Xiao, Y. Zhu, M. Li, M. Li, J. Liu, Enhanced magnetoelectric effect in ferromagnetic–elastic–piezoelectric composites. J. Alloy. Compd. 613, 93–95 (2014)

    Article  Google Scholar 

  98. M. Liu, O. Obi, J. Lou, Y. Chen, Z. Cai, S. Stoute, M. Espanol, M. Lew, X. Situ, K.S. Ziemer, V.G. Harris, N.X. Sun, Giant electric field tuning of magnetic properties in multiferroic ferrite/ferroelectric heterostructures. Adv. Funct. Mater. 19(11), 1826–1831 (2009)

    Article  Google Scholar 

  99. S. Sherrit, B.K. Mukherjee, Characterization of Piezoelectric Materials for Transducers, arXiv (2007)

    Google Scholar 

  100. W.P. Mason, Physical Acoustics and the Properties of Solids (The Bell Telephone Laboratories Series) (Van Nostrand, 1958)

    Google Scholar 

  101. T. Ikeda, Fundamentals of Piezoelectricity (Oxford Science Publications, 1990)

    Google Scholar 

  102. J.W. Morris, Notes on the Thermodynamics of Solids (Chapter 15: Tensors and Tensor Properties) (Department of Materials Science and Engineering, University of Califormia, Berkeley, 2008)

    Google Scholar 

  103. D. Damjanovic, Ferroelectric, dielectric and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61(9), 1267 (1998)

    Article  Google Scholar 

  104. R.F. Tinder, Tensor Properties of Solids: Phenomenological Development of the Tensor Properties of Crystals (Morgan & Claypool Publishers, 2008)

    Google Scholar 

  105. J.F. Nye, Physical Properties of Crystals: Their Representation by Tensors and Matrices (Oxford University Press, 1985)

    Google Scholar 

  106. IRE Standards on Piezoelectric Crystals: Determination of the Elastic, Piezoelectric, and Dielectric Constants-The Electromechanical Coupling Factor, 1958. Proc. IRE 46(4), 764–778 (1958)

    Google Scholar 

  107. H.-Y. Kuo, A. Slinger, K. Bhattacharya, Optimization of magnetoelectricity in piezoelectric–magnetostrictive bilayers. Smart Mater. Struct. 19(12), 125010–125022 (2010)

    Article  Google Scholar 

  108. D.A. Burdin, D.V. Chashin, N.A. Ekonomov, L.Y. Fetisov, Y.K. Fetisov, G. Sreenivasulu, G. Srinivasan, Nonlinear magneto-electric effects in ferromagnetic-piezoelectric composites. J. Mag. Mag. Mat. 358–359, 98–104 (2014)

    Article  Google Scholar 

  109. Y. Benveniste, Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phases. Phys. Rev. B 51(22), 16424–16427 (1995)

    Article  Google Scholar 

  110. C.W. Nan, M. Li, J.H. Huang, Calculations of giant magnetoelectric effects in ferroic composites of rare-earth–iron alloys and ferroelectric polymers. Phys. Rev. B 63(14), 144415 (2001)

    Article  Google Scholar 

  111. R. Tinder, Tensor Properties of Solids (Morgan & Claypool, 2007)

    Google Scholar 

  112. J.A. Osborn, Demagnetizing factors of the general ellipsoid. Phys. Rev. 67(11–12), 351–357 (1945)

    Article  Google Scholar 

  113. A.A. Timopheev, J.V. Vidal, A.L. Kholkin, N.A. Sobolev, Direct and converse magnetoelectric effects in Metglas/LiNbO3/Metglas trilayers. J. Appl. Phys. 114(4), 044102–044108 (2013)

    Article  Google Scholar 

  114. Y. Wang, S.W. Or, H.L.W. Chan, X. Zhao, H. Luo, Enhanced magnetoelectric effect in longitudinal-transverse mode Terfenol-D/Pb(Mg1/3Nb2/3)O3–PbTiO3 laminate composites with optimal crystal cut. J. Appl. Phys. 103(12), 124511 (2008)

    Article  Google Scholar 

  115. C.-S. Park, K.-H. Cho, M.A. Arat, J. Evey, S. Priya, High magnetic field sensitivity in Pb(Zr, Ti)O3–Pb(Mg1/3Nb2/3)O3 single crystal/Terfenol-D/Metglas magnetoelectric laminate composites. J. Appl. Phys. 107(9), 094109 (2010)

