The Study of Thin Films by Electrochemical Impedance Spectroscopy

  • H. CesiulisEmail author
  • N. Tsyntsaru
  • A. Ramanavicius
  • G. Ragoisha
Part of the NanoScience and Technology book series (NANO)


The capabilities and advantages of electrochemical impedance spectroscopy (EIS) as a useful and non-destructive technique are discussed. EIS provides the time dependent quantitative information about the electrode processes. The description of EIS is given in comprehensive way beginning from the theoretical basics of EIS and data interpretation in the frames of various equivalent electric circuits. The practical applications of EIS are described for the following thin film types: (i) cathodic metals/alloys films deposition; (ii) anodization of metals and characterization of oxide films and its growth by EIS including information provided by Mott-Schottky plots; (iii) underpotential deposition of metals; (iv) characterization of organic films onto metals; (v) application in development of biosensors and biofuel cells. The original data of EIS on cathodic electrodeposition of Co and Co-W are provided and reduction mechanisms involving adsorbed intermediates are discussed. The advantages of EIS in the oxide films characterization and their electrochemical properties are shown. EIS can be successfully applied for the characterization of biosensing surfaces and/or in evaluation of bioanalytical signals generated by biosensors. The glucose oxidase (GOx) based biosensor could be successfully analyzed by merged scanning electrochemical microscopy (SECM) and EIS techniques. Such combining study by SECM and EIS could be very attractive in order to evaluate the biofuel cell efficiency and in the modeling of biosensor action, because it is unavailable to obtain by other convenient electrochemical methods.


Equivalent Circuit Electrochemical Impedance Spectroscopy Charge Transfer Resistance Constant Phase Element Biofuel Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors acknowledge funding from FP7 Oil&Sugar project (295202), from the Research Council of Lithuania (MIP-031/2014) and Moldavian national projects (15.817.02.05A), (14.819.02.16F). Also, A.Ramanavicius is grateful to LaMeTech program project No.VP1-3.1-SMM-08-K-01-004/KS-120000-1756 for financial support.


  1. 1.
    M. Sluyters-Rehbah, Impedances of electrochemical systems: terminology, nomenclature and representation. Part 1. Cells with metal electrodes and liquid solutions. Pure Appl. Chem. 66(9), 1831–1891 (1994)Google Scholar
  2. 2.
    A.J. Bard, L.R. Faulkner, Electrochemical methods. Fundamentals and Applications (Wiley, New York, 2001), 829 ppGoogle Scholar
  3. 3.
    E. Barsoukov, J.R. Macdonald (ed.), Impedance Spectroscopy Theory, Experiment, and Applications (Wiley, New York, 2005), 595 ppGoogle Scholar
  4. 4.
    M.E. Orazem, B. Tribollet, Electrochemical Impedance Spectroscopy (Wiley, New York, 2008), 523 ppGoogle Scholar
  5. 5.
    A. Lasia, in Electrochemical Impedance Spectroscopy and its Applications, ed. by B.E. Conway, J.O’M. Bockris, R.E. White, Modern Aspects of Electrochemistry, vol. 32 (Kluwer Academic Publishers, New York), pp. 143–248Google Scholar
  6. 6.
    A. Lasia, Electrochemical Impedance Spectroscopy and its Applications (Springer, New York, 2014), 367 ppGoogle Scholar
  7. 7.
    D. Landoldt, Corrosion and Surface Chemistry of Metals (EPFL Press, Lausanne, 2007), 622 ppGoogle Scholar
  8. 8.
    J.O’M Bockris, A.K.N. Reddy, M. Gamboa-Aldeco, Modern Electrochemistry, vol. 24. Fundamentals of Electrodics (Kluwer Academic Publishers, New York, 2002)Google Scholar
  9. 9.
    N. Tsyntsaru, H. Cesiulis, M. Donten, J. Sorte, E. Pellicer, E.J. Podlaha-Murphy, Modern trends in tungsten alloys electrodeposition with iron group metals. Surf. Eng. Appl. Electrochem. 48(6), 491–520 (2012)CrossRefGoogle Scholar
  10. 10.
    S.S. Belevskii, H. Cesiulis, N. Tsyntsaru, A.I. Dikusar, The role of mass transfer in the formation of the composition and structure of CoW coatings electrodeposited from citrate solutions. Surf. Eng. Appl. Electrochem. 46(6), 570–578 (2010)Google Scholar
  11. 11.
    Y. Liu, W. Wangz, Investigation on the Cu(II) and Co(II) electrochemical reduction process in citrate solution by CV and EIS. J. Electrochem. Soc. 159(6), D375–D381 (2012)Google Scholar
  12. 12.
    T. Pajkossy, Th Wandlowski, D.M. Kolb, Impedance aspects of the anion adsorption on gold single crystal electrodes. J. Electroanal. Chem. 414, 209–220 (1996)Google Scholar
  13. 13.
    J.R. Macdonald, Impedance Spectroscopy Emphasizing Solid Materials and Systems (Wiley, New York, 1987)Google Scholar
  14. 14.
    C. Cachet, B. Saidani, R. Wiart, A model for zinc deposition in alkaline electrolytes: inhibition layer and activation mechanism. Electrochim. Acta 34, 1249 (1989)CrossRefGoogle Scholar
  15. 15.
    C. Cachet, B. Saidani, R. Wiart, The kinetics of zinc deposition at low overpotentials in alkaline electrolytes. Electrochim. Acta 33, 405 (1988)CrossRefGoogle Scholar
  16. 16.
    C. Cachet, B. Saidani, R. Wiart, The behavior of zinc electrode in alkaline electrolytes I. A kinetic analysis of cathodic deposition. J. Electrochem. Soc. 138, 678 (1991)CrossRefGoogle Scholar
  17. 17.
    C. Cachet, Z. Chami, R. Wiart, The behavior of zinc electrode in alkaline electrolytes II. A kinetic analysis of anodic dissolution. J. Electrochem. Soc. 139(3), 644–654 (1991)CrossRefGoogle Scholar
  18. 18.
