Skip to main content

Introduction

  • Chapter
  • First Online:
  • 839 Accesses

Abstract

Computer simulations have become the principal design tool in many engineering disciplines. They are commonly used for verification purposes, but also, more and more often, directly utilized within the design process, e.g., to adjust geometry and/or material parameters of the system of interest so that given performance requirements are satisfied. As a matter of fact, simulation-driven design has become a necessity for a growing number of devices and systems, where traditional approaches (e.g., based on design-ready theoretical models) are no longer adequate. One of the reasons is the increasing level of complexity of engineering systems, as well as various system- and component-level interactions, which have to be taken into account in the design process (Koziel and Ogurtsov 2014a). A reliable evaluation of the system performance can only be obtained (apart from physical measurements of the fabricated prototype) through high-fidelity computer simulations (typically, these simulations are computationally expensive).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alexandrov, N.M., Lewis, R.M. (2001) An overview of first-order model management for engineering optimization. Optimization and Engineering. 2, 413–430.

    Article  MATH  Google Scholar 

  • Allaire, D., Willcox, K. (2014) A mathematical and computational framework for multifidelity design and analysis with computer models. Int. J. Uncertainty Quantification, 4, pp. 1–20.

    Article  MathSciNet  Google Scholar 

  • Angiulli, G., Cacciola, M., Versaci, M. (2007) Microwave devices and antennas modelling by support vector regression machines. IEEE Trans. Magnetics, 43, pp. 1589–1592.

    Article  Google Scholar 

  • Back, T., Fogel, D.B., Michalewicz Z. (eds). (2000) Evolutionary computation 1: basic algorithms and operators. Taylor & Francis Group.

    Google Scholar 

  • Bandler, J.W., Cheng, Q.S., Dakroury, S.A., Mohamed, A.S., Bakr, M.H., Madsen, K., Søndergaard, J. (2004a) Space mapping: the state of the art. IEEE Trans. Microwave Theory Tech., 52, pp. 337−361.

    Article  Google Scholar 

  • Bandler, J.W., Cheng, Q.S., Nikolova, N.K., Ismail, M.A. (2004b) Implicit space mapping optimization exploiting preassigned parameters. IEEE Trans. Microwave Theory Tech., 52, pp. 378–385.

    Article  Google Scholar 

  • Bandler, J.W., Cheng, Q.S., Hailu, D.M., and Nikolova, N.K. (2004c) “A space-mapping design framework,” IEEE Trans. Microwave Theory Tech., vol. 52, no. 11, pp. 2601–2610.

    Article  Google Scholar 

  • Bischof, C., Bücker, H.M., Hovland, P.D., Naumann, U., and Utke, J., (Eds.) (2008) Advances in Automatic Differentiation, Lecture Notes in Computational Science and Engineering, Springer.

    Google Scholar 

  • Booker, A.J., Dennis, J.E., Frank, P.D., Serafini, D.B., Torczon, V., Trosset, M.W. (1999) A rigorous framework for optimization of expensive functions by surrogates. Structural Optimization. 17, 1–13.

    Article  Google Scholar 

  • Conn, A.R., Scheinberg, K., Vicente, L.N. (2009) Introduction to Derivative-Free Optimization. MPS-SIAM Series on Optimization.

    Book  MATH  Google Scholar 

  • Couckuyt, I., Forrester, A., Gorissen, D., De Turck, F., Dhaene, T. (2012) Blind Kriging: Implementation and performance analysis. Advances in Engineering Software, 49, pp. 1–13.

    Article  Google Scholar 

  • CST Microwave Studio, ver. (2011) CST AG, Bad Nauheimer Str. 19, D-64289 Darmstadt, Germany.

    Google Scholar 

  • Dorigo M., Gambardella, L.M. (1997) Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Transactions on Evolutionary Computation, 1, pp. 53−66.

    Article  Google Scholar 

  • Director, S.W., Rohrer, R.A. (1969) The generalized adjoint network and network sensitivities. IEEE Trans. Circuit Theory, 16, pp. 318−323.

    Article  Google Scholar 

  • Echeverria, D., Hemker, P.W. (2005) Space mapping and defect correction. CMAM Int. Mathematical Journal Computational Methods in Applied Mathematics, 5, pp. 107–136.

    MathSciNet  MATH  Google Scholar 

  • El Sabbagh, M.A., Bakr, M.H., Nikolova, N.K., (2006) Sensitivity analysis of the scattering parameters of microwave filters using the adjoint network method. Int. J. RF and Microwave Computer-Aided Eng., 16, pp. 596–606.

    Article  Google Scholar 

  • FLUENT, ver. 15.0, ANSYS Inc., Southpointe, 275 Technology Drive, Canonsburg, PA 15317, 2015.

    Google Scholar 

  • Forrester, A.I.J., Keane, A.J. (2009) Recent advances in surrogate-based optimization, Prog. in Aerospace Sciences, 45, pp. 50−79.

