Skip to main content

An Improved Adaptive Self-Organizing Map

  • Chapter
  • First Online:
Challenging Problems and Solutions in Intelligent Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 634))

  • 559 Accesses

Abstract

We propose a novel adaptive Self-Organizing Map (SOM). In the introduced approach, the SOM neurons’ neighborhood widths are computed adaptively using the information about the frequencies of occurrences of input patterns in the input space. The neighborhood widths are determined independently for each neuron in the SOM grid. In this way, the proposed SOM properly visualizes the input data, especially, when there are significant differences in frequencies of occurrences of input patterns. The experimental study on real data, on three different datasets, verifies and confirms the effectiveness of the proposed adaptive SOM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berglund, E., Sitte, J.: The parameterless self-organizing map algorithm. IEEE Trans. Neural Netw. 17(2), 305–316 (2006)

    Article  Google Scholar 

  2. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  3. Chen, S., Zhou, Z., Hu, D.: Diffusion and growing self-organizing map: a nitric oxide based neural model. In: Advances in Neural Networks—ISNN 2004, Lecture Notes in Computer Science, vol. 3173 (2004)

    Google Scholar 

  4. Chengalvarayan, R., Deng, L.: HMM-based speech recognition using state-dependent, discriminatively derived transforms on mel-warped DFT features. IEEE Trans. Speech Audio Process. 2(3), 243–256 (1997)

    Article  Google Scholar 

  5. DeSieno, D.: Adding a conscience to competitive learning. In: Proceedings of the Second IEEE International Conference on Neural Networks (ICNN-88). vol. 1, pp. 117–124. IEEE (July 1988)

    Google Scholar 

  6. Frank, A., Asuncion, A.: UCI machine learning repository (2010), http://archive.ics.uci.edu/ml

  7. Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G., Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000), http://circ.ahajournals.org/cgi/content/full/101/23/e215, circulation Electronic Pages

  8. Haese, K., Goodhill, G.J.: Auto-SOM: recursive parameter estimation for guidance of self-organizing feature maps. Neural Comput. 13(3), 595–619 (2001)

    Article  MATH  Google Scholar 

  9. Halkidi, M., Batistakis, Y., Vazirgiannis, M.: On clustering validation techniques. J. Intell. Inf. Syst. 17(2/3), 107–145 (2001)

    Article  MATH  Google Scholar 

  10. Handl, J., Knowles, J., Kell, D.B.: Computational cluster validation in post-genomic data analysis. Bioinformatics 21(15), 3201–3212 (2005)

    Article  Google Scholar 

  11. Heskes, T.: Self-organizing maps, vector quantization, and mixture modeling. IEEE Trans. Neural Netw. 12(6), 1299–1305 (2001)

    Article  Google Scholar 

  12. van Hulle, M.M.: Faithful Representations and Topographic Maps: From Distortion- to Information-Based Self-Organization. Wiley, New York (2000)

    Google Scholar 

  13. Iglesias, R., Barro, S.: SOAN: self organizing with adaptive neighborhood neural network. In: Mira, J., Sánchez-Andrés, J. (eds.) Foundations and Tools for Neural Modeling. Lecture Notes in Computer Science, vol. 1606, pp. 591–600. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  14. Ippoliti, D., Zhou, X.: A-GHSOM: an adaptive growing hierarchical self organizing map for network anomaly detection. J. Parallel Distrib. Comput. 72(12), 1576–1590 (2012)

    Article  Google Scholar 

  15. Kohonen, T.: Self-Organizing Maps. 3rd edn, Springer, Heidelberg (2001)

    Google Scholar 

  16. Kohonen, T.: Essentials of the self-organizing map. Neural Netw. 37, 52–65 (2013)

    Article  Google Scholar 

  17. Kohonen, T.: Self-organized formation of topologically correct feature maps. Biol. Cybern. 43(1), 59–69 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kohonen, T.: The self-organizing map. Proc. IEEE 28, 1464–1480 (1990)

    Article  Google Scholar 

  19. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)

    Article  Google Scholar 

  20. van der Maaten, L., Hinton, G.E.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008)

    MATH  Google Scholar 

  21. Martín-Merino, M., Muñoz, A.: Visualizing asymmetric proximities with SOM and MDS models. Neurocomputing 63, 171–192 (2005)

    Article  Google Scholar 

  22. Mulier, F., Cherkassky, V.: Self-organization as an iterative Kernel smoothing process. Neural Comput. 7(6), 1165–1177 (1995)

