Advertisement

Integrated Imaging of Brain Tumours

Chapter

Abstract

The incidence rate of all primary malignant and non-malignant brain and CNS tumours is 21 cases per 100,000. Gliomas are a broad term, which includes all tumours arising from glia and represents 30 % of all brain tumours and 80 % of all malignant brain tumours. Gliomas are the second leading cause of cancer mortality in people under the age of 35.

Keywords

Tumour Brain Imaging Glioma Meningioma Positron emission tomography FET FDG DOTATOC PET/MRI DCS DCE 

References

  1. 1.
    Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352(10):987–996CrossRefPubMedGoogle Scholar
  2. 2.
    Prieto E, Marti-Climent JM, Dominguez-Prado I et al (2011) Voxel-based analysis of dual-time-point 18F-FDG PET images for brain tumor identification and delineation. J Nucl Med 52(6):865–872CrossRefPubMedGoogle Scholar
  3. 3.
    Kratochwil C, Combs SE, Leotta K et al (2014) Intra-individual comparison of (1)(8)F-FET and (1)(8)F-DOPA in PET imaging of recurrent brain tumors. Neuro Oncol 16(3):434–440CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Popperl G, Kreth FW, Herms J et al (2006) Analysis of 18F-FET PET for grading of recurrent gliomas: is evaluation of uptake kinetics superior to standard methods? J Nucl Med 47(3):393–403PubMedGoogle Scholar
  5. 5.
    Floeth FW, Pauleit D, Sabel M et al (2006) 18F-FET PET differentiation of ring-enhancing brain lesions. J Nucl Med 47(5):776–782PubMedGoogle Scholar
  6. 6.
    Law I, Borgwardt L, Højgaard L (2015) Pediatric hybrid imaging of the brain. In: von Schulthess GK (ed) Clinical molecular anatomic imaging – PET/CT, PET/MR and SPECT/CT. Wolters Kluwer Health, Philadelphia, pp 218–229Google Scholar
  7. 7.
    Hutterer M, Nowosielski M, Putzer D et al (2013) [18F]-fluoro-ethyl-L-tyrosine PET: a valuable diagnostic tool in neuro-oncology, but not all that glitters is glioma. Neuro Oncol 15(3):341–351CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kracht LW, Miletic H, Busch S et al (2004) Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res 10(21):7163–7170CrossRefPubMedGoogle Scholar
  9. 9.
    Pauleit D, Floeth F, Hamacher K et al (2005) O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 128(Pt 3):678–687CrossRefPubMedGoogle Scholar
  10. 10.
    Jansen NL, Graute V, Armbruster L et al (2012) MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET? Eur J Nucl Med Mol Imaging 39(6):1021–1029CrossRefPubMedGoogle Scholar
  11. 11.
    Floeth FW, Pauleit D, Sabel M et al (2007) Prognostic value of O-(2-18F-fluoroethyl)-L-tyrosine PET and MRI in low-grade glioma. J Nucl Med 48(4):519–527CrossRefPubMedGoogle Scholar
  12. 12.
    Jansen NL, Suchorska B, Wenter V et al (2013) Dynamic 18F-FET PET in newly diagnosed astrocytic low-grade glioma identifies high-risk patients. J Nucl Med 55(2):198–203CrossRefPubMedGoogle Scholar
  13. 13.
    Jansen NL, Suchorska B, Wenter V et al (2015) Prognostic significance of dynamic 18F-FET PET in newly diagnosed astrocytic high-grade glioma. J Nucl Med 56(1):9–15CrossRefPubMedGoogle Scholar
  14. 14.
    Lohmann P, Herzog H, Rota Kops E et al (2015) Dual-time-point O-(2-[F]fluoroethyl)-L-tyrosine PET for grading of cerebral gliomas. Eur Radiol 25(10):3017–3024CrossRefPubMedGoogle Scholar
  15. 15.
    Galldiks N, Stoffels G, Ruge MI et al (2013) Role of O-(2-18F-fluoroethyl)-L-tyrosine PET as a diagnostic tool for detection of malignant progression in patients with low-grade glioma. J Nucl Med 54(12):2046–2054CrossRefPubMedGoogle Scholar
  16. 16.
