Advanced MR Techniques in Pediatric Neuroradiology: What Is Ready for Clinical Prime Time?

  • P. Ellen GrantEmail author


For an advanced MR technique to be ready for clinical prime time, (1) it must reliably detect abnormalities in individuals, not just provide statistical group differences; (2) processed images must be available rapidly; (3) acquisition times must be reasonable; and (4) time required by professional or supporting staff to create relevant images must be financially sustainable. Also ideally individual differences are visible on an image for the most rapid adaption in clinical practice. In this chapter diffusion imaging, MR spectroscopy, arterial spin labeling, fetal triplane reconstruction, and quantitative T1 and T2 imaging will be discussed, and examples where these sequences have clinical utility in individual pediatric patients will be provided.


Pediatric Advanced techniques Neuroimaging Diffusion Spectroscopy Arterial spin labeling Fetal brain reconstruction Quantitative T1 Quantitative T2 


  1. 1.
    Setsompop K, Cohen-Adad J, Gagoski BA, Raij T, Yendiki A, Keil B et al (2012) Improving diffusion MRI using simultaneous multi-slice echo planar imaging. Neuroimage 63(1):569–580CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Mori S, Zhang J (2006) Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron 51(5):527–539CrossRefPubMedGoogle Scholar
  3. 3.
    Basser PJ, Jones DK (2002) Diffusion-tensor MRI: theory, experimental design and data analysis – a technical review. NMR Biomed 15(7–8):456–467CrossRefPubMedGoogle Scholar
  4. 4.
    Hagmann P, Jonasson L, Maeder P, Thiran JP, Wedeen VJ, Meuli R (2006) Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics 26(Suppl 1):S205–S223CrossRefPubMedGoogle Scholar
  5. 5.
    Schaefer PW, Grant PE, Gonzalez RG (2000) Diffusion-weighted MR imaging of the brain. Radiology 217(2):331–345CrossRefPubMedGoogle Scholar
  6. 6.
    Grant PE, Matsuda KM (2003) Application of new MR techniques in pediatric patients. Magn Reson Imaging Clin N Am 11(3):493–522CrossRefPubMedGoogle Scholar
  7. 7.
    Nossin-Manor R, Card D, Morris D, Noormohamed S, Shroff MM, Whyte HE et al (2013) Quantitative MRI in the very preterm brain: assessing tissue organization and myelination using magnetization transfer, diffusion tensor and T(1) imaging. Neuroimage 64:505–516CrossRefPubMedGoogle Scholar
  8. 8.
    Sadeghi N, Prastawa M, Fletcher PT, Wolff J, Gilmore JH, Gerig G (2013) Regional characterization of longitudinal DT-MRI to study white matter maturation of the early developing brain. Neuroimage 68:236–247CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Miller JH, McKinstry RC, Philip JV, Mukherjee P, Neil JJ (2003) Diffusion-tensor MR imaging of normal brain maturation: a guide to structural development and myelination. AJR Am J Roentgenol 180(3):851–859CrossRefPubMedGoogle Scholar
  10. 10.
    Grant PE, He J, Halpern EF, Wu O, Schaefer PW, Schwamm LH et al (2001) Frequency and clinical context of decreased apparent diffusion coefficient reversal in the human brain. Radiology 221(1):43–50CrossRefPubMedGoogle Scholar
  11. 11.
    Pujol S, Wells W, Pierpaoli C, Brun C, Gee J, Cheng G et al (2015) The DTI challenge: toward standardized evaluation of diffusion tensor imaging tractography for neurosurgery. J Neuroimaging 25(6):875–882CrossRefPubMedGoogle Scholar
  12. 12.
    Campanella M, Ius T, Skrap M, Fadiga L (2014) Alterations in fiber pathways reveal brain tumor typology: a diffusion tractography study. PeerJ 2, e497CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Panigrahy A, Nelson MD Jr, Bluml S (2010) Magnetic resonance spectroscopy in pediatric neuroradiology: clinical and research applications. Pediatr Radiol 40(1):3–30CrossRefPubMedGoogle Scholar
  14. 14.