    Article  Google Scholar 

  • Goldberg, D.E., (1989) Genetic algorithms in search, optimization & machine learning. Pearson Education.

    Google Scholar 

  • Gorissen, D., Crombecq, K., Couckuyt, I., Dhaene, T., Demeester, P. (2010) A surrogate modeling and adaptive sampling toolbox for computer based design. Journal of Machine Learning Research, 11, pp. 2051-2055.

    Google Scholar 

  • Griewank, A., (2000) Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. Society for Industrial and Applied Mathematics (SIAM), Philadelphia.

    MATH  Google Scholar 

  • Haykin, S. (1998) Neural Networks: A Comprehensive Foundation. 2nd ed. Prentice Hall.

    Google Scholar 

  • HFSS (2010) Release 13.0, ANSYS, http://www.ansoft.com/products/hf/hfss/.

  • Hosder, S. (2012) Stochastic Response Surfaces Based On Non-Intrusive Polynomial Chaos for Uncertainty Quantification. International Journal of Mathematical Modeling and Numerical Optimization, Volume 3, No. 1/2, pp. 117–139.

    Article  MATH  Google Scholar 

  • Jacobs, J.P. (2012) Ba200sian support vector regression with automatic relevance determination kernel for modeling of antenna input characteristics. IEEE Trans. Antennas. Prop., 60, pp. 2114-2118.

    Article  Google Scholar 

  • Jameson, A., (1988). Aerodynamic design via control theory. Journal of Scientific Computing, 3, 233–260.

    Article  MATH  Google Scholar 

  • Jin, Y. (2011) Surrogate-assisted evolutionary computation: recent advances and future challenges. Swarm and Evolutionary Computation, 1, pp. 61–70.

    Article  Google Scholar 

  • Jones, D., Schonlau, M., Welch, W. (1998) Efficient global optimization of expensive black-box functions. Journal of Global Optimization. 13, pp. 455–492.

    Article  MathSciNet  MATH  Google Scholar 

  • Kennedy, J. (1997) The particle swarm: social adaptation of knowledge. Proc. 1997 Int. Conf. Evolutionary Computation, Indianapolis, IN, pp. 303−308.

    Google Scholar 

  • Kolda, T.G., Lewis, R.M., Torczon, V. (2003). Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev., 45, pp. 385−482.

    Article  MathSciNet  MATH  Google Scholar 

  • Koziel, S., Cheng, Q.S., Bandler, J.W. (2008a) Space mapping. IEEE Microwave Magazine, 9, pp. 105–122.

    Article  Google Scholar 

  • Koziel, S., Bandler, J.W., Madsen, K. (2008b) Quality assessment of coarse models and surrogates for space mapping optimization. Optimization Eng. 9, 375–391.

    Article  MathSciNet  MATH  Google Scholar 

  • Koziel, S., Bandler, J.W., Madsen, K. (2009a) Space mapping with adaptive response correction for microwave design optimization. IEEE Trans. Microwave Theory Tech., 57, pp. 478–486.

    Article  Google Scholar 

  • Koziel, S. (2010a) Shape-preserving response prediction for microwave design optimization. IEEE Trans. Microwave Theory and Tech., 58, pp. 2829–2837.

    Article  Google Scholar 

  • Koziel, S., Echeverría-Ciaurri, D., Leifsson, L. (2011) Surrogate-based methods, in S. Koziel and X.S. Yang (Eds.) Computational Optimization, Methods and Algorithms, Series: Studies in Computational Intelligence, Springer-Verlag, pp. 33–60.

    Google Scholar 

  • Koziel, S., Ogurtsov, S., Couckuyt, I., Dhaene, T. (2013b) Variable-fidelity electromagnetic simulations and co-kriging for accurate modeling of antennas. IEEE Trans. Antennas Prop., 61, pp. 1301–1308.

    Article  MathSciNet  Google Scholar 

  • Koziel, S., and Leifsson, L. (2013c) Surrogate-Based Aerodynamic Shape Optimization by Variable-Resolution Models. AIAA Journal, vol. 51, no. 1, pp. 94–106.

    Article  Google Scholar 

  • Koziel, S., Ogurtsov, S. (2012a) Model management for cost-efficient surrogate-based optimization of antennas using variable-fidelity electromagnetic simulations. IET Microwaves Ant. Prop., 6, pp. 1643–1650.

    Article  Google Scholar 

  • Koziel, S., Ogurtsov, S. (2014a) Antenna design by simulation-driven optimization. Surrogate-based approach. Springer.

    Google Scholar 

  • Koziel, S., Ogurtsov, S. (2014b) Fast simulation-driven design of integrated photonic components using surrogate models. IET Microwaves, Antennas Prop.

