Skip to main content

Introduction to Surrogate Modeling and Surrogate-Based Optimization

  • Chapter
  • First Online:

Abstract

Surrogate-based optimization (SBO) is the main focus of this book. We provide a brief introduction to the subject in this chapter. In particular, we recall the SBO concept and the optimization flow, discuss the principles of surrogate modeling and typical approaches to construct surrogate models. We also discuss the distinction between function approximation (or data-driven) surrogates and physics-based surrogates, as well as outline the algorithm of SBO exploiting the two aforementioned classes of models. More detailed information about the selected types of SBO algorithms (especially those involving response correction techniques) as well as illustration and application examples in various fields of engineering are provided in the remaining part of the book.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alba, E., and Marti, R., (Eds) (2006) Metaheuristic procedures for training neural networks, Springer.

    Google Scholar 

  • Alexandrov, N.M., Dennis, J.E., Lewis, R.M., Torczon, V. (1998) A trust region framework for managing use of approximation models in optimization. Struct. Multidisciplinary Optim. 15, pp. 16–23.

    Article  Google Scholar 

  • Alexandrov, N.M., Lewis, R.M. (2001) An overview of first-order model management for engineering optimization. Optimization and Engineering. 2, 413–430.

    Article  MATH  Google Scholar 

  • Andrés, E., Salcedo-Sanz, S., Monge, F., Pérez-Bellido, A.M., (2012) Efficient aerodynamic design through evolutionary programming and support vector regression algorithms. Int. J. Expert Systems with Applications. 39, 10700–10708.

    Article  Google Scholar 

  • Angiulli, G., Cacciola, M., Versaci, M. (2007) Microwave devices and antennas modelling by support vector regression machines. IEEE Trans. Magnetics, 43, pp. 1589–1592.

    Article  Google Scholar 

  • Bakr, M.H., Bandler, J.W., Biernacki, R.M., Chen, S.H., Madsen, K. (1998) A trust region aggressive space mapping algorithm for EM optimization. IEEE Trans. Microwave Theory Tech., 46, pp. 2412–2425.

    Article  Google Scholar 

  • Bakr, M.H., Bandler, J.W., Georgieva, N.K., Madsen, K. (1999) A hybrid aggressive space-mapping algorithm for EM optimization. IEEE Trans. Microwave Theory Tech., 47, pp. 2440–2449.

    Article  Google Scholar 

  • Bakr, M.H., Bandler, J.W., and Georgieva, N. (1999) “Modeling of microwave circuits exploiting space derivative mapping,” IEEE MTT-S Int. Microwave Symp. Dig., (Anaheim, CA), pp. 715–718.

    Google Scholar 

  • Bandler, J.W., Biernacki, R.M., Chen, S.H., Grobelny, P.A., Hemmers, R.H., (1994) Space mapping technique for electromagnetic optimization. IEEE Trans. Microwave Theory Tech. 42, 2536–2544.

    Article  Google Scholar 

  • Bandler, J.W., Biernacki, R.M., Chen, S.H., Hemmers, R.H., Madsen, K., (1995) Electromagentic optimization exploiting aggressive space mapping. IEEE Trans. Microwave Theory Tech., 43, 2874–2882.

    Article  Google Scholar 

  • Bandler, J.W., Cheng, Q.S., Gebre-Mariam, D.H., Madsen, K., Pedersen, F., Søndergaard, J. (2003) EM-based surrogate modeling and design exploiting implicit, frequency and output space mappings. IEEE Int. Microwave Symp. Digest, Philadelphia, PA, pp. 1003–1006.

    Google Scholar 

  • Bandler, J.W., Cheng, Q.S., Dakroury, S.A., Mohamed, A.S., Bakr, M.H., Madsen, K., Søndergaard, J. (2004a) Space mapping: the state of the art. IEEE Trans. Microwave Theory Tech., 52, pp. 337−361.