    T. Chengyu, C. Hang, H. Wei, L. Yu, Z. Ziqiao, Influence of Nano-Al2O3 particles on nickel electrocrystallization at initial stage. Rare Metal Mat. Eng. 39, 10–16 (2010)CrossRefGoogle Scholar
  19. 19.
    C. Cachet, C. Gabrielli, F. Huet, M. Keddam, R. Wiart, Electrochim. Acta 28, 899 (1983)CrossRefGoogle Scholar
  20. 20.
    I. Danaee, Theoretical and experimental studies of layer by layer nucleation and growth of palladium on stainless steel Chemija. 24(2), 128–136 (2013)Google Scholar
  21. 21.
    E.M. Garcia, T. Matencio, R.Z. Domingues, L.M. Garcia, J.A. Figueiredo dos Santos, N. Ribeiro, H.A. Tarôco, V. F.C. Lins, Study of cobalt electrodeposition onto stainless steel using electrochemical impedance spectroscopy (IES) J. Phys. Sci. Appl. 2(10), 409–413 (2012)Google Scholar
  22. 22.
    E. Lassner, W.D. Schubert, Tungsten—Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds (Springer, New York, 1999), 422 ppGoogle Scholar
  23. 23.
    M. Schwartz, N.V. Myung, K. Nobe, Electrodeposition of iron group-rare earth alloys from aqueous media. J. Electrochem. Soc. 151, C468–C477 (2004)CrossRefGoogle Scholar
  24. 24.
    H. Cesiulis, A. Baltutiene, M. Donten, M.L. Donten, Z. Stojek, Increase in rate of electrodeposition and in Ni(II) concentration in the bath as a way to control grain size of amorphous/nanocrystalline Ni-W alloys. J. Solid State Electrochem. 6, 237–244 (2002)CrossRefGoogle Scholar
  25. 25.
    H. Cesiulis, E.J. Podlaha-Murphy, Electrolyte considerations of electrodeposited Ni-W alloys for microdevice fabrication. Mater. Sci. (Medziagotyra) 9, 324–327 (2003)Google Scholar
  26. 26.
    H. Cesiulis, M. Donten, M.L. Donten, Z. Stojek, Electrodeposition of Ni-W Ni-Mo and Ni-Mo-W alloys from pyrophosphate baths. Mater. Sci. (Medziagotyra) 7, 237–241 (2001)Google Scholar
  27. 27.
    P. Andricacos, S.H. Boettcher, S.G. Malhotra, M. Paunovic, C. Ransom, Structure comprising a barrier layer of a tungsten alloy comprising cobalt and/or nickel. U.S. Patent Application Publication 6 pp. US 2004108136 A1 20040610 (2004)Google Scholar
  28. 28.
    M. Svensson, U. Wahlstrom, G. Holmbom, Compositionally modulated cobalt–tungsten alloys deposited from a single ammoniacal electrolyte. Surf. Coat. Technol. 105, 218–223 (1998)CrossRefGoogle Scholar
  29. 29.
    G.Y. Wei, J.W. Lou, H.L. Ge, Y.D. Yu, L. Jiang, L.X. Sun, Co–W films prepared from electroplating baths with different complexing agents. Surf. Eng. 28, 412–417 (2012)CrossRefGoogle Scholar
  30. 30.
    D.P. Weston, S.J. Harris, P.H. Shipway, N.J. Weston, G.N. Yap, Establishing relationships between bath chemistry, electrodeposition and microstructure of Co-W alloy coatings produced from a gluconate bath. Electrochim. Acta 55, 5695–5708 (2010)CrossRefGoogle Scholar
  31. 31.
    D.P. Weston, S.J. Haris, H. Capel, N. Ahmed, P.H. Shipway, J.M. Yellup, Nanostructured Co-W coatings produced by electrodeposition to replace hard Cr on aerospace components. Trans. Inst. Metal Finish. 88, 47–56 (2010)CrossRefGoogle Scholar
  32. 32.
    A.I. Shul’man, S.S. Belevskii, S.P. Yushchenko, A.I. Dikusar, Role of complexation in forming composition of Co-W coatings electrodeposited from gluconate electrolyte. Surf. Eng. Appl. Electrochem. 50(1), 9–17 (2014)Google Scholar
  33. 33.
    S.S. Belevskii, S.P. Yushchenko, A.I. Dikusar, Anomalous electrodeposition of Co-W coatings from a citrate electrolyte due to the formation of multinuclear heterometallic complexes in the solution. Surf. Eng. Appl. Electrochem. 48, 97–98 (2012)CrossRefGoogle Scholar
  34. 34.
    J.S. Santos, F. Trivinho-Strixino, E.C. Pereira, Investigation of Co(OH)2 formation during cobalt electrodeposition using a chemometric procedure. Surf. Coat. Technol. 205, 2585–2589 (2010)CrossRefGoogle Scholar
  35. 35.
    P. Vermeiren, R. Leysen, H. Vandenborre, Study of hydrogen evolving reaction in alkaline medium at nickel and cobalt based electrocatalysts. Electrochim. Acta 30, 1253 (1985)CrossRefGoogle Scholar
  36. 36.
    D.R. Gabe, The role of hydrogen in metal electrodeposition processes. J. Appl. Electrochem. 27, 908 (1997)CrossRefGoogle Scholar
  37. 37.
    J.T. Matsushima, F. Trivinho-Strixino, E.C. Pereira, Investigation of cobalt deposition using the electrochemical quartz crystal microbalance Electrochim. Acta 51 (2006)Google Scholar
  38. 38.
    J.S. Santos, R. Matos, F. Trivinho-Strixino, E.C. Pereira, Effect of temperature on Co electrodeposition in the presence of boric acid Electrochim. Acta 53, 644 (2007)Google Scholar
  39. 39.