    Cecil KM (2006) MR spectroscopy of metabolic disorders. Neuroimaging Clin N Am 16(1):87–116, viiiCrossRefPubMedGoogle Scholar
  15. 15.
    Cecil KM (2013) Proton magnetic resonance spectroscopy: technique for the neuroradiologist. Neuroimaging Clin N Am 23(3):381–392CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Oz G, Alger JR, Barker PB, Bartha R, Bizzi A, Boesch C et al (2014) Clinical proton MR spectroscopy in central nervous system disorders. Radiology 270(3):658–679CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Yazbek S, Prabhu SP, Connaughton P, Grant PE, Gagoski B (2015) Comparison of accelerated 3-D spiral chemical shift imaging and single-voxel spectroscopy at 3T in the pediatric age group. Pediatr Radiol 45(9):1417–1422CrossRefPubMedGoogle Scholar
  18. 18.
    Bluml S, Wisnowski JL, Nelson MD Jr, Paquette L, Gilles FH, Kinney HC et al (2013) Metabolic maturation of the human brain from birth through adolescence: insights from in vivo magnetic resonance spectroscopy. Cereb Cortex 23(12):2944–2955CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Petersen ET, Zimine I, Ho YC, Golay X (2006) Non-invasive measurement of perfusion: a critical review of arterial spin labelling techniques. Br J Radiol 79(944):688–701CrossRefPubMedGoogle Scholar
  20. 20.
    Deibler AR, Pollock JM, Kraft RA, Tan H, Burdette JH, Maldjian JA (2008) Arterial spin-labeling in routine clinical practice, part 1: technique and artifacts. AJNR Am J Neuroradiol 29(7):1228–1234CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Amukotuwa SA, Yu C, Zaharchuk G (2016) 3D Pseudocontinuous arterial spin labeling in routine clinical practice: A review of clinically significant artifacts. J Magn Reson Imaging 43(1):11–27CrossRefPubMedGoogle Scholar
  22. 22.
    Deibler AR, Pollock JM, Kraft RA, Tan H, Burdette JH, Maldjian JA (2008) Arterial spin-labeling in routine clinical practice, part 2: hypoperfusion patterns. AJNR Am J Neuroradiol 29(7):1235–1241CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Deibler AR, Pollock JM, Kraft RA, Tan H, Burdette JH, Maldjian JA (2008) Arterial spin-labeling in routine clinical practice, part 3: hyperperfusion patterns. AJNR Am J Neuroradiol 29(8):1428–1435CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Petcharunpaisan S, Ramalho J, Castillo M (2010) Arterial spin labeling in neuroimaging. World J Radiol 2(10):384–398CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Telischak NA, Detre JA, Zaharchuk G (2015) Arterial spin labeling MRI: clinical applications in the brain. J Magn Reson Imaging 41(5):1165–1180CrossRefPubMedGoogle Scholar
  26. 26.
    Alsop DC, Detre JA, Golay X, Gunther M, Hendrikse J, Hernandez-Garcia L et al (2015) Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 73(1):spconeGoogle Scholar
  27. 27.
    Tourbier S, Bresson X, Hagmann P, Thiran JP, Meuli R, Cuadra MB (2015) An efficient total variation algorithm for super-resolution in fetal brain MRI with adaptive regularization. Neuroimage 118:584–597CrossRefPubMedGoogle Scholar
  28. 28.
    Rousseau F, Kim K, Studholme C, Koob M, Dietemann JL (2010) On super-resolution for fetal brain MRI. Med Image Comput Comput Assist Interv 13(Pt 2):355–362PubMedPubMedCentralGoogle Scholar
  29. 29.
    Gholipour A, Estroff JA, Barnewolt CE, Connolly SA, Warfield SK (2011) Fetal brain volumetry through MRI volumetric reconstruction and segmentation. Int J Comput Assist Radiol Surg 6(3):329–339CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kuklisova-Murgasova M, Quaghebeur G, Rutherford MA, Hajnal JV, Schnabel JA (2012) Reconstruction of fetal brain MRI with intensity matching and complete outlier removal. Med Image Anal 16(8):1550–1564CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Departments of Radiology and MedicineBoston Children’s Hospital and Harvard Medical SchoolBostonUSA

Personalised recommendations