    Article  Google Scholar 

  • Bandler, J.W., Cheng, Q.S., Nikolova, N.K., Ismail, M.A. (2004b) Implicit space mapping optimization exploiting preassigned parameters. IEEE Trans. Microwave Theory Tech., 52, pp. 378–385.

    Article  Google Scholar 

  • Bandler, J.W., Cheng, Q.S., Hailu, D.M., and Nikolova, N.K. (2004c) “A space-mapping design framework,” IEEE Trans. Microwave Theory Tech., vol. 52, no. 11, pp. 2601–2610.

    Article  Google Scholar 

  • Beachkofski, B., and Grandhi, R. (2002) Improved distributed hypercube sampling. American Institute of Aeronautics and Astronautics. Paper AIAA 2002–1274.

    Google Scholar 

  • Booker, A.J., Dennis, J.E., Frank, P.D., Serafini, D.B., Torczon, V., Trosset, M.W. (1999) A rigorous framework for optimization of expensive functions by surrogates. Structural Optimization. 17, 1–13.

    Article  Google Scholar 

  • Broyden, C.G. (1965) A class of methods for solving nonlinear simultaneous equations. Math. Comp., 19, pp. 577–593.

    Article  MathSciNet  MATH  Google Scholar 

  • Ceperic, V., Baric, A. (2004) Modeling of analog circuits by using support vector regression machines. Proc. 11 th Int. Conf. Electronics, Circuits, Syst., Tel-Aviv, Israel, pp. 391–394.

    Google Scholar 

  • Cheng, Q.S., Koziel, S., and Bandler, J.W.(2006) Simplified space mapping approach to enhancement of microwave device models. Int. J. RF and Microwave Computer-Aided Eng., 16, 518–535.

    Article  Google Scholar 

  • Conn, A.R., Gould, N.I.M., Toint, P.L. (2000) Trust Region Methods. MPS-SIAM Series on Optimization.

    Book  MATH  Google Scholar 

  • Couckuyt, I., (2013) Forward and inverse surrogate modeling of computationally expensive problems. PhD Thesis, Ghent University.

    Google Scholar 

  • Devabhaktuni, V.K., Yagoub, M.C.E., and Zhang, Q.J., (2001) A robust algorithm for automatic development of neural-network models for microwave applications. IEEE Trans. Microwave Theory Tech., 49, 2282-2291.

    Article  Google Scholar 

  • Echeverria, D., Hemker, P.W. (2005) Space mapping and defect correction. CMAM Int. Mathematical Journal Computational Methods in Applied Mathematics, 5, pp. 107–136.

    MathSciNet  MATH  Google Scholar 

  • Forrester, A.I.J., Sóbester, A., and Keane, A.J. (2007) Multi-Fidelity Optimization via Surrogate Modeling. Proceedings of the Royal Society A. 463, 3251-3269.

    Article  MATH  Google Scholar 

  • Forrester, A.I.J., Keane, A.J. (2009) Recent advances in surrogate-based optimization, Prog. in Aerospace Sciences, 45, pp. 50−79.

    Article  Google Scholar 

  • Geisser, S. (1993) Predictive Inference. Chapman and Hall.

    Google Scholar 

  • Giunta, A.A., (1997) Aircraft multidisciplinary design optimization using design of experiments theory and response surface modeling methods. PhD Thesis, Virginia Polytechnic Institute and State University.

    Google Scholar 

  • Giunta, A.A., Eldred, M.S., (2000) Implementation of a trust region model management strategy in the DAKOTA optimization toolkit. Proc. AIAA/USAF/NASA/ISSMO Symp. Multidisciplinary Analysis and Optimization, Long Beach, CA, AIAA-2000-4935.

    Google Scholar 

  • Giunta, A.A., Wojtkiewicz, S.F., Eldred, M.S. (2003) Overview of modern design of experiments methods for computational simulations. American Institute of Aeronautics and Astronautics, paper AIAA 2003—0649.