    Westwood TD, Hogan C, Julyan PJ et al (2013) Utility of FDG-PETCT and magnetic resonance spectroscopy in differentiating between cerebral lymphoma and non-malignant CNS lesions in HIV-infected patients. Eur J Radiol 82(8):e374–e379CrossRefPubMedGoogle Scholar
  17. 17.
    Kosaka N, Tsuchida T, Uematsu H et al (2008) 18F-FDG PET of common enhancing malignant brain tumors. AJR Am J Roentgenol 190(6):W365–W369CrossRefPubMedGoogle Scholar
  18. 18.
    Law I, Højgaard L (2015) Brain tumors: other primary brain tumors, metastases and radiation injury. In: von Schulthess GK (ed) Clinical molecular anatomic imaging – PET/CT, PET/MR and SPECT/CT. Wolters Kluwer Health, Philadelphia, pp 169–179Google Scholar
  19. 19.
    Pirotte B, Goldman S, Massager N et al (2004) Combined use of 18F-fluorodeoxyglucose and 11C-methionine in 45 positron emission tomography-guided stereotactic brain biopsies. J Neurosurg 101(3):476–483CrossRefPubMedGoogle Scholar
  20. 20.
    Heinzel A, Stock S, Langen KJ et al (2012) Cost-effectiveness analysis of FET PET-guided target selection for the diagnosis of gliomas. Eur J Nucl Med Mol Imaging 39(7):1089–1096CrossRefPubMedGoogle Scholar
  21. 21.
    Langleben DD, Segall GM (2000) PET in differentiation of recurrent brain tumor from radiation injury. J Nucl Med 41(11):1861–1867PubMedGoogle Scholar
  22. 22.
    Combs SE, Welzel T, Habermehl D et al (2013) Prospective evaluation of early treatment outcome in patients with meningiomas treated with particle therapy based on target volume definition with MRI and 68Ga-DOTATOC-PET. Acta Oncol 52(3):514–520CrossRefPubMedGoogle Scholar
  23. 23.
    Bashir A, Ziebell M, Fugleholm K et al (2015) A potential role of 68Ga-DOTATOC PET in modifying eligibility to surgery in patients with recurrent meningioma. J Nucl Med Radiat Ther 6:256CrossRefGoogle Scholar
  24. 24.
    Marincek N, Radojewski P, Dumont RA et al (2015) Somatostatin receptor-targeted radiopeptide therapy with 90Y-DOTATOC and 177Lu-DOTATOC in progressive meningioma: long-term results of a phase II clinical trial. J Nucl Med 56(2):171–176CrossRefPubMedGoogle Scholar
  25. 25.
    Henriksen OM, Larsen VA, Muhic A et al (2016) Simultaneous evaluation of brain tumour metabolism, structure and blood volume using [F]-fluoroethyl tyrosine (FET) PET/MRI: feasibility, agreement and initial experience. Eur J Nucl Med Mol Imaging 43(1):103–112Google Scholar
  26. 26.
    Larsen VA, Simonsen HJ, Law I et al (2013) Evaluation of dynamic contrast-enhanced T1-weighted perfusion MRI in the differentiation of tumor recurrence from radiation necrosis. Neuroradiology 55(3):361–369CrossRefPubMedGoogle Scholar
  27. 27.
    Moller S, Lundemann M, Law I et al (2015) Early changes in perfusion of glioblastoma during radio- and chemotherapy evaluated by T1-dynamic contrast enhanced magnetic resonance imaging. Acta Oncol 54(9):1521–1528CrossRefPubMedGoogle Scholar
  28. 28.
    Andersen FL, Ladefoged CN, Beyer T et al (2014) Combined PET/MR imaging in neurology: MR-based attenuation correction implies a strong spatial bias when ignoring bone. Neuroimage 84:206–216CrossRefPubMedGoogle Scholar
  29. 29.
    Ladefoged CN, Benoit D, Law I et al (2015) Region specific optimization of continuous linear attenuation coefficients based on UTE (RESOLUTE): application to PET/MR brain imaging. Phys Med Biol 60(20):8047–8065CrossRefPubMedGoogle Scholar
  30. 30.
    Dunkl V, Cleff C, Stoffels G et al (2015) The usefulness of dynamic O-(2-18F-Fluoroethyl)-l-Tyrosine PET in the clinical evaluation of brain tumors in children and adolescents. J Nucl Med 56(1):88–92CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Clinical PhysiologyNuclear Medicine & PET, RigshospitaletCopenhagenDenmark

Personalised recommendations