    Google Scholar 

  • Leifsson, L., Koziel, S., Hermannsson, E., and Fakhraie, R. (2014) Trawl-Door Design Optimization by Local Surrogate Models. 55th AIAA/ ASMe/ASCE /AHS/SC Structures, Structural Dynamics, and Materials Conference, National Harbor, Maryland, Jan. 13–17.

    Google Scholar 

  • Leifsson, L., Koziel, S., Kurgan, P. (2014) Automated low-fidelity model setup for surrogate-based aerodynamic optimization. In S. Koziel, L. Leifsson, and X.S. Yang (Eds.) Solving Computationally Extensive Engineering Problems: Methods and Applications, Springer, pp. 87–112.

    Google Scholar 

  • Leifsson, L., Koziel, S., Hosder, S., and Riggins, D.W. (2014b) Physics-based Multi-fidelity Surrogate Modeling with Entropy-based Availability Method. AIAA Modeling and Simulation Technologies Conference, National Harbor, Maryland, Jan. 13–17.

    Google Scholar 

  • Lim, D., Jin, Y., Ong, Y., Sendhoff, B. (2010) Generalizing surrogate-assisted evolutionary computation. IEEE Trans. Evol. Comp., 14, pp. 329–355.

    Article  Google Scholar 

  • Nocedal, J., Wright, S.J. (2000) Numerical Optimization, Springer Series in Operations Research, Springer.

    Google Scholar 

  • Palacios, F., Colonno, M.R., Aranake, A.C., Campos, A., Copeland, S.R., Economon, T.D., Lonkar, A.K., Lukaczyk, T.W., Taylor, T.W.R., Alonso, J.J. (2013) Stanford University unstructures (SU2): an open-source integrated computational environment for multi-physics simulation and design. In 51th AIAA Aerospace Sciences Meeting, Grapevine, TX, USA.

    Google Scholar 

  • Papadimitriou, D.I., and Giannakoglou, K.C., (2008) Aerodynamic shape optimization using first and second order adjoint and direct approaches. Arch. Comput. Methods Eng., 15, 447–488.

    Article  MathSciNet  MATH  Google Scholar 

  • Pironneau, O. (1984) Optimal Shape Design for Elliptic Systems. Springer-Verlag, New York.

    Book  MATH  Google Scholar 

  • Queipo, N.V., Haftka, R.T., Shyy, W., Goel, T., Vaidynathan, R., Tucker, P.K. (2005) Surrogate-based analysis and optimization. Progress in Aerospace Sciences, 41, pp. 1–28.

    Article  Google Scholar 

  • Shaker, G.S.A., Bakr, M.H., Sangary, N., Safavi-Naeini, S. (2009) Accelerated antenna design methodology exploiting parameterized Cauchy models. J. Progress in Electromagnetic Research (PIER B), 18, pp. 279–309.

    Article  Google Scholar 

  • Simpson, T.W., Maurey, T.M., Korte, J.J., and Mistree, F. (2001) Kriging models for global approximation in simulation-based multidisciplinary design optimization. AIAA Journal, vol. 39, no. 12, pp. 2233–2241.

    Article  Google Scholar 

  • Simpson, T.W., Peplinski, J., Koch, P.N., Allen, J.K. (2001) Metamodels for computer-based engineering design: survey and recommendations. Engineering with Computers, 17, pp. 129−150.

    Article  MATH  Google Scholar 

  • Smola, A.J., Schölkopf, B. (2004) A tutorial on support vector regression. Statistics and Computing, 14, pp. 199−222.

    Article  MathSciNet  Google Scholar 

  • Sobester, A., Forrester, A.I.J. (2015) Aircraft aerodynamic design: geometry and optimization. John Wiley & Sons.

    Google Scholar 

  • Star-CCM+ (2015) CD-adapco Group, 60 Broadhollow Road, Melville, NY 11747, USA.

    Google Scholar 

  • Styblinski, M.A., Oplaski, L.J. (1986) Algorithms and software tools for IC yield optimization based on fundamental fabrication parameters. IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., 5, pp. 79–89.

    Article  Google Scholar 

  • Toropov, V.V. (1989) Simulation approach to structural optimization. Structural Optimization, 1, pp. 37–46.

    Article  Google Scholar 

  • Wild, S.M., Regis, R.G., Shoemaker, C.A. (2008) ORBIT: Optimization by radial basis function interpolation in trust-regions. SIAM J. Sci. Comput., 30, pp. 3197−3219.

    Article  MathSciNet  MATH  Google Scholar 

  • Yang, X.S. (2010) Engineering optimization: an introduction with metaheuristic applications. Wiley.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Koziel, S., Leifsson, L. (2016). Introduction. In: Simulation-Driven Design by Knowledge-Based Response Correction Techniques. Springer, Cham. https://doi.org/10.1007/978-3-319-30115-0_1

Download citation

Publish with us

Policies and ethics