    W.C. Grande, J.B. Talbot, Electrodeposition of thin films of nickel-iron. 1. Experimental. J. Electrochem. Soc. 140(3), 669–674 (1993)CrossRefGoogle Scholar
  40. 40.
    W.C. Grande, J.B. Talbot, Electrodeposition of thin films of nickel-iron. 2. Modelling. J. Electrochem. Soc. 140(3), 675–681 (1993)CrossRefGoogle Scholar
  41. 41.
    A. Budreika, The study of the electrodeposition of Ni, Co and their alloys with tungsten and molybdenum. Doctoral dissertation, 2010, VilniusGoogle Scholar
  42. 42.
    Yan Liu, Wei Wang, Investigation on the Cu(II) and Co(II) electrochemical reduction process in citrate solution by CV and EIS. J. Electrochem. Soc. 159(6), D375–D381 (2012)CrossRefGoogle Scholar
  43. 43.
    H. Cesiulis, G. Baltrunas, The study of surface passivity and blocking by the electrochemical technique. Physicochem. Mech. Mater. 5, 11–17 (2006)Google Scholar
  44. 44.
    M.I. Jeffrey, W.L. Choo, P.L. Breuer, The effect of additives and impurities on the cobalt electrowinning process. Miner. Eng. 13(12), 1231–1241 (2000)CrossRefGoogle Scholar
  45. 45.
    S.S. Belevskii, S.P. Yushchenko, A.I. Dikusar, Electrodeposition of nanocrystalline Co–W coatings from citrate electrolytes under controlled hydrodynamic conditions: Part 1. Co electrodeposition. Surf. Eng. Appl. Electrochem. 45(6), 446–454 (2009)CrossRefGoogle Scholar
  46. 46.
    S.S. Belevskii, N.I. Tsyntsaru, A.I. Dikusar, Electrodeposition of nanocrystalline Co–W coatings from citrate electrolytes under controlled hydrodynamic conditions: part 2. The electrodeposition rate and composition of the coatings. Surf. Eng. Appl. Electrochem. 46(2), 91–99 (2010)CrossRefGoogle Scholar
  47. 47.
    N. Tsyntsaru, H. Cesiulis, E. Pellicer, J.-P. Celis, J. Sort, Structural, magnetic, and mechanical properties of electrodepositedcobalt–tungsten alloys: intrinsic and extrinsic interdependencies. Electrochim. Acta 104, 94–103 (2013)CrossRefGoogle Scholar
  48. 48.
    S.A. Silkin, S.S. Belevskii, A.S. Gradinar, V.I. Petrenko, I.V. Yakovets, N.I. Tsyntsaru, A.I. Dikusar, Electrodeposition of nanocrystalline Co–W coatings from citrate electrolytes under controlled hydrodynamic conditions: part 3. The micro_ and macrodistribution of the deposition rates, the structure and the mechanical properties. Surf. Eng. Appl. Electrochem. 46(3), 206–214 (2010)CrossRefGoogle Scholar
  49. 49.
    L.M. Hagelsieb, Anodic aluminum oxide processing, characterization and application to DNA hybridization electrical detection. PhD. thesis, Universite Catholique de Louvain, Louvain-La-Neuve, Belgique (2007)Google Scholar
  50. 50.
    C.X. Jiang, J.P. Tu, S.Y. Guo, M.F. Fu, X.B. Zhao, Friction properties of oil-infiltrated porous AAO film on an aluminium substrate. Acta Metallurgica Sinica (English Letters) 18, 249–253 (2005)Google Scholar
  51. 51.
    W. Lee, The anodization of aluminium for nanotechnology applications. JOM 62, 57–63 (2010)CrossRefGoogle Scholar
  52. 52.
    J. Choi, Fabrication of monodomain porous alumina using nanoimprint lithography and its applications. PhD. thesis, Martin-Luther-Universitat Halle, Wittenberg, Germany (2004)Google Scholar
  53. 53.
    I.U. Khan, P. John, S.T. Sheikh, N. Gulzar, A.U. Rehman, Anodizing of aluminum with improved corrosion properties. J. Chem. Soc. Pak. 32, 46–51 (2010)Google Scholar
  54. 54.
    T.D. Burleigh, P. Schmuki, S. Virtanen, Properties of the nanoporous anodic oxide electrochemically grown on steel in hot 50 % NaOH. J. Electrochem. Soc. 156(1), C45–C53 (2009)CrossRefGoogle Scholar
  55. 55.
    J.J. Suay, E. Gimenez, T. Rodrıguez, K. Habbib, J.J. Saura, Characterization of anodized and sealed aluminium by EIS. Corros. Sci. 45, 611–624 (2003)CrossRefGoogle Scholar
  56. 56.
    M.R. Kalantary, D.R. Gabe, D.H. Ross, A model for the mechanism of nickel fluoride cold sealing of anodized aluminium. J. Appl. Electrochem. 22(3), 268–276 (1992)CrossRefGoogle Scholar
  57. 57.
    J.A. Gonzalez, S. Feliu, J.A. Bautista, E. Otero, Changes in cold sealed aluminum oxide films during ageing. J. Appl. Electrochem. 29, 843–852 (1999)CrossRefGoogle Scholar
  58. 58.
    V López, E. Otero, A. Bautista, E. Escudero, J.A. González, Changes in the morphology of porous anodic films formed on aluminium in natural and artificial ageing. Rev Metal Madrid Vol Extr, 104–109 (2003)Google Scholar
  59. 59.
    F. Mansfeld, M.W. Kendig, Spectroscopy as quality control and corrosion test for anodized aluminum alloys. Corrosion 41, 490 (1985)CrossRefGoogle Scholar
  60. 60.
    F. Mansfeld, M.W. Kendig, W.J. Lorenz, Corrosion inhibition in neutral, aerated media. J. Electrochem. Soc. 132, 290 (1985)CrossRefGoogle Scholar
  61. 61.
