Skip to main content

Graphite Films Deposited on Metal Surface by Pulsed Electrical Discharge Machining

  • Chapter
  • First Online:
Nanostructures and Thin Films for Multifunctional Applications

Part of the book series: NanoScience and Technology ((NANO))

  • 1986 Accesses

Abstract

The paper presents the results of experimental research on the physics of natural graphite film formation, the establishment of chemical composition and functional properties of the graphite films, formed on metal surfaces, as a result of the action of plasma in the air environment, at a normal pressure, under the pulsed electrical discharge (PED) conditions. The continuity of the formed film, the thickness of the layer, the diffusion depth, the micro-hardness of the surface layer, the potential of corrosion, and the wear resistance are investigated. It is shown that the use of electrode tool made of pyrolytic graphite improves the mechanical properties at the microscopic level, such as tensile strength. The behaviour of films in an exceptional manner with reference to solubility in different environments is highlighted and the hypothesis that they could contain space structures such as fullerenes and carbon nanotubes are emphasized. Testing studies, using three processing regimes, have proved that the maximum breaking force of samples made from graphite-coated steel-3 increases essentially as compared to the untreated sample. It is demonstrated that the graphite films made by PED method have similar characteristics to those of fullerene or carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V.P. Luneva, A.D. Verhoturov, A.V. Coziri, T.V. Glabet, V.N. Brui, Using the Cr-Ni alloys for the electric discharge deposition forming of. EPI, Nr 4, 11–18 (2005)

    Google Scholar 

  2. F.H. Burumculov, P.P. Lezin, P.V. Senin, V.I. Ivanov, The Electric Discharge Tehnology Aimed at Retreading and Hardening of the Machining Pieces and Tools.(USM “Ogareva”, Saransk, 2003)

    Google Scholar 

  3. P. Topala, The transfer of mass and diffusion processes on surface layers of engoine parts during electrosparkle processing. The materials of international conference: the technologies of maintaining, retreading and hardening of engine parts. Saint-Petersburg. 2, 234–242 (2007)

    Google Scholar 

  4. S.I. Sidorenco, E.V. Ivaschenco, V.F. Mazanko, G.F. Lobachva, D.V. Mironov, E.N. Khranovskaia, Forming of Ferrous Alloys Surface Layer by Combination of Nitriding and Electrospark Alloying by Chrome and Titanium and Certain Properties of the Afore-Mentioned Layer. 6th International Conference “Interaction of Radiation with Solids”, Minsc, Belarus, pp. 430-432, Sept 28–30, 2005

    Google Scholar 

  5. B. Vitalie, Structure and properties of surface layers of pieces cemented when interacting with the plasma channel of electric discharges in pulse. the annals of „dunărea de jos university of galaţi. Fascicle V, Technol. Mach. Build 1, 24–30 (2008)

    Google Scholar 

  6. P. Topala, P. Stoicev, Technologies of Conductible Material Processing by Applying Pulsed Electrical Discharge Machining (Edition Tehnica-Info, Chisinau, 2008), p. 265

    Google Scholar 

  7. P. Topala, B. Vitalie, P. Stoicev, A. Ojegov, Structural modifications—properties of surface micro-strata with graphite depositions. Int. J. Mod. Manuf. Technol. vol II, 97–102 (2013)

    Google Scholar 

  8. P. Topala, L. Marin, B. Vitalie, in Applying graphite micropellicles to decrease the coefficient of superficial adhesion. Advanced Manufacturing Technologies 2013, 7th International Seminar Advanced Manufacturing Technologies (Sozopol, Bulgaria, p. 97–104 (2013)

    Google Scholar 

  9. Y. Kurochkin, Y. Demin, Technology for surface hardening of parts by treatment with concentrated energy flux. Chem. Pet. Eng. 37, 404–408 (2001)

    Article  Google Scholar 

  10. A. Mihaliuc, The roughness reduction of electrosparkle Co rings during the following processing with graphite electrode. EPI. Nr.3, 21–23 (2003)

    Google Scholar 

  11. P. Topala, Condition of thermic treatment and chemico-superficial innards, with the adhibition electric discharge in impulses. Nonconventional Technol. Rev. Nr.1, 129–132 (2007)

    Google Scholar 

  12. P. Topala, B. Vitalie, Graphite deposits formation on innards surface on adhibition of electric discharges in impulses. Bulletin of the Polytehnic Institute of Iassy, T.LIV, pp.105–111 (2008)