    Google Scholar 

  • Golub, G.H., Van Loan, Ch.F. (1996) Matrix Computations. (3rd ed.), The Johns Hopkins University Press.

    Google Scholar 

  • Gorissen, D., Crombecq, K., Couckuyt, I., Dhaene, T., Demeester, P. (2010) A surrogate modeling and adaptive sampling toolbox for computer based design. Journal of Machine Learning Research, 11, pp. 2051-2055.

    Google Scholar 

  • Gunn, S.R. (1998) Support vector machines for classification and regression. Technical Report. School of Electronics and Computer Science, University of Southampton.

    Google Scholar 

  • Haykin, S. (1998) Neural Networks: A Comprehensive Foundation. 2nd ed. Prentice Hall.

    Google Scholar 

  • Hosder, S., Watson, L.T., Grossman, B., Mason, W.H., Kim, H., (2001) Polynomial response surface approximations for the multidisciplinary design optimization of a high speed civil transport. Optimization and Engineering, 2, 431–452.

    Article  MATH  Google Scholar 

  • Huang, L., Gao, Z., (2012) Wing-body optimization based on multi-fidelity surrogate model. 28 th Int. Congress of the Aeronautical Sciences, Brisbane, Australia.

    Google Scholar 

  • Jacobs, J.H., Etman, L.F.P., van Keulen, F., Rooda, J.E., (2004) Framework for sequential approximate optimization. Struct. Multidisc. Optimization, 27, 384–400.

    Article  Google Scholar 

  • Jones, D., Schonlau, M., Welch, W. (1998) Efficient global optimization of expensive black-box functions. Journal of Global Optimization. 13, pp. 455–492.

    Article  MathSciNet  MATH  Google Scholar 

  • Journel, A.G., Huijbregts, Ch.J. (1981) Mining Geostatistics. Academic Press.

    Google Scholar 

  • Kabir, H., Wang, Y., Yu, M., Zhang, Q.J. (2008). Neural network inverse modeling and applications to microwave filter design. IEEE Trans. Microwave Theory Tech., 56, pp. 867–879.

    Article  Google Scholar 

  • Kleijnen, J., (2008) Design and Analysis of Simulation Experiments. Springer.

    Google Scholar 

  • Kleijnen, J.P.C. (2009) Kriging metamodeling in simulation: a review. European Journal of Operational Research. 192, 707–716.

    Article  MathSciNet  MATH  Google Scholar 

  • Koehler, J.R., Owen, A.B. (1996) Computer experiments. In S. Ghosh and C. R. Rao (Eds.) Handbook of Statistics. Elsevier Science B.V. 13, pp. 261—308.

    Google Scholar 

  • Kolda, T.G., Lewis, R.M., Torczon, V. (2003). Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev., 45, pp. 385−482.

    Article  MathSciNet  MATH  Google Scholar 

  • Koziel, S., Bandler, J.W., Madsen, K. (2006) A space mapping framework for engineering optimization: theory and implementation. IEEE Trans. Microwave Theory Tech., 54. 3721-3730.

    Google Scholar 

  • Koziel, S., Bandler, J.W., Madsen, K. (2006b) Theoretical justification of space-mapping-based modeling utilizing a data base and on-demand parameter extraction. IEEE Trans. Microwave Theory Tech., vol. 54, no. 12, pp. 4316-4322.

    Article  Google Scholar 

  • Koziel, S., and Bandler, J.W. (2007b) Space-mapping optimization with adaptive surrogate model. IEEE Trans. Microwave Theory Tech., 55, pp. 541–547.

    Article  Google Scholar 

  • Koziel, S., and Bandler, J.W. (2007d) A space-mapping approach to microwave device modeling exploiting fuzzy systems. IEEE Trans. Microwave Theory Tech., vol. 55, no. 12, pp. 2539–2547.

    Article  Google Scholar 

  • Koziel, S., Cheng, Q.S., Bandler, J.W. (2008) Space mapping. IEEE Microwave Magazine, 9, pp. 105–122.

