Skip to main content

Testing Spatial Autocorrelation in Weighted Networks: The Modes Permutation Test

  • Chapter
  • First Online:
Spatial Econometric Interaction Modelling

Part of the book series: Advances in Spatial Science ((ADVSPATIAL))

Abstract

Permutation tests of spatial autocorrelation are justified under exchangeability, that is the premise that the observed scores follow a permutation-invariant joint distribution. Yet, in the frequently encountered case of geographical data collected on regions differing in importance, the variance of a regional score is expected to decrease with the size of the region, in the same way that the variance of an average is inversely proportional to the size of the sample in elementary statistics: heteroscedasticity holds in effect, already under spatial independence, thus weakening the rationale of the celebrated spatial autocorrelation permutation test (e.g. Cliff and Ord 1973; Besag and Diggle 1977) in the case of a weighted network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    This paper has been previously published in the Journal of Geographical Systems. Special Issue on “Advances in the Statistical Modelling of Spatial Interaction Data”, Vol. 15, Number 3/July 2013, ©Springer-Verlag Berlin Heidelberg, pp. 233–247.

  2. 2.

    Here the notations match the higher-order discrete time extensions of the exchange matrix, resulting (under weak regularity conditions) from the iteration of the Markov transition matrix as

    $$\displaystyle{E^{(r)}:= \Pi W^{r}\qquad \qquad E^{(0)} = \Pi \qquad \qquad E^{(2)} = E\Pi ^{-1}E\qquad \qquad E^{(\infty )} = ff'.}$$

    .

References

  • Aldous D, Fill J (2002) Reversible Markov Chains and Random Walks on Graphs. Draft chapters, online version available at http://www.stat.berkeley.edu/users/aldous/RWG/book.html

  • Anselin L (1988) Spatial econometrics: methods and models. Kluwer, Boston

    Book  Google Scholar 

  • Anselin L (1995) Local indicators of spatial association - LISA. Geogr Anal 27:93–115

    Article  Google Scholar 

  • Arbia G (2006) Spatial econometrics: statistical foundations and applications to regional convergence. Springer, Berlin

    Google Scholar 

  • Assunção RM, Reis EA (1999) A new proposal to adjust Moran’s I for population density. Stat Med 18:2147–2162

    Article  Google Scholar 

  • Barbu VS, Limnios N (2008) Semi-Markov chains and hidden semi-Markov models toward applications: their use in reliability and DNA analysis. Springer, New York

    Google Scholar 

  • Bavaud F (1998) Models for spatial weights: a systematic look. Geogr Anal 30:153–171

    Article  Google Scholar 

  • Bavaud F (2002) The quasisymmetric side of gravity modelling. Environ Plan A 34:61–79

    Article  Google Scholar 

  • Bavaud F (2008a) Local concentrations. Pap Reg Sci 87:357–370

    Article  Google Scholar 

  • Bavaud F (2008b) The endogenous analysis of flows, with applications to migrations, social mobility and opinion shifts. J Math Sociol 32:239–266

    Article  Google Scholar 

  • Bavaud F (2010) Multiple soft clustering, spectral clustering and distances on weighted graphs. Proceedings of the ECML PKDD’10. Lecture notes in computer science, vol 6321. Springer, Heidelberg, pp 103–118

    Google Scholar 

  • Berger J, Snell JL (1957) On the concept of equal exchange. Behav Sci 2:111–118

    Article  Google Scholar 

  • Besag J, Diggle PJ (1977) Simple Monte Carlo tests for spatial pattern. J R Stat Soc C Appl Stat 26:327–333

    Google Scholar 

  • Bivand RS, Müller W, Reder M (2009a) Power calculations for global and local Moran’s I. Comput Stat Data Anal 53:2859–2872

    Article  Google Scholar 

  • Bivand R (2009b) Applying measures of spatial autocorrelation: computation and simulation. Geogr Anal 41:375–384

    Article  Google Scholar 

  • Chun Y (2008) Modeling network autocorrelation within migration flows by eigenvector spatial filtering. J Geogr Syst 10:317–344

    Article  Google Scholar 

  • Chung FRK (1997) Spectral graph theory. CBMS regional conference series in mathematics, vol 92. American Mathematical Society, Washington

    Google Scholar 

  • Çinlar E (1975) Introduction to stochastic processes. Prentice Hall, New York

    Google Scholar 

  • Cliff AD, Ord JK (1973) Spatial autocorrelation. Pion, London

    Google Scholar 

  • Cliff AD, Ord JK (1981) Spatial processes: models & applications. Pion, London

    Google Scholar 

  • Corcoran CD, Mehta CR (2002) Exact level and power of permutation, bootstrap, and asymptotic tests of trend. J Mod Appl Stat Methods 1:42–51

    Google Scholar 

  • Cressie NAC (1993) Statistics for spatial data. Wiley, New York

    Google Scholar 

  • Dray S (2011) A new perspective about Moran’s coefficient: spatial autocorrelation as a linear regression problem. Geogr Anal 43:127–141