    Article  Google Scholar 

  116. J. Lou, M. Liu, D. Reed, Y. Ren, N.X. Sun, Giant Electric Field Tuning of Magnetism in Novel Multiferroic FeGaB/Lead Zinc Niobate-Lead Titanate (PZN-PT) Heterostructures. Adv. Mater. 21(46), 4711–4715 (2009)

    Article  Google Scholar 

  117. H.F. Tian, T.L. Qu, L.B. Luo, J.J. Yang, S.M. Guo, H.Y. Zhang, Y.G. Zhao, J.Q. Li, Strain induced magnetoelectric coupling between magnetite and BaTiO3. Appl. Phys. Lett. 92(6), 063507–063509 (2008)

    Article  Google Scholar 

  118. P. Yang, K. Zhao, Y. Yin, J.G. Wan, J.S. Zhu, Magnetoelectric effect in magnetostrictive/piezoelectric laminate composite Terfenol-D∕LiNbO3 [(zxtw) − 129°∕30°]. Appl. Phys. Lett. 88(17), 172903–172905 (2006)

    Article  Google Scholar 

  119. J.V. Vidal, A.A. Timopheev, A.L. Kholkin, N.A. Sobolev, Anisotropy of the magnetoelectric effect in tri-layered composites based on single-crystalline piezoelectrics. Vacuum, 1–7

    Google Scholar 

  120. G. Sreenivasulu, V.M. Petrov, L.Y. Fetisov, Y.K. Fetisov, G. Srinivasan, Magnetoelectric interactions in layered composites of piezoelectric quartz and magnetostrictive alloys. Phys. Rev. B 86(21), 214405–214411 (2012)

    Article  Google Scholar 

  121. R. Viswan, D. Gray, Y. Wang, Y. Li, D. Berry, J. Li, D. Viehland, Strong magnetoelectric coupling in highly oriented ZnO films deposited on Metglas substrates. Phys. Status Solidi-R 5(10–11), 391–393 (2011)

    Article  Google Scholar 

  122. G. Sreenivasulu, L.Y. Fetisov, Y.K. Fetisov, G. Srinivasan, Piezoelectric single crystal langatate and ferromagnetic composites: Studies on low-frequency and resonance magnetoelectric effects. Appl. Phys. Lett. 100(5), 052901–052904 (2012)

    Article  Google Scholar 

  123. G. Sreenivasulu, P. Qu, E. Piskulich, V.M. Petrov, Y.K. Fetisov, A.P. Nosov, H. Qu, G. Srinivasan, Shear strain mediated magneto-electric effects in composites of piezoelectric lanthanum gallium silicate or tantalate and ferromagnetic alloys. App. Phys. Lett. 105(3), 032409–032412 (2014)

    Article  Google Scholar 

  124. F. Fang, C. Zhao, W. Yang, Thickness effects on magnetoelectric coupling for Metglas/PZT/Metglas laminates. Sci. China Phys. Mech. Astron. 54(4), 581–585 (2011)

    Article  Google Scholar 

  125. D. Hasanyan, J. Gao, Y. Wang, R. Viswan, Y.S.M. Li, J. Li, D. Viehland, Theoretical and experimental investigation of magnetoelectric effect for bending-tension coupled modes in magnetostrictive-piezoelectric layered composites. J. Appl. Phys. 112(1), 013908–013918 (2012)

    Article  Google Scholar 

  126. Y. Wang, D. Hasanyan, M. Li, J. Gao, J. Li, D. Viehland, H. Luo, Theoretical model for geometry-dependent magnetoelectric effect in magnetostrictive/piezoelectric composites. J. Appl. Phys. 111(12), 124513–124518 (2012)

    Article  Google Scholar 

  127. http://bostonpiezooptics.com/crystal-quartz

  128. R.T. Smith, F.S. Welsh, Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate. J. Appl. Phys. 42(6), 2219–2230 (1971)

    Article  Google Scholar 

  129. A. Balatto, Basic Material Quartz and Related Innovations. Springer Series in Materials Science, 114, 9–35 (2008)

    Google Scholar 

  130. J. Kushibiki, I. Takanaga, S. Nishiyama, Accurate measurements of the acoustical physical constants of synthetic/spl alpha/-quartz for SAW devices. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 49(1), 125–135 (2002)

    Article  Google Scholar 

  131. P.M. Davulis, M.P.D. Cunha, A full set of langatate high-temperature acoustic wave constants: elastic, piezoelectric, dielectric constants up to 900 °C. IEEE Trans. Ultrason., Ferroelectr., Freq. Control. 60(4), 824–33 (2013)