    Article  Google Scholar 

  • Koziel, S., Bandler, J.W., Madsen, K. (2008b) Quality assessment of coarse models and surrogates for space mapping optimization. Optimization Eng. 9, 375–391.

    Article  MathSciNet  MATH  Google Scholar 

  • Koziel, S., Bandler, J.W., Cheng, Q.S. (2010a) Robust trust-region space-mapping algorithms for microwave design optimization. IEEE Trans. Microwave Theory and Tech., 58, pp. 2166–2174.

    Article  Google Scholar 

  • Koziel, S., Cheng, Q.S., Bandler, J.W. (2010b) Implicit space mapping with adaptive selection of preassigned parameters. IET Microwaves, Antennas & Propagation, 4, pp. 361–373.

    Article  Google Scholar 

  • Koziel, S., Bandler, J.W., Cheng, Q.S. (2010c) Adaptively constrained parameter extraction for robust space mapping optimization of microwave circuits. IEEE MTT-S Int. Microwave Symp. Dig., 205–208.

    Google Scholar 

  • Koziel, S., Echeverría-Ciaurri, D., Leifsson, L. (2011) Surrogate-based methods, in S. Koziel and X.S. Yang (Eds.) Computational Optimization, Methods and Algorithms, Series: Studies in Computational Intelligence, Springer-Verlag, pp. 33–60.

    Google Scholar 

  • Koziel, S., Ogurtsov, S., Couckuyt, I., Dhaene, T. (2013b) Variable-fidelity electromagnetic simulations and co-kriging for accurate modeling of antennas. IEEE Trans. Antennas Prop., 61, pp. 1301–1308.

    Article  MathSciNet  Google Scholar 

  • Koziel, S., Ogurtsov, S, Bandler, J.W., and Cheng, Q.S. (2013c) Reliable space mapping optimization integrated with EM-based adjoint sensitivities. IEEE Trans. Microwave Theory Tech., 61, pp. 3493–3502.

    Article  Google Scholar 

  • Koziel, S., and Leifsson, L. (2012e) Response correction techniques for surrogate-based design optimization of microwave structures. Int. J. RF and Microwave CAE, 22, 211–223.

    Article  Google Scholar 

  • Koziel, S., and Leifsson, L. (Eds.) (2013a) Surrogate-Based Modeling and Optimization. Applications in Engineering. Springer.

    Google Scholar 

  • Koziel, S., and Leifsson, L. (2013b) Multi-level Airfoil Shape Optimization with Automated Low-fidelity Model Selection. Int. Conf. Comp. Science, Barcelona, Spain, June 5–7.

    Google Scholar 

  • Koziel, S., and Leifsson, L. (2013c) Surrogate-Based Aerodynamic Shape Optimization by Variable-Resolution Models. AIAA Journal, vol. 51, no. 1, pp. 94–106.

    Article  Google Scholar 

  • Koziel, S., Ogurtsov, S. (2011a) Simulation-driven design in microwave engineering: application case studies, in Yang, X.S., and Koziel, S. (eds), Computational Optimization and Applications in Engineering and Industry, Series: Studies in Computational Intelligence, Springer-Verlag.

    Google Scholar 

  • Koziel, S., Ogurtsov, S. (2012a) Model management for cost-efficient surrogate-based optimization of antennas using variable-fidelity electromagnetic simulations. IET Microwaves Ant. Prop., 6, pp. 1643–1650.

    Article  Google Scholar 

  • Koziel, S., and Ogurtsov, S. (2012b) Fast simulation-driven design of microwave structures using improved variable-fidelity optimization technique. Engineering Optimization, 44, pp. 1007–1019.

    Article  MATH  Google Scholar 

  • Koziel, S., and Ogurtsov, S. (2013a) Multi-level microwave design optimization with automated model fidelity adjustment. Int. J. RF and Microwave CAE.

    Google Scholar 

  • Koziel, S., and Ogurtsov, S. (2013c) Multi-objective design of antennas using variable-fidelity simulations and surrogate models. IEEE Trans. Antennas Prop., 61, 5931–5939.

    Article  Google Scholar 

  • Koziel, S., Ogurtsov, S., Bandler, J.W., and Cheng, Q.S. (2013d) “Reliable space-mapping optimization integrated with EM-based adjoint sensitivities,” IEEE Trans. Microwave Theory Tech., vol. 61, no. 10, pp. 3493–3502.

    Article  Google Scholar 

  • Laurenceau, J., and Sagaut, P., (2008) Building efficient response surfaces of aerodynamic functions with kriging and cokriging. AIAA Journal, 46, 498–507.

    Article  Google Scholar 

  • Leary, S., Bhaskar, A., Keane, A. (2003) Optimal orthogonal-array-based latin hypercubes. Journal of Applied Statistics. 30, 585–598.

    Article  MathSciNet  MATH  Google Scholar 

  • Leifsson, L., and Koziel, S. (2014) Variable-resolution shape optimization: low-fidelity model selection and scalability. Int. J. Mathematical Modeling and Numerical Optimization.

    Google Scholar 

  • Leifsson, L., and Koziel, S. (2015) Simulation-driven aerodynamic design using variable-fidelity models. Imperial College Press.

    Google Scholar 

  • Leifsson, L., and Koziel, S. (2015b) Variable-resolution shape optimization: Low-fidelity model selection and scalability. Int. J. Mathematical Modeling and Numerical Optimization, vol. 6, no. 1.

    Google Scholar 

  • Leifsson, L., and Koziel, S. (2015c) Surrogate modeling and optimization using shape-preserving response prediction: A review. Engineering Optimization, May 6, pp. 1–21.

    Google Scholar 

  • Levin, D. (1998) The approximation power of moving least-squares. Mathematics of Computation. 67, 1517–1531.

    Article  MathSciNet  MATH  Google Scholar 

  • Li, Y.F., and Lan, C.C. (1989) Development of fuzzy algorithms for servo systems. IEEE Contr. Syst. Mag., vol. 9, no. 3, pp. 65–72.

    Article  Google Scholar 

  • Liu, J., Han, Z., Song, W., (2012) Comparison of infill sampling criteria in kriging-based aerodynamic optimization. 28 th Int. Congress of the Aeronautical Sciences, Brisbane, Australia.

    Google Scholar 

  • Liu, B., Zhang, Q., and Gielen, G. (2014) A gaussian process surrogate model assisted evolutionary algorithm for medium scale expensive black box optimization problems. IEEE Trans. Evol. Comp., 18, pp. 180–192.

    Article  Google Scholar 

  • Lophaven, S.N., Nielsen, H.B., and Søndergaard, J., (2002) DACE: a Matlab kriging toolbox. Technical University of Denmark.

    Google Scholar 

  • Marheineke, N., Pinnau, R., Reséndiz, E., (2012) Space mapping-focused control techniques for particle dispersions in fluids. Optimization and Engineering, 13, 101–120.

    Article  MathSciNet  MATH  Google Scholar 

  • Marsden, A.L., Wang, M., Dennis, J.E., Moin, P. (2004) Optimal aeroacoustic shape design using the surrogate management framework. Optimization and Engineering. 5, 235–262.

    Article  MathSciNet  MATH  Google Scholar 

  • McKay M, Conover W, Beckman R. (1979) A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics. 21, 239–245.

    MathSciNet  MATH  Google Scholar 

  • Meng, J., Xia, L. (2007) Support-vector regression model for millimeter wave transition. Int. J. Infrared and Millimeter Waves, 28, pp. 413–421.

    Article  Google Scholar 

  • Minsky, M.I., and Papert, S.A. (1969) Perceptrons: An Introduction to Computational Geometry. The MIT Press.