    Article  Google Scholar 

  • Fotheringham AS, O’Kelly ME (1989) Spatial interaction models: formulations and applications. Kluwer, Dordrecht

    Google Scholar 

  • Geary R (1954) The contiguity ratio and statistical mapping. Inc Stat 5:115–145

    Google Scholar 

  • Goodchild MF, Smith TR (1980) Intransitivity, the spatial interaction model, and US migration streams. Environ Plan A 12:1131–1144

    Article  Google Scholar 

  • Griffith DA (2000) Eigenfunction properties and approximations of selected incidence matrices employed in spatial analyses. Linear Algebra Appl 321:95–112

    Article  Google Scholar 

  • Griffith DA (2003) Spatial autocorrelation and spatial filtering: gaining understanding through theory and scientific visualization. Springer, Berlin

    Book  Google Scholar 

  • Griffith DA, Peres-Neto PR (2006) Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. Ecology 87:2603–2613

    Article  Google Scholar 

  • Haining RP (2003) Spatial data analysis: theory and practice. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Janssen A, Pauls T (2005) A Monte Carlo comparison of studentized bootstrap and permutation tests for heteroscedastic two-sample problems. Comput Stat 20:369–383

    Article  Google Scholar 

  • Kijima M (1997) Markov processes for stochastic modeling. Chapman & Hall, London

    Book  Google Scholar 

  • Lebart L (1969) Analyse statistique de la contiguïté. Publ Inst Stat Univ Paris 18:81–112

    Google Scholar 

  • Leenders RTAJ (2002) Modeling social influence through network autocorrelation: constructing the weight matrix. Soc Networks 24:21–47

    Article  Google Scholar 

  • LeSage JP, Pace RK (2009) Introduction to spatial econometrics. Chapman & Hall, Boca Raton

    Book  Google Scholar 

  • Li H, Calder CA, Cressie N (2007) Beyond Moran’s I: testing for spatial dependence based on the spatial autoregressive model. Geogr Anal 39:357–375

    Article  Google Scholar 

  • Moran PAP (1950) Notes on continuous stochastic phenomena. Biometrika 37:17–23

    Article  Google Scholar 

  • Sen A, Smith T (1995) Gravity models of spatial interaction behavior. Springer, Berlin

    Book  Google Scholar 

  • Thioulouse J, Chessel D, Champely S (1995) Multivariate analysis of spatial patterns: a unified approach to local and global structures. Environ Ecol Stat 2:1–14

    Article  Google Scholar 

  • Tiefelsdorf M, Boots B (1995) The exact distribution of Moran’s I. Environ Plan A 27:985–999

    Article  Google Scholar 

  • Tiefelsdorf M, Griffith DA (2007) Semiparametric filtering of spatial autocorrelation: the eigenvector approach. Environ Plan A 39:1193–221

    Article  Google Scholar 

  • Upton G, Fingleton B (1985) Spatial data analysis by example. Wiley, New York

    Google Scholar 

  • von Luxburg U (2007) A tutorial on spectral clustering. Stat Comput 17:395–416

    Article  Google Scholar 

  • Waldhör T (1996) The spatial autocorrelation coefficient Moran’s I under heteroscedasticity. Stat Med 15:887–892

    Article  Google Scholar 

  • Willekens FJ (1983) Specification and calibration of spatial interaction models: a contingency-table perspective and an application to intra-urban migration in Rotterdam. Tijdschr Econ Soc Geografie 74:239–252

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Bavaud .

Editor information

Editors and Affiliations

Appendix

Appendix

Proof of (4.7) U being orthogonal, \(\sum _{i}f_{i}c_{i\alpha }c_{i\beta } =\sum _{i}u_{i\alpha }u_{i\beta } =\delta _{\alpha \beta }\) and \(\sum _{i}f_{i}c_{i\alpha } =\sum _{i}\sqrt{f_{i}}u_{i\alpha } =\sum _{i}u_{i0}u_{i\alpha } =\delta _{\alpha 0}\).

Proof of (4.9) independence implies the functional form σ ij  = δ ij g( f i ) where g(f) expresses a possible size dependence. Consider the aggregation of regions j into super-region J, with aggregated field \(X_{J} =\sum _{j\in J}f_{j}X_{j}/f_{J}\), where f J : =  j ∈ J f j . By construction,

$$\displaystyle{g(\,f_{J}) = \mbox{ Var}(X_{J}) = \frac{1} {f_{J}^{2}}\sum _{i,j\in J}f_{i}f_{j}\sigma _{ij} = \frac{1} {f_{J}^{2}}\sum _{j\in J}f_{j}^{2}g(\,f_{ j})}$$

that is f J 2g( f J ) =  j ∈ J f j 2 g( f j ), with unique solution \(g(\,f_{j}) =\sigma ^{2}/f_{j}\) (and \(g(\,f_{J}) =\sigma ^{2}/f_{J}\)), where \(\sigma ^{2} = \mbox{ Var}(\bar{X})\).