    J. Hizing, K. Juettner, W.J. Lorenz, W. Paatsch, AC-impedance measurements on porous aluminium oxide films. Corros. Sci. 24, 945 (1984)CrossRefGoogle Scholar
  62. 62.
    T.P. Hoar, G.C. Wood, The sealing of porous anodic oxide films on aluminium. Electrochim. Acta 7, 333 (1962)CrossRefGoogle Scholar
  63. 63.
    K. Juettner, W.J. Lorenz, W. Paatsch, The role of surface inhomogeneities in corrosion processes-electrochemical impedance spectroscopy (EIS) on different aluminium oxide films. Corros. Sci. 29, 279–288 (1989)CrossRefGoogle Scholar
  64. 64.
    F. Mansfeld, Electrochemical impedance spectroscopy (EIS) as a new tool for investigating methods of corrosion protection. Electrochim. Acta 35, 1533 (1990)CrossRefGoogle Scholar
  65. 65.
    J. Pan, D. Thierry, C. Leygraf, Electrochemical impedance spectroscopy study of the passive oxide film on titanium for implant application. Electrochim. Acta 41(7–8), 1143 (1996)CrossRefGoogle Scholar
  66. 66.
    J.R. Birch, T.D. Burleigh, Oxides formed on titanum by polishing, etching, anodzng, or thermal oxidizng. Corrosion 56(12), 1233 (2000)CrossRefGoogle Scholar
  67. 67.
    M. Aziz-Kerrzo, K.G. Conroy, A.M. Fenelon, S.T. Farrell, C.B. Breslin, Electrochemical studies on the stability and corrosion resistance of titanium-based implant materials. Biomaterials 22, 1531 (2001)CrossRefGoogle Scholar
  68. 68.
    S. Piazza, G. Lo, Biundo, M.C. Romano, C. Sunseri, F. Di Quarto, In situ characterization of passive films on al-ti alloy by photocurrent and impedance spectroscopyfn1. Corros. Sci. 40(7), 1087 (1998)CrossRefGoogle Scholar
  69. 69.
    J.R. Macdonald, Impedance Spectroscopy (Wiley, New York, 1987)Google Scholar
  70. 70.
    M.J. Esplandiu, E.M. Patrito, V.A. Macagno, Characterization of hafnium anodic oxide films: an AC impedance investigation. Electrochim. Acta 40(7), 809 (1995)CrossRefGoogle Scholar
  71. 71.
    M.E.P. Souza, M. Ballester, C.M.A. Freire, EIS characterisation of Ti anodic oxide porous films formed using modulated potential. Surf. Coat. Technol. 201, 7775–7780 (2007)CrossRefGoogle Scholar
  72. 72.
    J.M. Macak, L.V. Taveira, H. Tsuchiya, K. Sirotna, J. Macak, P. Schmuki, Influence of different fluoride containing electrolytes on the formation of self-organized titania nanotubes by Ti anodization. J. Electroceram. 16, 29–34 (2006)CrossRefGoogle Scholar
  73. 73.
    N.K. Shrestha, J.M. Macak, F. Schmidt-Stein, R. Hahn, C.T. Mierke, B. Fabry, P. Schmuki, Magnetically guided titania nanotubes for site-selective photocatalysis and drug release. Angew. Chem. 120, 1–5 (2008)CrossRefGoogle Scholar
  74. 74.
    H. Cesiulis, T. Maliar, N. Tsyntsaru, F. Wenger, P. Ponthiaux, E. Podlaha, Anodic titanium oxide films: photoelectrochemical and tribocorrosion behavior. J. Nanoelectron. Optoelectron. 9, 1–6 (2014)CrossRefGoogle Scholar
  75. 75.
    Balakrishnan Munirathinam, Lakshman Neelakantan, Titania nanotubes from weak organic acid electrolyte: Fabrication, characterization and oxide film properties. Mater. Sci. Eng. C 49, 567–578 (2015)CrossRefGoogle Scholar
  76. 76.
    A.W. Brace, The Technology of Anodizing Aluminium (Tecnicopy Ltd., Stonenhouse, Gloucesterhire, Great Britian, 1979), pp. 1–19Google Scholar
  77. 77.
    H. Bai, F. Wang, Protective properties of high temperature oxide films on Ni-based superalloys in 3.5 % NaCl solution. J. Mater. Sci. Technol. 23(4) (2007)Google Scholar
  78. 78.
    P. Schmuki, H. Bohni, Semiconductive properties of passive films and susceptibility to localized corrosion. Werkstoffe und Korrosion Mater. Corros. 42(5), 203–207 (1991)Google Scholar
  79. 79.
    N.E. Hakiki, S. Boudin, B. Rondot, M. Da Cunha, Belo. The electronic structure of passive films formed on stainless steels. Corros. Sci. 37(11), 1809–1822 (1995)CrossRefGoogle Scholar
  80. 80.
    A.S. Bondarenko, G.A. Ragoisha. Variable Mott-Schottky plots acquisition by potentiodynamic electrochemical impedance spectroscopy. J. Solid State Electrochem. 9(12), 845–849 (2005)Google Scholar
  81. 81.
    K. Gelderman, L. Lee, S.W. Donne, Flat-band potential of a semiconductor: using the Mott-Schottky equation. J. Chem. Educ. 84(7), 685–688 (2007)CrossRefGoogle Scholar
  82. 82.
    D. Li, D. Chen, J. Wang, H. Chen, Chemical composition and Mott-Schottky analysis of passive film formed on G3 alloy in bicarbonate/karbonate buffer solution. Acta Metall. Sin. (Engl. Lett.). 23(6), 461–472 (2010)Google Scholar
  83. 83.
    E. Sikora, J. Sikora, D.D. Macdonald, A new method for estimating the diffusivities of vacancies in passive films. Electrochim. Acta 41(6), 783–789 (1996)CrossRefGoogle Scholar
  84. 84.
    Z. Jiang, X. Dai, H. Middleton, Investigation on passivity of titanium under steady-state conditions in acidic solutions. Mater. Chem. Phys. 126(3), 859–865 (2011)CrossRefGoogle Scholar
  85. 85.