    Google Scholar 

  • O'Hagan, A. (1978) Curve fitting and optimal design for predictions. Journal of the Royal Statistical Society B. 40, 1–42.

    MathSciNet  MATH  Google Scholar 

  • Palmer, K., Tsui, K.-L. (2001) A minimum bias latin hypercube design. IIE Transactions. 33, 793–808.

    Google Scholar 

  • Passino, K.M., and Yurkovich, S. (1998) Fuzzy Control. Addison Wesley Longman Inc., Menlo Park, CA, USA.

    MATH  Google Scholar 

  • Pérez, V.M., Renaud, J.E., Watson, L.T., (2002) Interior point sequential approximate optimization methodology. Proc. 9 th AIAA/ISSMO Symp. Multidisciplinary Analysis and Optimization, Atlanta, GA, AIAA-2002-5505.

    Google Scholar 

  • Priess, M., Koziel, S., and Slawig, T., (2011) Surrogate-based optimization of climate model parameters using response correction. J. Comp. Science., 2, 335–344.

    Article  Google Scholar 

  • Tu, S., Cheng, Q.S., Zhang, Y., Bandler, J.W., Nikolova, N.K. (2013). Space mapping optimization of handset antennas exploiting thin-wire models, IEEE Trans. Ant. Prop., 61, 3797–3807.

    Google Scholar 

  • Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidynathan, R., Tucker, P.K. (2005) Surrogate-based analysis and optimization. Progress in Aerospace Sciences, 41, pp. 1–28.

    Article  Google Scholar 

  • Rasmussen, C.E., Williams, C.K.I. (2006) Gaussian Processes for Machine Learning. MIT Press, Cambridge, Massachussets.

    MATH  Google Scholar 

  • Rayas-Sanchez, J.E. (2004) EM-based optimization of microwave circuits using artificial neural networks: the state-of-the-art. IEEE Trans. Microwave Theory Tech. 52, 420–435.

    Article  Google Scholar 

  • Redhe, M., Nilsson, L. (2004) Optimization of the new Saab 9–3 exposed to impact load using a space mapping technique. Structural and Multidisciplinary Optimization. 27, 411–420.

    Google Scholar 

  • Robinson, T.D., Eldred, M.S., Willcox, K.E., and Haimes, R., (2008) Surrogate-Based Optimization Using Multifidelity Models with Variable Parameterization and Corrected Space Mapping. AIAA Journal, 46, 2316–2326.

    Article  Google Scholar 

  • Rojo-Alvarez, J.L., Camps-Valls, G., Martinez-Ramon, M., Soria-Olivas, E., Navia-Vazquez, A., Figueiras-Vidal, A.R. (2005) Support vector machines framework for linear signal processing. Signal Processing, 85, pp. 2316–2326.

    Article  MATH  Google Scholar 

  • Roux, W.J., Stander, N., Haftka, R.T., (1998) Response surface approximations for structural optimization. Int. J. Numerical Methods in Engineering, 42, 517–534.

    Article  MATH  Google Scholar 

  • Salleh, M.K.M., Pringent, G., Pigaglio, O., and Crampagne, R. (2008) Quarter-wavelength side-coupled ring resonator for bandpass filters. IEEE Trans. Microwave Theory Tech., 56, pp. 156–162.

    Article  Google Scholar 

  • Sans, M., Selga, J., Rodriguez, A., Bonache, J., Boria, V.E., Martin, F. (2014) Design of planar wideband bandpass filters from specifications using a two-step aggressive space mapping (ASM) optimization algorithm. IEEE Trans. Microwave Theory Tech., 62, pp. 3341–3350.

    Article  Google Scholar 

  • Santner, T.J., Williams, B., Notz, W. (2003) The Design and Analysis of Computer Experiments. Springer-Verlag.

    Google Scholar 

  • Shaker, G.S.A., Bakr, M.H., Sangary, N., Safavi-Naeini, S. (2009) Accelerated antenna design methodology exploiting parameterized Cauchy models. J. Progress in Electromagnetic Research (PIER B), 18, pp. 279–309.

