Advertisement

Breast Ultrasound: BI-RADS Update and Imaging Pathologic

  • Alexander MundingerEmail author
Chapter

Abstract

Radiology and pathology share some characteristics such as intensive multidisciplinary cooperation, standardised communication and discussion of any discrepancy. Both disciplines have to survey many details to detect and characterise index lesions within the breast based on a perception concept that resembles the recognition of a signal within noise. Appropriate correlation of all imaging and pathological findings with clinical symptoms, underlying risk and anamnestic information is prerequisite for quality assurance. Both disciplines also depend on continuous education and international exchange to achieve and maintain highest standards. To date interdisciplinary conferences have become standard in breast centres. The consensus on radiologic-pathologic correlation is one of several critical parameters to fulfil state-of-the-art management of patients with breast disease. Management options focus on a second expert opinion, the gaining of additional information by minimally invasive tissue sampling or surgical re-biopsy or imaging follow-up to exclude the new development of breast cancer.

Keywords

Diagnostic ultrasound Diagnosis Breast neoplasm Benign breast disease Clinical issues BI-RADS ultrasound State-of-the-art equipment Imaging Colour Doppler Three-dimensional ultrasound Elastography Tissue harmonic imaging Automated volume ultrasound Mammography MRI Histology minimally invasive procedures Needle biopsy Assessment axilla Lymph node excision 

References

  1. 1.
    Mendelson EB, Böhm-Vélez M, Berg WA et al (2013) ACR BI-RADS® Ultrasound. In: ACR BI-RADS® atlas, breast imaging reporting and data system. American College of Radiology, RestonGoogle Scholar
  2. 2.
    Madjar H, Ohlinger R, Mundinger A et al (2006) BI-RADS-analogue DEGUM criteria for findings in breast ultrasound – consensus of the DEGUM Committee on Breast Ultrasound. Ultraschall Med 27(4):374–379CrossRefPubMedGoogle Scholar
  3. 3.
    Mundinger A, Madjar H (2015) Mammasonografie Update. Radiologie up2date 15(02):107–134CrossRefGoogle Scholar
  4. 4.
    Mundinger A (2014) BI-RADS: ultrasound update including elastography. Where do we stand now? In: Hodler J, von Schulthess GK, Zollikofer CHL (eds) Diseases of the abdomen and pelvis. 2014–2017. Springer, Milan, pp 259–266Google Scholar
  5. 5.
    Bombonati A, Sgroi DC (2011) The molecular pathology of breast cancer progression. J Pathol 223(2):307–317CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Tot T (2005) DCIS, cytokeratins, and the theory of the sick lobe. Virchows Arch 447(1):1–8CrossRefPubMedGoogle Scholar
  7. 7.
    Amy D, Durante E, Tot T (2015) The lobar approach to breast ultrasound imaging and surgery. J Med Ultrason 42(3):331–339CrossRefGoogle Scholar
  8. 8.
    Tot T (2012) The role of large-format histopathology in assessing subgross morphological prognostic parameters: a single institution report of 1000 consecutive breast cancer cases. Int J Breast Cancer 2012:395415PubMedPubMedCentralGoogle Scholar
  9. 9.
    Prakash S, Venkataraman S, Slanetz PJ, Dialani V, Fein-Zachary V, Littlehale N, Mehta TS (2015) Improving patient care by incorporation of multidisciplinary breast radiology-pathology correlation conference. Can Assoc Radiol J. pii: S0846-5371(15)00086-8Google Scholar
  10. 10.
  11. 11.
    Tabár L, Dean PB, Lindhe N, Ingvarsson M (2012) The ongoing revolution in breast imaging calls for a similar revolution in breast pathology. Int J Breast Cancer 2012:489345CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Gonzalez V, Sandelin K, Karlsson A, Åberg W, Löfgren L, Iliescu G, Eriksson S, Arver B (2014) Preoperative MRI of the breast (POMB) influences primary treatment in breast cancer: a prospective, randomized, multicenter study. World J Surg 38(7):1685–1693CrossRefPubMedGoogle Scholar
  13. 13.
    Morrow M (2008) How much can improved molecular and pathologic discriminants change local therapy? Breast Cancer Res 10(Suppl 4):S5CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Sinn HP, Kreipe H (2013) A Brief Overview of the WHO Classification of Breast Tumors, 4th Edition, Focusing on Issues and Updates from the 3rd Edition. Breast Care 8:149–154CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Lakhani S, Ellis I, Schnitt S et al (2012) WHO Classification of tumours of the breast, 4th edn. IARC Press, LyonGoogle Scholar
  16. 16.
    Stavros AT (2015) Breast ultrasound. Lippincott Williams & Wilkins. ISBN 1609138112, 9781609138110Google Scholar
  17. 17.
    Krizmanich-Conniff KM, Paramagul C, Patterson SK, Helvie MA, Roubidoux MA, Myles JD, Jiang K, Sabel M (2012) Triple receptor-negative breast cancer: imaging and clinical characteristics. AJR Am J Roentgenol 199(2):458–464CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Menezes GL, van den Bosch MA, Postma EL, El Sharouni MA, Verkooijen HM, van Diest PJ, Pijnappel RM (2013) Invasive ductolobular carcinoma of the breast: spectrum of mammographic, ultrasound and magnetic resonance imaging findings correlated with proportion of the lobular component. SpringerPlus 2:621CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Jones KN, Magut M, Henrichsen TL, Boughey JC, Reynolds C, Glazebrook KN (2013) Pure lobular carcinoma of the breast presenting as a hyperechoic mass: incidence and imaging characteristics. AJR Am J Roentgenol 201(5):W765–W769CrossRefPubMedGoogle Scholar
  20. 20.
    Berg WA et al (2007) Diagnostic imaging: breast. AmirsysGoogle Scholar
  21. 21.
    Tan JZ, Waugh J, Kumar B, Evans J (2013) Mucinous carcinomas of the breast: imaging features and potential for misdiagnosis. J Med Imaging Radiat Oncol 57(1):25–31CrossRefPubMedGoogle Scholar
  22. 22.
    Martinez SR, Beal SH, Canter RJ, Chen SL, Khatri VP, Bold RJ (2011) Medullary carcinoma of the breast: a population-based perspective. Med Oncol 28(3):738–744CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Izumori A, Takebe K, Sato A (2010) Ultrasound findings and histological features of ductal carcinoma in situ detected by ultrasound examination alone. Breast Cancer 17(2):136–141CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Ellis IO (2010) Intraductal proliferative lesions of the breast: morphology, associated risk and molecular biology. Modern Pathology 23:1–7CrossRefGoogle Scholar
  25. 25.
    Sickles EA, D’ Orsi O (2013) ACR BI-RADS® -follow-up and outcome-monitoring. In: ACR BI-RADS® atlas, breast imaging reporting and data system. American College of Radiology, RestonGoogle Scholar
  26. 26.
    Allison KH, Reisch LM, Carney PA, Weaver DL, Schnitt SJ, O’Malley FP, Geller BM, Elmore JG (2014) Understanding diagnostic variability in breast pathology: lessons learned from an expert consensus review panel. Histopathology 65(2):240–251CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Radiological Department and Breast CentreNiels-Stensen-ClinicsOsnabrückGermany

Personalised recommendations