    Google Scholar 

  132. Y.K. Fetisov, D.A. Burdin, D.V. Chashin, N.A. Ekonomov, High-Sensitivity Wideband Magnetic Field Sensor Using Nonlinear Resonance Magnetoelectric Effect. Sens. J., IEEE 14(7), 2252–2256 (2014)

    Google Scholar 

  133. M. Adachi, T. Kimura, W. Miyamoto, Z. Chen, A. Kawabata, Dielectric, elastic and piezoelectric properties of La3Ga5SiO14 (LANGASITE) single crystals. J. Korean Phys. Soc. 32, S1274–S1277 (1998)

    Google Scholar 

  134. R. Tarumi, H. Nitta, H. Ogi, M. Hirao, Low-temperature elastic constants and piezoelectric coefficients of langasite (La3Ga5SiO14). Philos. Mag. 91(16), 2140–2153 (2011)

    Article  Google Scholar 

  135. A. Sotnikov, H. Schmidt, M. Weihnacht, E. Smirnova, T. Chemekova, Y. Makarov, Elastic and piezoelectric properties of AlN and LiAlO2 single crystals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(4), 808–811 (2010)

    Article  Google Scholar 

  136. G. Bu, D. Ciplys, M. Shur, L.J. Schowalter, S. Schujman, R. Gaska, Electromechanical coupling coefficient for surface acoustic waves in single-crystal bulk aluminum nitride. Appl. Phys. Lett. 84(23), 4611–4613 (2004)

    Article  Google Scholar 

  137. http://www.roditi.com/SingleCrystal/Lithium-Tantalate/LiTaO3-Properties.html

  138. R.T. Smith, F.S. Welsh, Temperature dependence of the elastic, piezoelectric, and dielectric constants of lithium tantalate and lithium niobate. J. Appl. Phys. 42(6), 2219–2230 (1971)

    Article  Google Scholar 

  139. A.W. Warner, M. Onoe, G.A. Coquin, Determination of elastic and piezoelectric constants for crystals in class (3 m). J. Acoust. Soc. America 42(6), 1223–1231 (1967)

    Article  Google Scholar 

  140. Technical Publication TP-226 - Properties of Piezoelectricity Ceramics, Morgan Electro Ceramics

    Google Scholar 

  141. R. Zhang, B. Jiang, W. Cao, Single-domain properties of 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystals under electric field bias. Appl. Phys. Lett. 82(5), 787–789 (2003)

    Article  Google Scholar 

  142. R. Zhang, B. Jiang, W. Cao, Elastic, piezoelectric, and dielectric properties of multidomain 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystals. J. Appl. Phys. 90(7), 3471–3475 (2001)

    Article  Google Scholar 

  143. C. He, J. Weiping, W. Feifei, K. Zhu, Q. Jinhao, Full tensorial elastic, piezoelectric, and dielectric properties characterization of [011]-poled PZN-9 %PT single crystal. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(6), 1127–1130 (2011)

    Article  Google Scholar 

  144. R. Zhang, B. Jiang, W. Jiang, W. Cao, Complete set of properties of 0.92Pb(Zn1/3Nb2/3)O3–0.08PbTiO3 single crystal with engineered domains. Mater. Lett. 57(7), 1305–1308 (2003)

    Article  Google Scholar 

  145. H.-M. Zhou, Y.-H. Zhou, X.-J. Zheng, Q. Ye, J. Wei, A general 3-D nonlinear magnetostrictive constitutive model for soft ferromagnetic materials. J. Mag. Mag. Mat. 321(4), 281–290 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was developed in the scope of the projects I3N/FSCOSD (Ref. FCT UID/CTM/50025/2013), CICECO – Aveiro Institute of Materials – POCI-01-0145-FEDER-007679 (FCT Ref. UID/CTM/50011/2013), and RECI/FIS-NAN/0183/2012 (FCOMP-01-0124-FEDER-027494) financed by national funds through the FCT/MEC and when applicable cofinanced by FEDER under the PT2020 Partnership Agreement. J.V.V. and A.A.T.  thank for the FCT grants SFRH/BD/89097/2012 and SFRH/BPD/74086/2010, respectively. N.A.S. acknowledges support by NUST “MISiS” through grant no. K3-2015-003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolai A. Sobolev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vidal, J.V., Timopheev, A.A., Kholkin, A.L., Sobolev, N.A. (2016). Engineering the Magnetoelectric Response in Piezocrystal-Based Magnetoelectrics: Basic Theory, Choice of Materials, Model Calculations. In: Tiginyanu, I., Topala, P., Ursaki, V. (eds) Nanostructures and Thin Films for Multifunctional Applications. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-30198-3_6

Download citation

Publish with us

Policies and ethics