Proof of (4.10) \(\hat{\sigma }_{\alpha \beta }:= \mbox{ Cov}(\hat{X}_{\alpha },\hat{X}_{\beta }) =\sum _{ij}f_{i}f_{j}c_{i\alpha }c_{j\beta }\mbox{ Cov}(X_{i},X_{j}) =\sigma ^{2}\sum _{i}f_{i}c_{i\alpha }c_{i\beta } =\sigma ^{2}\sum _{i}u_{i\alpha }u_{i\beta } =\sigma ^{2}\delta _{\alpha \beta }\).

Proof of (4.11) \(\sum _{\alpha \geq 1}\hat{x}_{\alpha }^{2} =\sum _{ij}\sqrt{f_{i } f_{j}}x_{i}x_{j}\sum _{\alpha \geq 0}u_{i\alpha }u_{j\alpha } -\hat{ x}_{0}^{2} =\sum _{i}f_{i}x_{i}^{2} -\bar{ x}^{2} = \mbox{ var}(x)\). Also, \(\mbox{ var}_{\mbox{ loc}}(x) = \frac{1} {2}\sum _{ij}e_{ij}(x_{i}-x_{j})^{2} =\sum _{ i}f_{i}x_{i}^{2}-\sum _{ ij}e_{ij}x_{i}x_{j} =\sum _{i}f_{i}x_{i}^{2}-\bar{x}^{2}-\sum _{\alpha \geq 1}\lambda _{\alpha }\sum _{i}c_{i\alpha }x_{i}\sum _{j}c_{j\alpha }x_{j} = \mbox{ var}(x)-\sum _{\alpha \geq 1}\lambda _{\alpha }\hat{x}_{\alpha }^{2}.\)

Proof of (4.12) and (4.13) define

$$\displaystyle{a_{\alpha }:= \frac{\hat{x}_{\alpha }^{2}} {\sum _{\beta \geq 1}\hat{x}_{\beta }^{2}}\qquad \mbox{ with}\qquad \sum _{\alpha \geq 1}a_{\alpha } = 1\qquad \mbox{ and}\qquad I(\hat{x}) =\sum _{\alpha \geq 1}\lambda _{\alpha }a_{\alpha }.}$$

Under H 0, the distribution of the non-trivial modes is exchangeable, i.e. f(a) = f(π(a)). By symmetry, \(E_{\pi }(a_{\alpha }) = 1/(n - 1)\), \(E_{\pi }(a_{\alpha }^{2}) = s(x)/(n - 1)^{2}\) where \(s(x) =\sum _{\beta \geq 1}a_{\beta }^{2}/(n - 1)\) and \(E_{\pi }(a_{\alpha }a_{\beta }) = (1 - s(x)/(n - 1))/[(n - 1)(n - 2)]\) for αβ. Further substitution proves the result.

Proof of the Semi-Negative Definiteness of Q in (4.20) for any vector h,

$$\displaystyle{0 \leq \frac{1} {2}\sum _{ij}\varepsilon _{ij}(h_{i} - h_{j})^{2} =\sum _{ i}\sigma _{i}h_{i}^{2} -\sum _{ ij}\epsilon _{ij}h_{i}h_{j} = -\sum _{ij}(\epsilon _{ij} -\delta _{ij}\sigma _{j})h_{i}h_{j}.}$$

Relation Between the Eigen-Decompositions of E s (t) and Q in (4.20) in matrix notation, \(Q = \Pi ^{\frac{1} {2} }R\Pi ^{-\frac{1} {2} }\), and hence \(Q\sqrt{f} = 0\) by (4.19), showing \(u_{0} = \sqrt{f}\) with μ 0 = 0. Consider another, non-trivial eigenvector u α of Q, with eigenvalue μ α , orthogonal to \(\sqrt{ f}\) by construction. Identity \(E(t) = \Pi \exp (tR)\) together with (4.5) yield

$$\displaystyle{E^{s}(t) =\sum _{ k\geq 0}\frac{t^{k}} {k!}Q^{k} -\sqrt{f}\sqrt{f}'\qquad \qquad E^{s}(t)u_{\alpha } =\sum _{ k\geq 0}\frac{t^{k}\mu _{\alpha }^{k}} {k!} u_{\alpha } =\exp (\mu _{\alpha }t)u_{\alpha }.}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bavaud, F. (2016). Testing Spatial Autocorrelation in Weighted Networks: The Modes Permutation Test. In: Patuelli, R., Arbia, G. (eds) Spatial Econometric Interaction Modelling. Advances in Spatial Science. Springer, Cham. https://doi.org/10.1007/978-3-319-30196-9_4

Download citation

Publish with us

Policies and ethics