    Google Scholar 

  13. B. Vitalie, Structure and Properties of Surface Layers of Pieces Cemented when Interacting with the Plasma Channel of Electric Discharges in Pulse. The annals of "Dunărea de Jos” University of Galaţi, Fascicle V, Technologies in Machine Bulding, vol.1, Year XXIV (XXIX), p.75–82 (2008)

    Google Scholar 

  14. P. Topala, P. Stoicev, A. Epureanu, B. Vitalie, The hardening of steel surfaces on the sections for electrosparkle alloyage. International Scientific and Technical Conference Machinebulding and Technosphere of the XXI Century. Donetk, pp. 262–266 (2006)

    Google Scholar 

  15. B. Ekmekci, O. Elkoca, A. Erden, A comparative study on the surface integrity of plastic mold steel due to EDM, metallurgical and materials transactions. ProQuet Sci. J. Feb 36B, 117–124 (2005)

    Google Scholar 

  16. P. Topala, B. Vitalie, Graphite deposits formation on innards surface on adhibition of electric discharges in impulses. Bulletin of the Polytechnic Institute of Iasi, vol. LIV, pp. 105–111 (2008)

    Google Scholar 

  17. P. Sigmund, Mechanisms and theory of physical sputtering by particle impact. Nucl Instr Meth Phys Res B 27, 1 (1987)

    Article  Google Scholar 

  18. N. Laegreid, G.K. Wehner, Sputtering yields of metals for ArC and NeC ions with energies from 50 to 600 eV. J. Appl. Phys. 32, 365–369 (1961)

    Article  Google Scholar 

  19. P. Topala, V. Rusnac, B. Vitalie, A.Ojegov, N. Pînzaru, Physical and chemical effects of EDI processing. International Conference NewTech 2011, Brno, Czech Republic. 14–15 September, 2011. Part. Advances in non-traditional manufacturing, rapid prototyping and reverse engineering (2011)

    Google Scholar 

  20. P. Topala, S. Mazuru, B. Vitalie, P. Cosovschii, A. Ojegov, Application of EDI in increasing durability of glass moulding forms poansons. ModTech-2011. 25–27 May, Vadul lui Voda-Chisinau, Republic of Moldova, pp. 1093–1096 (2011)

    Google Scholar 

  21. V.V. Nemoshkalenco et al., Peculiarities of surface strata formation at spark discharge. Kiev: Metal-physics, t. 12, No 3, pp. 132–133 (1990)

    Google Scholar 

  22. P. Topala, Research on obtaining deposit layers of metal powder by applying pulsed electrical discharge machining. Summary of PhD thesis, Bucharest, University Politehnica, p. 32 (1993)

    Google Scholar 

  23. M.K. Mitskevich et al., Electro-erosion processing of metals (Science and Technics, Minsk, 1988), p. 216

    Google Scholar 

  24. B. Vitalie, Research on the thermal and thermo-chemical treatment of piece surfaces by means of electrical discharges in impulse/ Summary of the Doctoral Thesis, Galaţi, p.56 (2008)

    Google Scholar 

  25. P. Topala, Condition of thermal treatment and chemical-superficial innards, with the adhibition electric discharge in impulses. Non-conventional Technol. Rev. Nr.1, 129–132 (2007)

    Google Scholar 

  26. G. Ruxanda, M. Stancu, S. Vizireanu, G. Dinescu, D. Ciuparu, J. Optoelectron. Adv. Mater. 10(8), 2047–2051 (2008)

    Google Scholar 

  27. W. Vogelsberger, H.G. Fritcsche, E. Muller, Phys. Stat. Sol. (B) 148, 155 (1988)

    Article  Google Scholar 

  28. B. Howard Jack, J.T. McKinnon, Y. Makarovsky, L. Arthur, M. Johnson Elaine, Fullerenes C60 and C70 in flames. Nature 352 (6331), 139–41 (1991). Bibcode:1991Natur.352..139H. doi:10.1038/352139a0. PMID 2067575

    Google Scholar 

  29. J. Howard, A. Lafleur, Y. Makarovsky, S. Mitra, C. Pope, T. Yadav, Fullerenes synthesis in combustion. Carbon 30(8), 1183 (1992). doi:10.1016/0008-6223(92)90061-Z

    Article  Google Scholar 

  30. H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C60: Buckminsterfullerene. Nature 318 (6042), 162–163 (1985). Bibcode:1985Natur.318..162 K. doi:10.1038/318162a0

    Google Scholar 

  31. Y. Zhao, Y.-H. Kim, A.C. Dillon, M.J. Heben, S.B. Zhang, Hydrogen storage in novel organometallic buckyballs. Phys. Rev. Let. 94 (15), 155504 (2005). Bibcode:2005PhRvL..94o5504Z. doi:10.1103/PhysRevLett.94.155504. Retrieved 24 September 2012

  32. A. Hirsch, C. Bellavia-Lund (eds.), Fullerenes and Related Structures (Topics in Current Chemistry) (Springer, Berlin, 1993). ISBN 3-540-64939-5

    Google Scholar 

  33. F.N. Diederich, Covalent fullerene chemistry. Pure Appl. Chem. 69(3), 395–400 (1997). doi:10.1351/pac199769030395.edit

    Article  Google Scholar 

  34. A. Hirsch, C. Bellavia-Lund (eds.), Fullerenes and Related Structures (Topics in Current Chemistry) (Springer, Berlin, 1993). ISBN 3-540-64939-5

    Google Scholar 

  35. F.N. Diederich, Covalent fullerene chemistry. P Appl. Chem. 69 (3): 395–400 (1997). doi:10.1351/pac199769030395.edit

  36. D.R. Mitchel et al., The synthesis of megatubes: new dimensions in carbon materials. Inorg. Chem. 40 (12), 2751–5 (2001). doi:10.1021/ic000551q.PMID11375691

  37. Y. Li et al. Structures and stabilities of C60-rings. Chem. Phys. Lett. 335 (5–6), 524 (2001). Bibcode:2001CPL…335..524L. doi:10.1016/S0009-2614(01)00064-1

    Google Scholar 

  38. B.H. Hong, P. Joshua Small, S. Purewal Meninder, A. Mullokandov, Y. Matthew Sfeir, F. Wang, J.Y. Lee, F. Tony Heinz, E. Louis Brus, P. Kim, S. Kwang Kim, Applied physical sciences. PNAS 102(40), 14155–14158 (2005)

    Article  Google Scholar 

  39. J.M. Moon, K.H. An, Y.H. Lee, Y.S. Park, D.J. Bae, G.S. Park, Synthesis and characterization of carbon nanostructures. J. Phys. Chem. B 105(24), 5677–5681 (2001)

    Article  Google Scholar 

  40. K.S. Kim, Y.S. Park, K.H. An, H.J. Jeong, W.S. Kim, Y.C. Choi, S.M. Lee, J.M. Moon, D.C. Chung, D.J. Bae, S.C. Lim, Y.S. Lee, Y.H. Lee, Carbon Sci. 1(2), 53–59 (2000)

    Google Scholar 

  41. G. Ruxanda, M. Stancu, S. Vizireanu, G. Dinescu, D. Ciuparu, Investigation of transport and deposition of species in an arc discharge reactor with carbon electrodes, 14th International Conference on Plasma Physics and Applications, Braşov (2007)

    Google Scholar 

  42. G. Andrievsky, V.K. Klochkov, A.B. Bordyuh, G.I. Dovbeshko, Comparative analysis of two aqueous-colloidal solutions of C60 fullerene with help of FTIR reflectance and UV–Vis spectroscopy. Chem. Phys. Lett. 364(8) (2002). Bibcode:2002CPL…364….8A. doi:10.1016/S0009-2614(02)01305-2

    Google Scholar 

  43. G. Andrievsky, V. Klochkov, L. Derevyanchenko, Is the C 60 fullerene molecule toxic?! Fullerenes, Nanotubes, Carbon Nanostruct. 13(4), 363 (2005). doi:10.1080/15363830500237267

    Article  Google Scholar 

  44. X. Blase, L.X. Benedict, E.L. Shirley, S.G. Louie, Phys. Rev. Lett. 72, 1878 (1994)

    Article  Google Scholar 

  45. X. Zhao et al., Carbon 35, 775 (1997)

    Article  Google Scholar 

  46. N. Wang, Z.K. Tang, G.D. Li, J.S. Chen, Nature, vol. 408, p. 51 (2000)

    Google Scholar 

  47. L.-C. Qin, X. Zhao, K. Hirahara, Y. Miyamoto, Y. Ando, S. Iijima, Sinteza şi caracterizarea unor nanostructuri cu atomi de carbon 70. Nature 408, 50 (2000)

    Article  Google Scholar 

  48. L.-M. Peng, Z.L. Zhang, Z.Q. Xue, Q.D. Wu, Z.N. Gu, D.G. Pettifor, Phys. Rev. Lett. 85, 3249 (2000)

    Article  Google Scholar 

  49. I. Cabria, J.W. Mintmire, C.T. White, Phys. Rev., B 67, 121406(R)

    Google Scholar 

  50. P. Topala, S. Mazuru, B. Vitalie, P. Cosovschii, A.Ojegov, Application of EDI in increasing durability of glass moulding forms poansons. Proceedings of the 15th International Conference, Modern Technologies, Quality and Innovation. Vadul-lui-Vodă, Chişinău, V.II, 1093–1096 (2011). ISSN 2069-6736

    Google Scholar 

  51. P. Topala, B. Vitalie, L. Marin, Decreasing Theadhesion Effect of Surfaces Using Graphite Pellicle Deposition Through Electric Discharges in Pulse. Advanced Materials Research, vol. 1036 (Trans Tech Publications, Switzerland, 2014), pp. 172–177. doi:10.4028/www.scientific.net/AMR.1036.172

    Google Scholar 

  52. P. Topala, B. Vitalie, A. Ojegov, (2011). Application of pulsed electrical discharges with graphite tool-electrode. Machine building and techno-sphere of XXI century Proceedings of xviii International Scientific-Technical Conference, Donetsk, 2011, pp. 240–245

    Google Scholar 

  53. P. Topala, S. Mazuru, B. Vitalie, P. Cosovschii, P. Stoicev, Increasing the durabilitz of glass moulding forms applying graphite pillicles. Proceedings of the 14th International Conference, Modern Technologies, Quality and Innovation. Slănic-Moldova, 2010, pp. 635–638. ISSN 2066-3919

    Google Scholar 

  54. L. Marin, P. Topala, P. Stoicev, B. Vitalie, A. Ojegov, Application of Graphite Micro-Pellicles for Superficial Adhesion Coefficient Decrease. Engineering meridian, no.1, 2014, pp. 39–44

    Google Scholar 

  55. B. Vitalie, P. Topala, P. Stoicev, A. Ojegov, A. Hîrbu, D. Guzgan, Some Experimental Investigations on the Corrosion of the Graphite Pellicles Formed by Pulsed Electrical Discharge Machining. Engineering meridian, no.3, 2015, pp. 40–46

    Google Scholar 

  56. Y. Li, M. Guo, Z. Zhou, H. Min, Micro electro discharge machine with an inchworm type of micro feed mechanism. J. Int. Soc. Precis. Eng. Nanotechnol. 26, 7–14 (2002)

    Article  Google Scholar 

  57. P. Topala, V. Rusnac, B. Vitalie, A. Ojegov, N. Pînzaru, Physical and Chemical Effects of EDI Processing. Proceedings of International Conference NewTech 2011, Brno, Czech Republic. 14–15 septembrie, 2011. Part. Advances in non-traditional manufacturing, rapid prototyping and reverse engineering. p. 15

    Google Scholar 

  58. P. Topala, A. Hirbu, A. Ojegov, New directions in the practical application of electro erosion. Nonconventional Technol. Rev. no. 1/2011, 49–56. ISSN 1454-3087

    Google Scholar 

  59. P. Topala, V. Rusnac, B. Vitalie, A. Ojegov, N. Pînzaru, Physical and chemical effects of EDI processing. Internet J. Eng. Technol. vol. II, No. 2, Is.1. 6 p (2011). ISSN 1338–2357. http://www.i-jet.eu/journal_ijet/c_p_ijet1112.pdf

  60. P. Topala, B. Vitalie, P. Stoicev, A. Ojegov, Application of electric discharges in impulse in micro and nano-technology. Proceedings of the 16th International Conference Modern Technologies, Quality and Innovation−New face of TMCR, vol. II, 24–26 May 2012, Sinaia, Romania, pp. 969-972. ISSN 2069-6736

    Google Scholar 

  61. P. Topala, D. Luca, A. Ojegov, P. Stoicev, N. Pinzaru, Results on metal surface nano-oxidation by electrical discharges in impulse. ICCCI 2012. The Fourth International Conference on the Characterization and Control of Interfaces for High Quality Advanced Materials. Kurashiki, Japan. September 2–5, 2012. p. 85

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Topala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Topala, P., Besliu, V., Marin, L. (2016). Graphite Films Deposited on Metal Surface by Pulsed Electrical Discharge Machining. In: Tiginyanu, I., Topala, P., Ursaki, V. (eds) Nanostructures and Thin Films for Multifunctional Applications. NanoScience and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-30198-3_3

Download citation

Publish with us

Policies and ethics