    M. Tomkiewicz, Impedance spectroscopy of rectifying semiconductor-electrolyte interfaces. Electrochim. Acta 35(10), 1631–1635 (1990)CrossRefGoogle Scholar
  86. 86.
    B.W. Gregory, D.W. Suggs, J.L. Stickney, Conditions for the deposition of CdTe by electrochemical atomic layer epitaxy. J. Electrochem. Soc. 138, 1279–1284 (1991)CrossRefGoogle Scholar
  87. 87.
    F. Forni, M. Innocenti, G. Pezzatini, M.L. Foresti, Electrochemical aspects of CdTe growth on the face (111) of silver by ECALE. Electrochim. Acta 45, 3225–3231 (2000)CrossRefGoogle Scholar
  88. 88.
    A.S. Bondarenko, G.A. Ragoisha, N.P. Osipovich, E.A. Streltsov, Multiparametric electrochemical characterisation of Te-Cu-Pb atomic three-layer structure deposition on polycrystalline gold. Electrochem. Commun. 8, 921–926 (2006)CrossRefGoogle Scholar
  89. 89.
    G.A. Ragoisha, A.S. Bondarenko, N.P. Osipovich, S.M. Rabchynski, E.A. Streltsov, Multiparametric characterisation of metal-chalcogen atomic multilayer assembly by potentiodynamic electrochemical impedance spectroscopy. Electrochim. Acta 53, 3879–3888 (2008)CrossRefGoogle Scholar
  90. 90.
    I. Sisman, U. Demir, Electrochemical growth and characterization of size-quantized CdTe thin films grown by underpotential deposition. J. Electroanal. Chem. 651, 222–227 (2011)CrossRefGoogle Scholar
  91. 91.
    J. Stickney, in Encyclopedia of Applied Electrochemistry, ed. by G. Kreysa, R.F. Savinell, K. Ota (Springer, New York, 2014), pp. 1447–1453Google Scholar
  92. 92.
    M. Bouroushian, Electrochemistry of Metal Chalcogenides (Springer, Heidelberg, 2010)Google Scholar
  93. 93.
    D.M. Kolb, M. Przasnysky, H. Gerischer, Underpotential deposition of metals and work function differences. J. Electroanal. Chem. 54, 25–38 (1974)Google Scholar
  94. 94.
    E. Budevski, G. Staikov, W.J. Lorenz, Electrochemical Phase Formation and Growth (VCH, Weinheim, 1996)CrossRefGoogle Scholar
  95. 95.
    P.V. Chulkin, Y.M. Aniskevich, E.A. Streltsov, G.A. Ragoisha, Underpotential shift in electrodeposition of metal adlayer on tellurium and the free energy of metal telluride formation. J Solid State Electrochem. 19, 2511–2516 (2015). doi: 10.1007/s10008-015-2831-x
  96. 96.
    G.A. Ragoisha, Potentiodynamic electrochemical impedance spectroscopy for underpotential deposition processes. Electroanalysis 27, 855–863 (2015)Google Scholar
  97. 97.
    G.A. Ragoisha, A.S. Bondarenko, Potentiodynamic electrochemical impedance spectroscopy. Copper underpotential deposition on gold. Electrochem. Commun. 5, 392–395 (2003)Google Scholar
  98. 98.
    G.A. Ragoisha, A.S. Bondarenko, Potentiodynamic electrochemical impedance spectroscopy. Electrochim. Acta 50, 1553–1563 (2005)Google Scholar
  99. 99.
    J.E. Garland, K.A. Assiongbon, C.M. Pettit, S.B. Emery, D. Roy, Kinetic analysis of electrosorption using fast fourier transform electrochemical impedance spectroscopy: underpotential deposition of Bi3+ in the presence of coadsorbing ClO4- on Gold. Electrochim. Acta 47, 4113–4124 (2002)Google Scholar
  100. 100.
    S. Morin, H. Dumont, B.E. Conway, Evaluation of the effect of 2-Dimensional geometry of Pt single-crystal faces on the kinetics of UPD of H using impedance spectroscopy. J. Electroanal. Chem. 412, 39–52 (1992)Google Scholar
  101. 101.
    G.A. Ragoisha, A.S. Bondarenko, N.P. Osipovich, E.A. Streltsov, Potentiodynamic electrochemical impedance spectroscopy of lead upd on polycrystalline gold and on selenium atomic underlayer. Electrochem. Commun. 7, 631–636 (2005)CrossRefGoogle Scholar
  102. 102.
    L. Beaunier, I. Epelboin, J.C. Lestrade, H. Takenouti, Electrochemical and scanning microscope study of pained Fe. Surf. Technol. 4, 237 (1976)CrossRefGoogle Scholar
  103. 103.
    F. Mansfield, M. Kendig, S. Tsai, Evaluation of corrosion behavior of coated metals with AC impedance measurements. Corrosion 38(7), 478–485 (1982)CrossRefGoogle Scholar
  104. 104.
    A. Ramanavicius, A. Finkelsteinas, H. Cesiulis, A. Ramanaviciene, Electrochemical impedance spectroscopy of polypyrolle based immunosensor. Bioelectrochemistry 79(1), 11–16 (2010)CrossRefGoogle Scholar
  105. 105.
    P.L. Bonora, F. Deflorian, L. Fedrizzi. Electrochemical impedance spectroscopy as a tool for investigating underpaint corrosion. Electrochimica Acta 41(7–8), 1073–1082 (1996)Google Scholar
  106. 106.
    J. Padgurskas, R. Rukuiza, H. Cesiulis, A. Amulevicius, A. Daugvila, R. Davidonis, C. Sipavicius, The properties and physicochemical interactions in the system iron-fluoroligomer. Physicochem. Mech. Mater. 45(5), 81–90 (2009)Google Scholar
  107. 107.
