Advertisement

Diseases of the Temporal Bone

  • Jan W. CasselmanEmail author
  • Timothy John Beale
Chapter

Abstract

High-resolution CT is best suited to look at the external and middle ear but can also provide information about ‘the inner ear’. For many years multi-detector CT (MDCT) was the method of choice [1, 2], but recently high-end cone beam CT (CBCT) started to challenge MDCT. CBCT not only provides similar information at a substantially lower dose but high-end CBCTs are also able to produce images with a spatial resolution down to 125 μm. Subtle bone structures like the footplate, crura of the stapes, walls of the tympanic segment of the facial nerve canal, tegmen tympani, etc. can be visualised in a more reliable way at this resolution and open possibilities to more accurately depict pathology associated with these structures. An additional advantage is that images can be displayed in any plane without quality loss which is not the case on reformatted MDCT images. Therefore the difference between MDCT and CBCT even becomes more obvious on coronal or double-oblique images.

Keywords

Bone, temporal Ear, inner Magnetic resonance imaging Cone beam CT Otosclerosis Cholesteatoma Acoustic schwannoma Labyrinthitis Otitis media Tinnitus Meniere disease Pathways, auditory Ear ossicles, abnormalities 

Bibliography

  1. 1.
    Alexander AE, Caldemeyer KS, Rigby P (1998) Clinical and surgical application of reformatted high-resolution CT of the temporal bone. Neuroimaging Clin N Am 8:31–50Google Scholar
  2. 2.
    Nayak S (2001) Segmental anatomy of the temporal bone. Semin Ultrasound CT MR 22:184–218CrossRefPubMedGoogle Scholar
  3. 3.
    Casselman JW, Mermuys K, Delanote J et al (2008) MRI of the cranial nerves – more than meets the eye: technical considerations and advanced anatomy. Neuroimaging Clin N Am 18:197–231CrossRefPubMedGoogle Scholar
  4. 4.
    Casselman JW, Safronova MM (2014) Imagerie des voies auditives et vestibulaires. In: Veillon F, Casselman JW, Meriot P et al (eds) Imagerie de l’oreille et de l’os temporal. Lavoisier, Paris, pp 227–238Google Scholar
  5. 5.
    Casselman JW, Delanote J, Kuhweide R et al (2015) Congenital malformations of the temporal bone. In: Lemmerling M, De Foer B (eds) Temporal bone imaging. Springer, Berlin/Heidelberg, pp 119–154Google Scholar
  6. 6.
    Veillon F, Riehm S, Emachescu B et al (2001) Imaging of the windows of the temporal bone. Semin Ultrasound CT MR 22:271–280CrossRefPubMedGoogle Scholar
  7. 7.
    Veillon F, Baur P, Dasch JC et al (1991) Traumatismes de l’os temporal. In: Veillon F (ed) Imagerie de l’oreille. Médecine-Sciences Flammarion, Paris, pp 243–281Google Scholar
  8. 8.
    Casselman JW, Safronova MM (2014) IRM des traumatismes de l’os temporal et des régions adjacentes. In: Veillon F, Casselman JW, Meriot P et al (eds) Imagerie de l’oreille et de l’os temporal. Lavoisier, Paris, pp 747–760Google Scholar
  9. 9.
    Sartoretti-Schefer S (1997) Gadolinium-DTPA enhanced MRI of the facial nerve in patients with posttraumatic facial nerve palsy. AJNR Am J Neuroradiol 18:1115–1125PubMedGoogle Scholar
  10. 10.
    Swartz JD, Harnsberger HR (1998) The otic capsule and otodystrophies. In: Swartz JD, Harnsberger HR (eds) Imaging of the temporal bone. Thieme, New York, pp 240–317Google Scholar
  11. 11.
    Casselman JW, Mark AS, Butman JA (2009) Anatomy and diseases of the temporal bone. In: Atlas S (ed) Magnetic resonance imaging of the brain and spine, 4th edn. Lippincott Williams & Wilkins a Walters Kluwer Business, Philadelphia, pp 1193–1257Google Scholar
  12. 12.
    De Foer B, Vercruysse J-P, Pouillon M et al (2007) Value of high-resolution computed tomography and magnetic resonance imaging in the detection of residual cholesteatoma in primary bony obliterated mastoids. Am J Otolaryngol 28:230–234CrossRefPubMedGoogle Scholar
  13. 13.
    De Foer B, Vercruysse J-P, Bernaerts A et al (2010) Value of non echo-planar diffusion-weighted MR imaging versus delayed post-gadolinium T1-weighted MR imaging for the detection of middle ear cholesteatoma. Radiology 255:866–872CrossRefPubMedGoogle Scholar
  14. 14.
    De Foer B, Nicolay S, Vercruysse JP et al (2015) Imaging of cholesteatoma. In: Lemmerling M, De Foer B (eds) Temporal bone imaging. Springer, Berlin/Heidelberg, pp 69–88Google Scholar
  15. 15.
    Juliano AFT, Maya M, Lo WW et al (2011) Temporal bone tumors and cerebellopontine angle lesions. In: Som PM, Bergeron RT (eds) Head and neck imaging, 5th edn. Mosby Inc-affiliate of Elsevier Inc, St-Louis, pp 1449–1531Google Scholar
  16. 16.
    Casselman JW, Lu CH, De Foer B et al (2014) Schwannomes du nerf vestibulocochléaire. In: Veillon F, Casselman JW, Meriot P (eds) Imagerie de l’oreille et de l’os temporal. Lavoisier, Paris, pp 921–958Google Scholar
  17. 17.
    Tieleman A, Casselman JW, Somers T et al (2008) Imaging of intralabyrinthine schwannomas: a retrospective study of 52 cases with emphasis on lesion growth. AJNR Am J Neuroradiol 29:898–905CrossRefPubMedGoogle Scholar
  18. 18.
    Somers T, Casselman J, de Ceulaer G et al (2001) Prognostic value of MRI findings in hearing preservation surgery for vestibular schwannoma. Am J Otol 22:87–94CrossRefGoogle Scholar
  19. 19.
    Dubrulle F, Ernst O, Vincent C et al (2000) Enhancement of the cochlear fossa in the MR evaluation of vestibular schwannoma: correlation with success at hearing preservation surgery. Radiology 215:458–462CrossRefPubMedGoogle Scholar
  20. 20.
    Mark AS (1994) Contrast-enhanced magnetic resonance imaging of the temporal bone. Neuroimaging Clin N Am 4:561–578Google Scholar
  21. 21.
    Kenis C, De Foer B, Casselman JW (2015) Inner ear pathology. In: Lemmerling M, De Foer B (eds) Temporal bone imaging. Springer, Berlin/Heidelberg, pp 219–235Google Scholar
  22. 22.
    Casselman JW, Kuhweide R, Ampe W et al (1996) Inner ear malformations in patients with sensorineural hearing loss: detection with gradient-echo (3DFT-CISS) MR imaging. Neuroradiology 38:278–286CrossRefPubMedGoogle Scholar
  23. 23.
    Casselman JW, Offeciers FE, Govaerts PJ et al (1997) Aplasia and hypoplasia of the vestibulocochlear nerve: diagnosis with MR imaging. Radiology 202:773–781CrossRefPubMedGoogle Scholar
  24. 24.
    Barath K, Schuknecht B, Monge Naldi B et al (2014) Detection and grading of endolymphatic hydrops in Menière disease using MR imaging. AJNR Am J Neuroradiol 35:1387–1392CrossRefPubMedGoogle Scholar
  25. 25.
    Deplanque D, Godefroy O, Guerouaou D et al (1998) Sudden bilateral deafness: lateral inferior pontine infarction. J Neurol Neurosurg Psychiatry 64:817–818CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Sasaki O, Ootsuka K, Taguchi K et al (1994) Multiple sclerosis presented acute hearing loss and vertigo. ORL J Otorhinolaryngol Relat Spec 56:55–59CrossRefPubMedGoogle Scholar
  27. 27.
    Moonis G, Lo WWM, Maya M (2011) Vascular tinnitus of the temporal bone. In: Som PM, Curtin HD (eds) Head and neck imaging, 5th edn. Mosby Inc – affiliate of Elsevier Inc, St.-Louis, pp 1409–1422CrossRefGoogle Scholar
  28. 28.
    Swartz JD, Harnsberger HR (1998) Temporal bone vascular anatomy, anomalies, and diseases, emphasizing the clinical-radiological problem of pulsatile tinnitus. In: Swartz JD, Harnsberger HR (eds) Imaging of the temporal bone. Thieme, New-York, pp 170–239Google Scholar
  29. 29.
    Casselman JW (2014) Imagerie des acouphènes. In: Veillon F, Casselman JW, Meriot P et al (eds) Imagerie de l’oreille et de l’os temporal. Lavoisier, Paris, pp 1523–1564Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Radiology and Medical ImagingAZ St-Jan Brugge-Oostende AV, Campus BrugesBrugesBelgium
  2. 2.Imaging DepartmentUniversity College LondonLondonUK

Personalised recommendations