Abstract
There are several contexts in the theory of Markov processes in which the term ergodicity is used, but in all of these, assertions of the form
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
K. B. Athreya and P. Ney. A new approach to the limit theory of recurrent Markov chains. Trans. Amer. Math. Soc., 245: 493–501, 1978. ISSN 0002-9947. doi: 10.2307/1998882. URL http://dx.doi.org/10.2307/1998882.
Gopal K. Basak and Rabi N. Bhattacharya. Stability in distribution for a class of singular diffusions. Ann. Probab., 20(1):312–321, 1992. ISSN 0091-1798. URL http://links.jstor.org/sici?sici=0091-1798(199201)20:1<312:SIDFAC>2.0.CO;2-L&origin=MSN.
R. N. Bhattacharya. Criteria for recurrence and existence of invariant measures for multidimensional diffusions. Ann. Probab., 6(4):541–553, 1978. ISSN 0091-1798.
R. N. Bhattacharya. On the functional central limit theorem and the law of the iterated logarithm for Markov processes. Z. Wahrsch. verw. Gebiete, 60(2):185–201, 1982. ISSN 0044-3719. doi: 10.1007/BF00531822. URL http://dx.doi.org/10.1007/BF00531822.
Rabi Bhattacharya. A central limit theorem for diffusions with periodic coefficients. Ann. Probab., 13(2):385–396, 1985. ISSN 0091-1798. URL http://links.jstor.org/sici?sici=0091-1798(198505)13:2<385:ACLTFD>2.0.CO;2-S&origin=MSN.
Rabi Bhattacharya and Mukul Majumdar. Stability in distribution of randomly perturbed quadratic maps as Markov processes. Ann. Appl. Probab., 14(4):1802–1809, 2004. ISSN 1050-5164. doi: 10.1214/105051604000000918. URL http://dx.doi.org/10.1214/105051604000000918.
Rabi Bhattacharya and Aramian Wasielak. On the speed of convergence of multidimensional diffusions to equilibrium. Stoch. & Dyn., 12(1):1150003, 19, 2012. ISSN 0219-4937. doi: 10.1142/S0219493712003638. URL http://dx.doi.org/10.1142/S0219493712003638.
David Blackwell and Lester E. Dubins. An extension of Skorohod’s almost sure representation theorem. Proc. Amer. Math. Soc., 89 (4):691–692, 1983. ISSN 0002-9939. doi: 10.2307/2044607. URL http://dx.doi.org/10.2307/2044607.
Stewart N. Ethier and Thomas G. Kurtz. Markov Processes: Characterization and Convergence. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons Inc., New York, 1986. ISBN 0-471-08186-8.
F. G. Foster. On the stochastic matrices associated with certain queuing processes. Ann. Math. Statistics, 24:355–360, 1953. ISSN 0003-4851.
Martin Hairer and Jonathan C. Mattingly. A theory of hypoellipticity and unique ergodicity for semilinear stochastic PDEs. Electron. J. Probab., 16:no. 23, 658–738, 2011. ISSN 1083-6489. doi: 10.1214/EJP.v16-875. URL http://dx.doi.org/10.1214/EJP.v16-875.
P. Hall and C. C. Heyde. Martingale Limit Theory and its Application. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. ISBN 0-12-319350-8. Probability and Mathematical Statistics.
R. Z. Hasminskii. Ergodic properties of recurrent diffusion processes and stabilization of the solution of the Cauchy problem for parabolic equations. Theory Probab. Appl., 5:179–196, 1960. ISSN 0040-361x.
Harold J. Kushner. Stochastic Stability and Control. Mathematics in Science and Engineering, Vol. 33. Academic Press, New York-London, 1967.
D. L. McLeish. Dependent central limit theorems and invariance principles. Ann. Probab., 2:620–628, 1974.
E. Nummelin. A splitting technique for Harris recurrent Markov chains. Z. Wahrsch. verw. Gebiete, 43(4):309–318, 1978. ISSN 0178-8051.
Rolando Rebolledo. Central limit theorems for local martingales. Z. Wahrsch. verw. Gebiete, 51(3):269–286, 1980. ISSN 0044-3719. doi: 10.1007/BF00587353. URL http://dx.doi.org/10.1007/BF00587353.
Acknowledgements
This research was supported in part by NSF grant DMS 11-06424.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Kurtz, T.G. (2016). Ergodicity and Central Limit Theorems for Markov Processes. In: Denker, M., Waymire, E. (eds) Rabi N. Bhattacharya. Contemporary Mathematicians. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-30190-7_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-30190-7_6
Published:
Publisher Name: Birkhäuser, Cham
Print ISBN: 978-3-319-30188-4
Online ISBN: 978-3-319-30190-7
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)