Skip to main content

Ergodicity and Central Limit Theorems for Markov Processes

  • Chapter
  • First Online:
Rabi N. Bhattacharya

Part of the book series: Contemporary Mathematicians ((CM))

  • 1112 Accesses

Abstract

There are several contexts in the theory of Markov processes in which the term ergodicity is used, but in all of these, assertions of the form

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. K. B. Athreya and P. Ney. A new approach to the limit theory of recurrent Markov chains. Trans. Amer. Math. Soc., 245: 493–501, 1978. ISSN 0002-9947. doi: 10.2307/1998882. URL http://dx.doi.org/10.2307/1998882.

    Google Scholar 

  2. Gopal K. Basak and Rabi N. Bhattacharya. Stability in distribution for a class of singular diffusions. Ann. Probab., 20(1):312–321, 1992. ISSN 0091-1798. URL http://links.jstor.org/sici?sici=0091-1798(199201)20:1<312:SIDFAC>2.0.CO;2-L&origin=MSN.

  3. R. N. Bhattacharya. Criteria for recurrence and existence of invariant measures for multidimensional diffusions. Ann. Probab., 6(4):541–553, 1978. ISSN 0091-1798.

    Google Scholar 

  4. R. N. Bhattacharya. On the functional central limit theorem and the law of the iterated logarithm for Markov processes. Z. Wahrsch. verw. Gebiete, 60(2):185–201, 1982. ISSN 0044-3719. doi: 10.1007/BF00531822. URL http://dx.doi.org/10.1007/BF00531822.

  5. Rabi Bhattacharya. A central limit theorem for diffusions with periodic coefficients. Ann. Probab., 13(2):385–396, 1985. ISSN 0091-1798. URL http://links.jstor.org/sici?sici=0091-1798(198505)13:2<385:ACLTFD>2.0.CO;2-S&origin=MSN.

  6. Rabi Bhattacharya and Mukul Majumdar. Stability in distribution of randomly perturbed quadratic maps as Markov processes. Ann. Appl. Probab., 14(4):1802–1809, 2004. ISSN 1050-5164. doi: 10.1214/105051604000000918. URL http://dx.doi.org/10.1214/105051604000000918.

    Google Scholar 

  7. Rabi Bhattacharya and Aramian Wasielak. On the speed of convergence of multidimensional diffusions to equilibrium. Stoch. & Dyn., 12(1):1150003, 19, 2012. ISSN 0219-4937. doi: 10.1142/S0219493712003638. URL http://dx.doi.org/10.1142/S0219493712003638.

    Google Scholar 

  8. David Blackwell and Lester E. Dubins. An extension of Skorohod’s almost sure representation theorem. Proc. Amer. Math. Soc., 89 (4):691–692, 1983. ISSN 0002-9939. doi: 10.2307/2044607. URL http://dx.doi.org/10.2307/2044607.

    Google Scholar 

  9. Stewart N. Ethier and Thomas G. Kurtz. Markov Processes: Characterization and Convergence. Wiley Series in Probability and Mathematical Statistics. John Wiley & Sons Inc., New York, 1986. ISBN 0-471-08186-8.

    Google Scholar 

  10. F. G. Foster. On the stochastic matrices associated with certain queuing processes. Ann. Math. Statistics, 24:355–360, 1953. ISSN 0003-4851.

    Google Scholar 

  11. Martin Hairer and Jonathan C. Mattingly. A theory of hypoellipticity and unique ergodicity for semilinear stochastic PDEs. Electron. J. Probab., 16:no. 23, 658–738, 2011. ISSN 1083-6489. doi: 10.1214/EJP.v16-875. URL http://dx.doi.org/10.1214/EJP.v16-875.

    Google Scholar 

  12. P. Hall and C. C. Heyde. Martingale Limit Theory and its Application. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. ISBN 0-12-319350-8. Probability and Mathematical Statistics.

    Google Scholar 

  13. R. Z. Hasminskii. Ergodic properties of recurrent diffusion processes and stabilization of the solution of the Cauchy problem for parabolic equations. Theory Probab. Appl., 5:179–196, 1960. ISSN 0040-361x.

    Google Scholar 

  14. Harold J. Kushner. Stochastic Stability and Control. Mathematics in Science and Engineering, Vol. 33. Academic Press, New York-London, 1967.

    Google Scholar 

  15. D. L. McLeish. Dependent central limit theorems and invariance principles. Ann. Probab., 2:620–628, 1974.

    Google Scholar 

  16. E. Nummelin. A splitting technique for Harris recurrent Markov chains. Z. Wahrsch. verw. Gebiete, 43(4):309–318, 1978. ISSN 0178-8051.

    Google Scholar 

  17. Rolando Rebolledo. Central limit theorems for local martingales. Z. Wahrsch. verw. Gebiete, 51(3):269–286, 1980. ISSN 0044-3719. doi: 10.1007/BF00587353. URL http://dx.doi.org/10.1007/BF00587353.

Download references

Acknowledgements

This research was supported in part by NSF grant DMS 11-06424.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas G. Kurtz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kurtz, T.G. (2016). Ergodicity and Central Limit Theorems for Markov Processes. In: Denker, M., Waymire, E. (eds) Rabi N. Bhattacharya. Contemporary Mathematicians. Birkhäuser, Cham. https://doi.org/10.1007/978-3-319-30190-7_6

Download citation

Publish with us

Policies and ethics