    Article  Google Scholar 

  • Simpson, T.W., Maurey, T.M., Korte, J.J., and Mistree, F. (2001) Kriging models for global approximation in simulation-based multidisciplinary design optimization. AIAA Journal, vol. 39, no. 12, pp. 2233–2241.

    Article  Google Scholar 

  • Simpson, T.W., Peplinski, J., Koch, P.N., Allen, J.K. (2001) Metamodels for computer-based engineering design: survey and recommendations. Engineering with Computers, 17, pp. 129−150.

    Article  MATH  Google Scholar 

  • Smola, A.J., Schölkopf, B. (2004) A tutorial on support vector regression. Statistics and Computing, 14, pp. 199−222.

    Article  MathSciNet  Google Scholar 

  • Sobieszczanski-Sobieski, J., Haftka, R.T., (1997). Multidisciplinary aerospace design optimization: survey of recent developments. Structural Optimization, 14, 1–23.

    Article  Google Scholar 

  • Søndergaard, J. (2003) Optimization using surrogate models – by the space mapping technique. Ph.D. Thesis, Informatics and Mathematical Modelling, Technical University of Denmark, Lyngby.

    Google Scholar 

  • Tesfahunegn, Y.A., Koziel, S., and Leifsson, L. (2015) Surrogate-based airfoil design with multi-level optimization and adjoint sensitivities. 53rd AIAA Aerospace Sciences Meeting, Science and Technology Forum, Kissimee, Florida, Jan 5–9.

    Google Scholar 

  • Toal, D.J.J., and Keane, A.J. (2011) Efficient Multipoint Aerodynamic Design Optimization via Cokriging. Journal of Aircraft. 48, 1685–1695.

    Article  Google Scholar 

  • Toropov, V.V., Filatov, A.A., Polynkin, A.A., (1993). Multiparameter structural optimization using FEM and multipoint explicit approximations. Struct. Optim., 6, 7–14.

    Article  Google Scholar 

  • Wang, L.-X., and Mendel, J.M. (1992) Generating fuzzy rules by learning from examples. IEEE Trans. Systems, Man, Cybernetics, vol. 22, no. 6, pp. 1414–1427, Nov./Dec. 1992.

    Google Scholar 

  • Wild, S.M., Regis, R.G., Shoemaker, C.A. (2008) ORBIT: Optimization by radial basis function interpolation in trust-regions. SIAM J. Sci. Comput., 30, pp. 3197−3219.

    Article  MathSciNet  MATH  Google Scholar 

  • Xia, L., Xu, R.M., Yan, B. (2007) Ltcc interconnect modeling by support vector regression. Progress In Electromagnetics Research, 69, pp. 67–75.

    Article  Google Scholar 

  • Yang, Y., Hu, S.M., Chen, R.S., (2005) A combination of FDTD and least-squares support vector machines for analysis of microwave integrated circuits. Microwave Opt. Technol. Lett., 44, 296–299.

    Article  Google Scholar 

  • Ye, K.Q., (1998) Orthogonal column latin hypercubes and their application in computer experiments. Journal of the American Statistical Association. 93, 1430–1439.

    Article  MathSciNet  MATH  Google Scholar 

  • Zadeh, L.A. (1965) Fuzzy sets. Inform. Contr., vol. 8, no. 3, pp. 338–353.

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang, K., and Han, Z., (2013) Support vector regression-based multidisciplinary design optimization in aircraft conceptual design. AIAA Aerospace Sciences Meeting. AIAA paper 2013–1160.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Koziel, S., Leifsson, L. (2016). Introduction to Surrogate Modeling and Surrogate-Based Optimization. In: Simulation-Driven Design by Knowledge-Based Response Correction Techniques. Springer, Cham. https://doi.org/10.1007/978-3-319-30115-0_4

Download citation

Publish with us

Policies and ethics