    J. Padgurskas, R. Rukuiza, A. Amulevicius, C. Sipavicius, K. Mazeika, R. Davidonis, A. Daugvila, H. Cesiulis, Influence of fluor-oligomers on the structural and tribological properties of steel surface at the rolling friction. Ind. Lubr. Tribol 60(5), 222–227 (2008)CrossRefGoogle Scholar
  108. 108.
    V.F. Lvovich, M.F. Smiechowski, Non-linear impedance analysis of industrial lubricants. Electrochim. Acta 53(25), 7375–7385 (2008)CrossRefGoogle Scholar
  109. 109.
    D. Hallam, D. Thurrowgood, V. Otieno-Alego, D. Creagh, An EIS Method for assessing thin oil films used in museums, in Proceedings of Metal 2004 National Museum of Australia Canberra ACT, 4–8 October 2004 ABN 70 592 297 967, pp. 388–399Google Scholar
  110. 110.
    L. Jianguo, G. Gaoping, Y. Chuanwei, EIS study of corrosion behaviour of organic coating/Dacromet composite systems. Electrochimica Acta 50(16–17), 3320–3332 (2005)Google Scholar
  111. 111.
    Y.J. Tan, S. Balley, B. Kinsella, An investigation of the formation and destruction of corrosion inhibitor films using electrochemical impedance spectroscopy (EIS). Corros. Sci. 38(9), 1545–1561 (1996)CrossRefGoogle Scholar
  112. 112.
    S. González, M.A. Gil, J.O. Hernández, V. Fox, R.M. Souto, Resistance to corrosion of galvanized steel covered with an epoxy-polyamide primer coating. Prog. Org. Coat. 41, 167–170 (2001)CrossRefGoogle Scholar
  113. 113.
    H. Cesiulis, N. Tsyntsaru, Non-destructive method for assessing thin oil films, in Proceedings of the International Conference BALTTRIB’2009 (2009), pp. 59–64Google Scholar
  114. 114.
    J.J. Santana, J.E. González, J. Morales, S. González, R.M. Souto, Evaluation of ecological organic paint coatings via electrochemical impedance spectroscopy. Int. J. Electrochem. Sci. 7, 6489–6500 (2012)Google Scholar
  115. 115.
    N. Hammouda, H. Chadli, G. Guillemot, K. Belmokre, The corrosion protection behaviour of zinc rich epoxy paint in 3 % NaCl solution advances in chemical. Eng. Sci. 1, 51–60 (2011)Google Scholar
  116. 116.
    B.M. Fernández-Pérez, J.A. González-Guzmán, S. González, R.M. Souto, Electrochemical impedance spectroscopy investigation of the corrosion resistance of a waterborne acrylic coating containing active electrochemical pigments for the protection of carbon steel. Int. J. Electrochem. Sci. 9, 2067–2079 (2014)Google Scholar
  117. 117.
    P.L. Bonora, F. Deflorian, L. Fedrizzi. Electrochemical impedance spectroscopy as a tool for investigating underpaint corrosion. Electrochimica Acta 41(7–8), 1073–1082 (1996)Google Scholar
  118. 118.
    H. Cesiulis, G. Baltrūnas, J. Padgurskas, The effect of FOLEOX thin films on the corrosion behaviour of Armco iron. Mater. Sci. (Medziagotyra) 8(4), 392–395 (2002)Google Scholar
  119. 119.
    G.W. Walter, A review of impedance plot methods used for corrosion performance analysis of painted metals. Corros. Sci. 26(9), 681–703 (1986)CrossRefGoogle Scholar
  120. 120.
    Y.J. Tom, S. Bailey, An investigation on the formation and destruction of corrosion inhibitor films using electrochemical noise analysis (ENA). Corros. Sci. 38(9), 1545–1561 (1996)CrossRefGoogle Scholar
  121. 121.
    A. Banu, O, Radovici, M. Marcu, T. Spataru, S. Jurcoane, Electrochemical synthesis and characterization of a polipyrrole/lipase composite film. Roum. Biotechnol. Lett. 13(1), 3551–3556 (2008)Google Scholar
  122. 122.
    I. Morkvenaite-Vilkonciene, P. Genys, A. Ramanaviciene, A. Ramanavicius, Scanning electrochemical impedance microscopy for investigation of glucose oxidase catalyzed reaction colloids and surfaces. B-Biointerfaces 126, 598–602 (2015)Google Scholar
  123. 123.
    I. Lapenaite, A. Ramanaviciene, A. Ramanavicius, Current trends in enzymatic determination of glycerol. Crit. Rev. Anal. Chem. 36, 13–25 (2006)CrossRefGoogle Scholar
  124. 124.
    A. Ramanavicius, A. Ramanaviciene, A. Malinauskas, Electrochemical sensors based on conducting polymer—polypyrrole (Review). Electrochim. Acta 51, 6025–6037 (2006)CrossRefGoogle Scholar
  125. 125.
    Y. Oztekin, A. Ramanaviciene, Z. Yazicigil, A.O. Solak, A. Ramanavicius, Direct electron transfer from glucose oxidase immobilized on polyphenanthroline modified-glassy carbon electrode. Biosens. Bioelectron. 26, 2541–2546 (2011)CrossRefGoogle Scholar
  126. 126.
    N. German, A. Ramanaviciene, A. Ramanavicius, Electrochemical deposition of gold nanoparticles on graphite rod for glucose biosensing. Sens. Actuators B: Chem. 203, 25–34 (2014)CrossRefGoogle Scholar
  127. 127.
    A. Ramanavicius, P. Genys, A. Ramanaviciene, Electrochemical impedance spectroscopy based evaluation of 1,10-Phenanthroline-5,6-dione and glucose oxidase modified graphite electrode. Electrochim. Acta 146, 659–665 (2014)CrossRefGoogle Scholar
  128. 128.
    A. Ramanavicius, P. Genys, Y. Oztekin, A. Ramanaviciene, Evaluation of the redox mediating properties of 1,10-Phenanthroline-5,6-dione for glucose oxidase modified graphite electrodes. J. Electrochem. Soc. 161, B31–B33 (2014)CrossRefGoogle Scholar
  129. 129.
    D.D. Macdonald, Reflections on the history of electrochemical impedance spectroscopy. Electrochim. Acta 51, 1376–1388 (2006)CrossRefGoogle Scholar
  130. 130.
    R.K. Shervedani, A.H. Mehrjardi, N. Zamiri, A novel method for glucose determination based on electrochemical impedance spectroscopy using glucose oxidase self-assembled biosensor. Bioelectrochemistry 69, 201–208 (2006)CrossRefGoogle Scholar
  131. 131.
    T. Hoshino, S. Sekiguchi, H. Muguruma, Amperometric biosensor based on multilayer containing carbon nanotube, plasma-polymerized film, electron transfer mediator phenothiazine, and glucose dehydrogenase. Bioelectrochemistry 84, 1–5 (2012)CrossRefGoogle Scholar
  132. 132.
    B. Kurtinaitiene, D. Ambrozaite, V. Laurinavicius, A. Ramanaviciene, A. Ramanavicius, Amperometric immunosensor for diagnosis of BLV infection. Biosens. Bioelectron. 23, 1547–1554 (2008)CrossRefGoogle Scholar
  133. 133.
    Y. Oztekin, A. Ramanaviciene, N. Ryskevic, Z. Yazicigil, Z. Ustundag, A.O. Solak, A. Ramanavicius, 1,10-Phenanthroline modified glassy carbon electrode for voltammetric determination of cadmium(II) ions. Sens. Actuators B: Chem. 157, 146–153 (2011)CrossRefGoogle Scholar
  134. 134.
    Y. Oztekin, Z. Yazicigil, A. Ramanaviciene, A. Ramanavicius, Polyphenol-modified glassy carbon electrodes for copper detection. Sens. Actuators B: Chem. 152, 37–48 (2011)CrossRefGoogle Scholar
  135. 135.
    Y. Oztekin, Z. Yazicigil, A. Ramanaviciene, A. Ramanavicius, Square wave voltammetry based determination of copper (II) ions by polyluteolin- and polykaempferol-modified electrodes. Talanta 85, 1020–1027 (2011)CrossRefGoogle Scholar
  136. 136.
    A. Ramanaviciene, A. Ramanavicius, Pulsed amperometric detection of DNA with an ssDNA/polypyrrole modified electrode. Anal. Bioanal. Chem. 379, 287–293 (2004)CrossRefGoogle Scholar
  137. 137.
    A. Ramanavicius, Y. Oztekin, A. Ramanaviciene Electrochemical Formation of Polypyrrole-based layer for immunosensor design. Sens. Actuators B: Chem. 197, 237–243 (2014)Google Scholar
  138. 138.
    V. Ratautaite, S.D. Janssens, K. Haenen, M. Nesládek, A. Ramanaviciene, I. Baleviciute, A. Ramanavicius, Molecularly imprinted polypyrrole based impedimentric sensor for theophylline determination. Electrochim. Acta 130, 361–367 (2014)CrossRefGoogle Scholar
  139. 139.
    V. Ratautaite, D. Plausinaitis, I. Baleviciute, L. Mikoliunaite, A. Ramanaviciene, A. Ramanavicius, Characterization of caffeine-imprinted polypyrrole by a quartz crystal microbalance and electrochemical impedance spectroscopy. Sens. Actuators B: Chem. 212, 63–71 (2015)Google Scholar
  140. 140.
    A. Ramanaviciene, A. Finkelsteinas, A. Ramanavicius, Basic electrochemistry meets nanotechnology: Electrochemical preparation of artificial receptors based on a nanostructured conducting polymer, polypyrrole. J. Chem. Educ. 83, 1212–1214 (2006)CrossRefGoogle Scholar
  141. 141.
    A. Ramanaviciene, A. Ramanavicius, Molecularly imprinted polypyrrole-based synthetic receptor for direct detection of bovine leukemia virus glycoproteins. Biosens. Bioelectron. 20, 1076–1082 (2004)CrossRefGoogle Scholar
  142. 142.
    V. Ratautaite, S.N. Topkaya, L. Mikoliunaite, M. Ozsoz, Y. Oztekin, A. Ramanaviciene, A. Ramanavicius, Molecularly imprinted polypyrrole for DNA determination. Electroanalysis 25, 1169–1177 (2013)CrossRefGoogle Scholar
  143. 143.
    A. Ramanaviciene, A. Ramanavicius, Application of polypyrrole for the creation of immunosensors. Crit. Rev. Anal. Chem. 32, 245–252 (2002)CrossRefGoogle Scholar
  144. 144.
    D. Plausinaitis, V. Ratautaite, L. Mikoliunaite, L. Sinkevicius, A. Ramanaviciene, A. Ramanavicius, Quartz crystal microbalance based evaluation of electrochemical formation of aggregated polypyrrole particle based layer. Langmuir 31(10), 3186–3193 (2015)CrossRefGoogle Scholar
  145. 145.
    A. Ramanaviciene, N. German, A. Kausaite-Minkstimiene, J. Voronovic, J. Kirlyte, A. Ramanavicius, Comparative study of surface plasmon resonance, electrochemical and electroassisted chemiluminescence methods based immunosensor for the determination of antibodies against human growth hormone. Biosens. Bioelectron. 36, 48–55 (2012)CrossRefGoogle Scholar
  146. 146.
    A.S. Bandarenka, K. Eckhard, A. Maljusch, W. Schuhmann, Localized electrochemical impedance spectroscopy: Visualization of spatial distributions of the key parameters describing solid/liquid interfaces. Anal. Chem. 85, 2443–2448 (2013)CrossRefGoogle Scholar
  147. 147.
    V. Kuznetsov, A. Maljusch, R.M. Souto, A.S. Bandarenka, W. Schuhmann, Characterization of localised corrosion processes using scanning electrochemical impedance microscopy. Electrochem. Commun. 44, 38–41 (2014)CrossRefGoogle Scholar
  148. 148.
    L. Philippe, G. Walter, S. Lyon, Investigating localized degradation of organic coatings comparison of electrochemical impedance spectroscopy with local electrochemical impedance spectroscopy. J. Electrochem. Soc. 150, B111–B119 (2003)CrossRefGoogle Scholar
  149. 149.
    K. Darowicki, M. Szociński, A. Zieliński, Assessment of organic coating degradation via local impedance imaging. Electrochim. Acta 55, 3741–3748 (2010)CrossRefGoogle Scholar
  150. 150.
    M. Szociński, K. Darowicki, K. Schaefer, Identification and localization of organic coating degradation onset by impedance imaging. Polym. Degrad. Stab. 95, 960–964 (2010)CrossRefGoogle Scholar
  151. 151.
    A. Ramanavicius, A. Kausaite-Minkstimiene, I. Morkvenaite-Vilkonciene, P. Genys, R. Mikhailova, T. Semashko, J. Voronovic, A. Ramanaviciene, Biofuel cell based on glucose oxidase from Penicillium funiculosum 46.1 and horseradish peroxidase. Chem. Eng. J. 264, 165–173 (2015)CrossRefGoogle Scholar
  152. 152.
    A. Ramanavicius, Y. Oztekin, A. Ramanaviciene, Electrochemical formation of polypyrrole-based layer for immunosensor design. Sens. Actuators B: Chem. 197, 237–243 (2014)Google Scholar
  153. 153.
    M.V. Mirkin, W. Nogala, J. Velmurugan, Y. Wang, Scanning electrochemical microscopy in the 21st century. Update 1: five years after. Phys. Chem. Chem. Phys. 13, 21196–21212 (2011)CrossRefGoogle Scholar
  154. 154.
    M. Ciobanu, D.E. Taylor, J.P. Wilburn, D.E. Cliffel, Glucose and lactate biosensors for scanning electrochemical microscopy imaging of single live cells. Anal. Chem. 80, 2717–2727 (2008)CrossRefGoogle Scholar
  155. 155.
    D.T. Pierce, P.R. Unwin, A.J. Bard, Scanning electrochemical microscopy. 17. Studies of enzyme-mediator kinetics for membrane- and surface-immobilized glucose oxidase. Anal. Chem. 64, 1795–1804 (1992)CrossRefGoogle Scholar
  156. 156.
    B.R. Horrocks, D. Schmidtke, A. Heller, A.J. Bard, Scanning electrochemical microscopy. 24. Enzyme ultramicroelectrodes for the measurement of hydrogen peroxide at surfaces. Anal. Chem. 65, 3605–3614 (1993)CrossRefGoogle Scholar
  157. 157.
    K. Eckhard, T. Erichsen, M. Stratmann, W. Schuhmann, Frequency-dependent alternating-current scanning electrochemical microscopy (4D AC-SECM) for local visualisation of corrosion sites. Chem. Eur. J. 14, 3968–3976 (2008)CrossRefGoogle Scholar
  158. 158.
    K. Eckhard, C. Kranz, H. Shin, B. Mizaikoff, W. Schuhmann, Frequency dependence of the electrochemical activity contrast in AC-scanning electrochemical microscopy and atomic force microscopy-AC-scanning electrochemical microscopy imaging. Anal. Chem. 79, 5435–5438 (2007)CrossRefGoogle Scholar
  159. 159.
    P.M. Diakowski, Z.F. Ding, Novel strategy for constant-distance imaging using alternating current scanning electrochemical microscopy. Electrochem. Commun. 9, 2617–2621 (2007)CrossRefGoogle Scholar
  160. 160.
    B. Ballesteros, A. Katemann, E.J. Schulte, M. Calvo, W. Koudelka-Hep, Schuhmann, Localised electrochemical impedance spectroscopy with high lateral resolution by means of alternating current scanning electrochemical microscopy. Electrochem. Commun. 4, 134–138 (2002)CrossRefGoogle Scholar
  161. 161.
    C. Gabrielli, M. Keddam, N. Portail, P. Rousseau, H. Takenouti, V. Vivier, Electrochemical impedance spectroscopy investigations of a microelectrode behavior in a thin-layer cell: experimental and theoretical studies. J. Phys. Chem. B 110, 20478–20485 (2006)CrossRefGoogle Scholar
  162. 162.
    C. Gabrielli, F. Huet, M. Keddam, P. Rousseau, V. Vivier, Scanning electrochemical microscopy imaging by means of high-frequency impedance measurements in feedback mode. J. Phys. Chem. B 108, 11620–11626 (2004)CrossRefGoogle Scholar
  163. 163.
    A.S. Baranski, P.M. Diakowski, Application of AC impedance techniques to scanning electrochemical microscopy. J. Solid State Electrochem. 8, 683–692 (2004)Google Scholar
  164. 164.
    K. Eckhard, H. Shin, B. Mizaikoff, W. Schuhmann, C. Kranz, Alternating current (AC) impedance imaging with combined atomic force scanning electrochemical microscopy (AFM-SECM). Electrochem. Commun. 9, 1311–1315 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • H. Cesiulis
    • 1
    Email author
  • N. Tsyntsaru
    • 1
    • 2
  • A. Ramanavicius
    • 3
  • G. Ragoisha
    • 4
  1. 1.Department of Physical Chemistry, Faculty of ChemistryVilnius UniversityVilniusLithuania
  2. 2.Institute of Applied PhysicsAcademy of Sciences of MoldovaChisinauMoldova
  3. 3.Laboratory of Nanobiotechnology, Department of Materials Science and Electronics, Institute of Semiconductor PhysicsState Scientific Research Institute Centre for Physical Sciences and TechnologyVilniusLithuania
  4. 4.Research Institute for Physical Chemical ProblemsBelarusian State UniversityMinskBelarus

Personalised recommendations