    Article  Google Scholar 

  23. Nybo, K., Venna, J., Kaski, S.: The self-organizing map as a visual neighbor retrieval method. In: Proceedings of the 6th International Workshop on Self-Organizing Maps (WSOM 2007). pp. 1–8 (2007)

    Google Scholar 

  24. Olszewski, D.: An experimental study on asymmetric self-organizing map. In: Yin, H., Wang, W., Rayward-Smith, V. (eds.) Intelligent Data Engineering and Automated Learning—IDEAL 2011. Lecture Notes in Computer Science, vol. 6936, pp. 42–49 (2011)

    Google Scholar 

  25. Olszewski, D.: \(k\)-Means clustering of asymmetric data. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Grana, M., Cho, S.B. (eds.) Hybrid Artificial Intelligent Systems. Lecture Notes in Computer Science, vol. 7208, pp. 243–254 (2012)

    Google Scholar 

  26. Olszewski, D.: Fraud detection using self-organizing map visualizing the user profiles. Knowl. Based Syst. 70, 324–334 (2014)

    Article  Google Scholar 

  27. Olszewski, D., Kacprzyk, J., Zadrożny, S.: Time series visualization using asymmetric self-organizing map. In: Tomassini, M., Antonioni, A., Daolio, F., Buesser, P. (eds.) Adaptive and Natural Computing Algorithms. Lecture Notes in Computer Science, vol. 7824, pp. 40–49. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  28. Olszewski, D., Šter, B.: Asymmetric clustering using the alpha-beta divergence. Pattern Recog. 47(5), 2031–2041 (2014)

    Article  Google Scholar 

  29. Paatero, P., Tapper, U.: Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5(2), 111–126 (1994)

    Article  Google Scholar 

  30. Piastra, M.: Self-organizing adaptive map: Autonomous learning of curves and surfaces from point samples. Neural Netw. 41, 96–112 (2013)

    Article  MATH  Google Scholar 

  31. Rauber, A., Merkl, D., Dittenbach, M.: The growing hierarchical self-organizing map: exploratory analysis of high-dimensional data. IEEE Trans. Neural Netw. 13(6), 1331–1341 (2002)

    Article  MATH  Google Scholar 

  32. Ressom, H., Wang, D., Natarajan, P.: Adaptive double self-organizing maps for clustering gene expression profiles. Neural Netw. 16(5–6), 633–640 (2003)

    Article  Google Scholar 

  33. Segev, A., Kantola, J.: Identification of trends from patents using self-organizing maps. Expert Syst. Appl. 39(18), 13235–13242 (2012)

    Article  Google Scholar 

  34. Shah-Hosseini, H., Safabakhsh, R.: TASOM: A new time adaptive self-organizing map. IEEE Trans. Syst. Man Cybern. Part B Cybern. 33(2), 271–282 (2003)

    Article  Google Scholar 

  35. Shah-Hosseini, H.: Binary tree time adaptive self-organizing map. Neurocomputing 74(11), 1823–1839 (2011)

    Article  Google Scholar 

  36. Venna, J., Peltonen, J., Nybo, K., Aidos, H., Kaski, S.: Information retrieval perspective to nonlinear dimensionality reduction for data visualization. J. Mach. Learn. Res. 11, 451–490 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J.: Self-organizing map in Matlab: the SOM Toolbox. In: Proceedings of the Matlab DSP Conference. pp. 35–40 (1999)

    Google Scholar 

  38. Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J.: SOM Toolbox for Matlab 5. Tech. Rep. Report A57, Helsinki University of Technology (2000)

    Google Scholar 

  39. Villmann, T., Claussen, J.C.: Magnification control in self-organizing maps and neural gas. Neural Comput. 18(2), 446–469 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This contribution is supported by the Foundation for Polish Science under International PhD Projects in Intelligent Computing. Project financed from The European Union within the Innovative Economy Operational Programme 2007–2013 and European Regional Development Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Olszewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Olszewski, D., Kacprzyk, J., Zadrożny, S. (2016). An Improved Adaptive Self-Organizing Map. In: Trė, G., Grzegorzewski, P., Kacprzyk, J., Owsiński, J., Penczek, W., Zadrożny, S. (eds) Challenging Problems and Solutions in Intelligent Systems. Studies in Computational Intelligence, vol 634. Springer, Cham. https://doi.org/10.1007/978-3-319-30165-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30165-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30164-8

  • Online ISBN: 978-3-319-30165-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics