Skip to main content

Interplay Between Autophagy and Inflammasomes

  • Chapter
  • First Online:
Autophagy Networks in Inflammation

Part of the book series: Progress in Inflammation Research ((PIR))

  • 1168 Accesses

Abstract

The autophagy and inflammasome are two ancient innate immune pathways for controlling invading pathogens that are linked mutual regulation. In addition to controlling the cellular metabolic homeostasis through nutrient recycling, the autophagy “self-eating” process is also responsible for the degradation of damaged organelles, aggregated protein complexes, and pathogens to protect the integrity of the organism. As a cytosolic pathogen recognition receptor (PRR) complex, the inflammasome both induces and induced by autophagy through direct interaction with major autophagy proteins or through the effects of secondary molecules, such as mitochondrial reactive oxygen species and mitochondrial DNA. While the underlying molecular mechanisms of inflammasome activation and regulation are largely unknown, much of current knowledge has been established through investigation of the role of autophagy in innate immune response. Many of the newly uncovered links between autophagy and inflammasome have raised new questions about the mechanism controlling inflammasome function, which are highlighted in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

8-OH-dG:

Oxidized nucleoside 8-hydroxy-guanosine

ASC:

Caspase recruitment domain adapter protein

BMDCs:

Bone marrow derived dendritic cells

BMDMs:

Bone marrow-derived macrophages

BRCC3:

BRCA1-BRCA2-containing complex 3

BRISC:

BRCC36-containing isopeptidase

DAMP:

Danger-associated molecular pattern

DHA:

Omega-3 (ω3) fatty acid docosahexaenoic acid

EM:

Electron microscope

FMF:

Familial Mediterranean fever

IFI:

Interferon-gamma-inducible gene

IL:

Interleukin

LeTx:

Anthrax lethal toxin

LRR:

Leucine-rich repeat

LUBAC:

Linear ubiquitin assembly complex

MAVS:

Mitochondrial antiviral signaling

MDP:

Muramyl dipeptide

MEFs:

Mouse embryonic fibroblasts

mtDNA:

Mitochondrial DNA

mtROS:

Mitochondrial ROS

NACHT, NOD, NB-ARC:

Adapter protein; central nucleotide-binding and oligomerization domain

NLR:

Nod-like receptor

PAMP:

Pathogen-associated molecular pattern

PRR:

Pathogen recognition receptor

pyrin or CARD domain:

Protein binding domain

Rip2:

Receptor interacting protein 2

RLH:

RIG-I-like helicase

TLR:

Toll-like receptor

TUFM:

Tu translation elongation factor

VDAC1:

Voltage dependent anion channel 1

VSV:

Vesicular stomatitis virus

References

  1. Allen IC, Lich JD, Arthur JC, Jania CM, Roberts RA, Callaway JB, Tilley SL, Ting JP (2012) Characterization of NLRP12 during the development of allergic airway disease in mice. PLoS One 7:e30612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Allen IC, Scull MA, Moore CB, Holl EK, McElvania-TeKippe E, Taxman DJ, Guthrie EH, Pickles RJ, Ting JP (2009) The NLRP3 inflammasome mediates in vivo innate immunity to influenza A virus through recognition of viral RNA. Immunity 30:556–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Allen IC, Wilson JE, Schneider M, Lich JD, Roberts RA, Arthur JC, Woodford RM, Davis BK, Uronis JM, Herfarth HH et al (2012) NLRP12 suppresses colon inflammation and tumorigenesis through the negative regulation of noncanonical NF-kappaB signaling. Immunity 36:742–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Anand PK, Malireddi RK, Lukens JR, Vogel P, Bertin J, Lamkanfi M, Kanneganti TD (2012) NLRP6 negatively regulates innate immunity and host defence against bacterial pathogens. Nature 488:389–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bauer C, Duewell P, Mayer C, Lehr HA, Fitzgerald KA, Dauer M, Tschopp J, Endres S, Latz E, Schnurr M (2010) Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut 59:1192–1199

    Article  CAS  PubMed  Google Scholar 

  6. Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA et al (2009) Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol 183:787–791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Billmann-Born S, Lipinski S, Böck J, Till A, Rosenstiel P, Schreiber S (2011) The complex interplay of NOD-like receptors and the autophagy machinery in the pathophysiology of Crohn disease. Eur J Cell Biol 90:593–602

    Article  CAS  PubMed  Google Scholar 

  8. Boyden ED, Dietrich WF (2006) Nalp1b controls mouse macrophage susceptibility to anthrax lethal toxin. Nat Genet 38:240–244

    Article  CAS  PubMed  Google Scholar 

  9. Broz P, von Moltke J, Jones JW, Vance RE, Monack DM (2010) Differential requirement for Caspase-1 autoproteolysis in pathogen-induced cell death and cytokine processing. Cell Host Microbe 8:471–483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bruey JM, Bruey-Sedano N, Luciano F, Zhai D, Balpai R, Xu C, Kress CL, Bailly-Maitre B, Li X, Osterman A et al (2007) Bcl-2 and Bcl-XL regulate proinflammatory caspase-1 activation by interaction with NALP1. Cell 129:45–56

    Article  CAS  PubMed  Google Scholar 

  11. Cassel SL, Eisenbarth SC, Iyer SS, Sadler JJ, Colegio OR, Tephly LA, Carter AB, Rothman PB, Flavell RA, Sutterwala FS (2008) The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci U S A 105:9035–9040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Chavarria-Smith J, Vance RE (2013) Direct proteolytic cleavage of NLRP1B is necessary and sufficient for inflammasome activation by anthrax lethal factor. PLoS Pathog 9:e1003452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cho JH (2008) The genetics and immunopathogenesis of inflammatory bowel disease. Nat Rev Immunol 8:458–466

    Article  CAS  PubMed  Google Scholar 

  14. Compan V, Baroja-Mazo A, Lopez-Castejon G, Gomez AI, Martinez CM, Angosto D, Montero MT, Herranz AS, Bazan E, Reimers D et al (2012) Cell volume regulation modulates NLRP3 inflammasome activation. Immunity 37:487–500

    Article  CAS  PubMed  Google Scholar 

  15. Cooper EM, Boeke JD, Cohen RE (2010) Specificity of the BRISC deubiquitinating enzyme is not due to selective binding to Lys63-linked polyubiquitin. J Biol Chem 285:10344–10352

    Article  CAS  PubMed  Google Scholar 

  16. Cooper EM, Cutcliffe C, Kristiansen TZ, Pandey A, Pickart CM, Cohen RE (2009) K63-specific deubiquitination by two JAMM/MPN+ complexes: BRISC-associated Brcc36 and proteasomal Poh1. EMBO J 28:621–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Craven RR, Gao X, Allen IC, Gris D, Bubeck Wardenburg J, McElvania-Tekippe E, Ting JP, Duncan JA (2009) Staphylococcus aureus alpha-hemolysin activates the NLRP3-inflammasome in human and mouse monocytic cells. PLoS One 4:e7446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Cruz CM, Rinna A, Forman HJ, Ventura AL, Persechini PM, Ojcius DM (2007) ATP activates a reactive oxygen species-dependent oxidative stress response and secretion of proinflammatory cytokines in macrophages. J Biol Chem 282:2871–2879

    Article  CAS  PubMed  Google Scholar 

  19. Davis BK, Wen H, Ting JP (2011) The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol 29:707–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dostert C, Guarda G, Romero JF, Menu P, Gross O, Tardivel A, Suva ML, Stehle JC, Kopf M, Stamenkovic I et al (2009) Malarial hemozoin is a Nalp3 inflammasome activating danger signal. PLoS One 4:e6510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Duncan JA, Gao X, Huang MT, O’Connor BP, Thomas CE, Willingham SB, Bergstralh DT, Jarvis GA, Sparling PF, Ting JP (2009) Neisseria gonorrhoeae activates the proteinase cathepsin B to mediate the signaling activities of the NLRP3 and ASC-containing inflammasome. J Immunol 182:6460–6469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dupont N, Jiang S, Pilli M, Ornatowski W, Bhattacharya D, Deretic V (2011) Autophagy-based unconventional secretory pathway for extracellular delivery of IL-1beta. EMBO J 30:1–11

    Article  CAS  Google Scholar 

  24. Eisenbarth SC, Colegio OR, O’Connor W, Sutterwala FS, Flavell RA (2008) Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453:1122–1126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Elinav E, Strowig T, Kau AL, Henao-Mejia J, Thaiss CA, Booth CJ, Peaper DR, Bertin J, Eisenbarth SC, Gordon JI et al (2011) NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145:745–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ewald SE, Chavarria-Smith J, Boothroyd JC (2014) NLRP1 is an inflammasome sensor for Toxoplasma gondii. Infect Immun 82:460–468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Faustin B, Lartigue L, Bruey JM, Luciano F, Sergienko E, Bailly-Maitre B, Volkmann N, Hanein D, Rouiller I, Reed JC (2007) Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell 25:713–724

    Article  CAS  PubMed  Google Scholar 

  28. Fernandes-Alnemri T, Yu J-W Datta P, Wu J, Alnemri ES (2009) AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458:509–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Finley D (2009) Recognition and processing of ubiquitin-protein conjugates by the proteasome. Annu Rev Biochem 78:477–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Franchi L, Nunez G (2008) The Nlrp3 inflammasome is critical for aluminium hydroxide-mediated IL-1beta secretion but dispensable for adjuvant activity. Eur J Immunol 38:2085–2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Franchi L, Stoolman J, Kanneganti TD, Verma A, Ramphal R, Nunez G (2007) Critical role for Ipaf in Pseudomonas aeruginosa-induced caspase-1 activation. Eur J Immunol 37:3030–3039

    Article  CAS  PubMed  Google Scholar 

  32. Frew BC, Joag VR, Mogridge J (2012) Proteolytic processing of Nlrp1b is required for inflammasome activity. PLoS Pathog 8:e1002659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gross O, Poeck H, Bscheider M, Dostert C, Hannesschlager N, Endres S, Hartmann G, Tardivel A, Schweighoffer E, Tybulewicz V et al (2009) Syk kinase signalling couples to the Nlrp3 inflammasome for anti-fungal host defence. Nature 459:433–436

    Article  CAS  PubMed  Google Scholar 

  34. Gurcel L, Abrami L, Girardin S, Tschopp J, van der Goot FG (2006) Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 126:1135–1145

    Article  CAS  PubMed  Google Scholar 

  35. Gutierrez O, Pipaon C, Inohara N, Fontalba A, Ogura Y, Prosper F, Nunez G, Fernandez-Luna JL (2002) Induction of Nod2 in myelomonocytic and intestinal epithelial cells via nuclear factor-kappa B activation. J Biol Chem 277:41701–41705

    Article  CAS  PubMed  Google Scholar 

  36. Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ, Golenbock DT (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9:857–865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hampe J, Franke A, Rosenstiel P, Till A, Teuber M, Huse K, Albrecht M, Mayr G, De La Vega FM, Briggs J et al (2007) A genome-wide association scan of nonsynonymous SNPs identifies a susceptibility variant for Crohn disease in ATG16L1. Nat Genet 39:207–211

    Article  CAS  PubMed  Google Scholar 

  38. Harris J, Hartman M, Roche C, Zeng SG, O’Shea A, Sharp FA, Lambe EM, Creagh EM, Golenbock DT, Tschopp J et al (2011) Autophagy controls IL-1 secretion by targeting Pro-IL-1 for degradation. J Biol Chem 286:9587–9597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Homer CR, Kabi A, Marina-García N, Sreekumar A, Nesvizhskii AI, Nickerson KP, Chinnaiyan AM, Núñez G, McDonald C (2012) A dual role for receptor-interacting protein kinase 2 (RIP2) kinase activity in nucleotide-binding oligomerization domain 2 (NOD2)-dependent autophagy. J Biol Chem 287:25565–25576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, Latz E, Fitzgerald KA (2009) AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature 458:514–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA, Latz E (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9:847–856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Janeway CA, Medzhitov R (2002) Innate immune recognition. Annu Rev Immunol 20:197–216

    Article  CAS  PubMed  Google Scholar 

  43. Jin C, Frayssinet P, Pelker R, Cwirka D, Hu B, Vignery A, Eisenbarth SC, Flavell RA (2011) NLRP3 inflammasome plays a critical role in the pathogenesis of hydroxyapatite-associated arthropathy. Proc Natl Acad Sci U S A 108:14867–14872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jounai N, Kobiyama K, Shiina M, Ogata K, Ishii KJ, Takeshita F (2011) NLRP4 negatively regulates autophagic processes through an association with beclin1. J Immunol 186:1646–1655

    Article  CAS  PubMed  Google Scholar 

  45. Juliana C, Fernandes-Alnemri T, Kang S, Farias A, Qin F, Alnemri ES (2012) Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J Biol Chem 287:36617–36622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kanneganti TD, Body-Malapel M, Amer A, Park JH, Whitfield J, Franchi L, Taraporewala ZF, Miller D, Patton JT, Inohara N et al (2006) Critical role for Cryopyrin/Nalp3 in activation of caspase-1 in response to viral infection and double-stranded RNA. J Biol Chem 281:36560–36568

    Article  CAS  PubMed  Google Scholar 

  47. Kanneganti TD, Lamkanfi M, Kim YG, Chen G, Park JH, Franchi L, Vandenabeele P, Nunez G (2007) Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity 26:433–443

    Article  CAS  PubMed  Google Scholar 

  48. Kanneganti TD, Ozoren N, Body-Malapel M, Amer A, Park JH, Franchi L, Whitfield J, Barchet W, Colonna M, Vandenabeele P et al (2006) Bacterial RNA and small antiviral compounds activate caspase-1 through cryopyrin/Nalp3. Nature 440:233–236

    Article  CAS  PubMed  Google Scholar 

  49. Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, Newton K, Qu Y, Liu J, Heldens S et al (2011) Non-canonical inflammasome activation targets caspase-11. Nature 479:117–121

    Article  CAS  PubMed  Google Scholar 

  50. Khare S, Dorfleutner A, Bryan NB, Chawon Y, Radian AD, de Almeida L, Rojanasakul Y, Stehlik C (2012) An NLRP7-containing inflammasome mediates recognition of microbial lipopeptides in human macrophages. Immunity 36:464–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kofoed EM, Vance RE (2011) Innate immune recognition of bacterial ligands by NAIPs determines inflammasome specificity. Nature 477:592–595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kool M, Petrilli V, De Smedt T, Rolaz A, Hammad H, van Nimwegen M, Bergen IM, Castillo R, Lambrecht BN, Tschopp J (2008) Cutting edge: alum adjuvant stimulates inflammatory dendritic cells through activation of the NALP3 inflammasome. J Immunol 181:3755–3759

    Article  CAS  PubMed  Google Scholar 

  53. Kummer JA, Broekhuizen R, Everett H, Agostini L, Kuijk L, Martinon F, van Bruggen R, Tschopp J (2007) Inflammasome components NALP 1 and 3 show distinct but separate expression profiles in human tissues suggesting a site-specific role in the inflammatory response. J Histochem Cytochem 55:443–452

    Article  CAS  PubMed  Google Scholar 

  54. Lamkanfi M, Mueller JL, Vitari AC, Misaghi S, Fedorova A, Deshayes K, Lee WP, Hoffman HM, Dixit VM (2009) Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J Cell Biol 187:61–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lee GS, Subramanian N, Kim AI, Aksentijevich I, Goldbach-Mansky R, Sacks DB, Germain RN, Kastner DL, Chae JJ (2012) The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 492:123–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lei Y, Wen H, Yu Y, Taxman DJ, Zhang L, Widman DG, Swanson KV, Wen K-W, Damania B, Moore CB et al (2012) The mitochondrial proteins NLRX1 and TUFM form a complex that regulates type I interferon and autophagy. Immunity 36:933–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Levinsohn JL, Newman ZL, Hellmich KA, Fattah R, Getz MA, Liu S, Sastalla I, Leppla SH, Moayeri M (2012) Anthrax lethal factor cleavage of nlrp1 is required for activation of the inflammasome. PLoS Pathog 8:e1002638

    Article  PubMed  PubMed Central  Google Scholar 

  58. Li H, Willingham SB, Ting JP, Re F (2008) Cutting edge: inflammasome activation by alum and alum’s adjuvant effect are mediated by NLRP3. J Immunol 181:17–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Liao KC, Mogridge J (2013) Activation of the Nlrp1b inflammasome by reduction of cytosolic ATP. Infect Immun 81:570–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lopez-Castejon G, Luheshi NM, Compan V, High S, Whitehead RC, Flitsch SL, Kirov A, Prudovsky I, Swanton E, Brough D (2012) Deubiquitinases regulate the activity of caspase-1 and IL-1beta secretion via assembly of the inflammasome. J Biol Chem 288:2721–2733

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Mariathasan S, Newton K, Monack DM, Vucic D, French DM, Lee WP, Roose-Girma M, Erickson S, Dixit VM (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430:213–218

    Article  CAS  PubMed  Google Scholar 

  62. Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M, Lee WP, Weinrauch Y, Monack DM, Dixit VM (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:228–232

    Article  CAS  PubMed  Google Scholar 

  63. Massey D, Parkes M (2007) Common pathways in Crohn’s disease and other inflammatory diseases revealed by genomics. Gut 56:1489–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Miao EA, Alpuche-Aranda CM, Dors M, Clark AE, Bader MW, Miller SI, Aderem A (2006) Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol 7:569–575

    Article  CAS  PubMed  Google Scholar 

  65. Munoz-Planillo R, Kuffa P, Martinez-Colon G, Smith BL, Rajendiran TM, Nunez G (2013) K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38:1142–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Murakami T, Ockinger J, Yu J, Byles V, McColl A, Hofer AM, Horng T (2012) Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc Natl Acad Sci U S A 109:11282–11287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Muruve DA, Petrilli V, Zaiss AK, White LR, Clark SA, Ross PJ, Parks RJ, Tschopp J (2008) The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452:103–107

    Article  CAS  PubMed  Google Scholar 

  68. Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T, Lam HC, Englert JA, Rabinovitch M, Cernadas M, Kim HP et al (2011) Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 12:222–230

    Article  CAS  PubMed  Google Scholar 

  69. Neiman-Zenevich J, Liao KC, Mogridge J (2014) Distinct regions of NLRP1B are required to respond to anthrax lethal toxin and metabolic inhibition. Infect Immun 82:3697–3703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Nour AM, Yeung YG, Santambrogio L, Boyden ED, Stanley ER, Brojatsch J (2009) Anthrax lethal toxin triggers the formation of a membrane-associated inflammasome complex in murine macrophages. Infect Immun 77:1262–1271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Petrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J (2007) Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 14:1583–1589

    Article  CAS  PubMed  Google Scholar 

  72. Pippo N, Korkmaz A, Hytti M, Kinnunen K, Salminen A, Atalay M, Kaarniranta K, Kauppinen A (2014) Decline in cellular clearance systems induces inflammasome signaling in human ARPE-19 cells. Biochim Biophys Acta 1843:3038–3046

    Article  CAS  Google Scholar 

  73. Plantinga TS, Crişan TO, Oosting M, van de Veerdonk FL, de Jong DJ, Philpott DJ, van der Meer JW, Girardin SE, Joosten LA, Netea MG (2011) Crohn’s disease-associated ATG16L1 polymorphism modulates pro-inflammatory cytokine responses selectively upon activation of NOD2. Gut 60(9):1229–1235

    Article  CAS  PubMed  Google Scholar 

  74. Poeck H, Bscheider M, Gross O, Finger K, Roth S, Rebsamen M, Hannesschlager N, Schlee M, Rothenfusser S, Barchet W et al (2010) Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. Nat Immunol 11:63–69

    Article  CAS  PubMed  Google Scholar 

  75. Proell M, Gerlic M, Mace PD, Reed JC, Riedl SJ (2013) The CARD plays a critical role in ASC foci formation and inflammasome signaling. Biochem J 499(3):613–621

    Article  CAS  Google Scholar 

  76. Py BF, Kim MS, Vakifahmetoglu-Norberg H, Yuan J (2012) Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Mol Cell 49:331–338

    Article  PubMed  CAS  Google Scholar 

  77. Ramjeet M, Hussey S, Philpott DJ, Travassos LH (2010) “Nodophagy”: new crossroads in Crohn disease pathogenesis. Gut Microbes 1:307–315

    Article  PubMed  PubMed Central  Google Scholar 

  78. Rathinam VAK, Jiang Z, Waggoner SN, Sharma S, Cole LE, Waggoner L, Vanaja SK, Monks BG, Ganesan S, Latz E et al (2010) The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol 11:395–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Reubold TF, Hahne G, Wohlgemuth S, Eschenburg S (2014) Crystal structure of the leucine-rich repeat domain of the NOD-like receptor NLRP1: implications for binding of muramyl dipeptide. FEBS Lett 588:3327–3332

    Article  CAS  PubMed  Google Scholar 

  80. Rodgers MA, Bowman JW, Fujita H, Orazio N, Shi M, Liang Q, Amatya R, Kelly TJ, Iwai K, Ting J et al (2014) The linear ubiquitin assembly complex (LUBAC) is essential for NLRP3 inflammasome activation. J Exp Med 211:1333–1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Rossol M, Pierer M, Raulien N, Quandt D, Meusch U, Rothe K, Schubert K, Schoneberg T, Schaefer M, Krugel U et al (2012) Extracellular Ca2+ is a danger signal activating the NLRP3 inflammasome through G protein-coupled calcium sensing receptors. Nat Commun 3:1329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Saitoh T, Fujita N, Jang MH, Uematsu S, Yang BG, Satoh T, Omori H, Noda T, Yamamoto N, Komatsu M et al (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456(7219):264–268

    Article  CAS  PubMed  Google Scholar 

  83. Sauer JD, Pereyre S, Archer KA, Burke TP, Hanson B, Lauer P, Portnoy DA (2011) Listeria monocytogenes engineered to activate the Nlrc4 inflammasome are severely attenuated and are poor inducers of protective immunity. Proc Natl Acad Sci U S A 108:12419–12424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schroder K, Tschopp J (2010) The inflammasomes. Cell 140(6):821–832

    Article  CAS  PubMed  Google Scholar 

  85. Shaw PJ, McDermott MF, Kanneganti TD (2011) Inflammasomes and autoimmunity. Trends Mol Med 17:57–64

    Article  CAS  PubMed  Google Scholar 

  86. Shi CS, Shenderov K, Huang NN, Kabat J, Abu-Asab M, Fitzgerald KA, Sher A, Kehrl JH (2012) Activation of autophagy by inflammatory signals limits IL-1beta production by targeting ubiquitinated inflammasomes for destruction. Nat Immunol 13:255–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, Ramanujan VK, Wolf AJ, Vergnes L, Ojcius DM et al (2012) Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36:401–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Shio MT, Eisenbarth SC, Savaria M, Vinet AF, Bellemare MJ, Harder KW, Sutterwala FS, Bohle DS, Descoteaux A, Flavell RA et al (2009) Malarial hemozoin activates the NLRP3 inflammasome through Lyn and Syk kinases. PLoS Pathog 5:e1000559

    Article  PubMed  CAS  Google Scholar 

  89. Shoshan-Barmatz V, Ben-Hail D (2012) VDAC a multi-functional mitochondrial protein as a pharmacological target. Mitochondrion 12:24–34

    Article  CAS  PubMed  Google Scholar 

  90. Song DH, Lee JO (2012) Sensing of microbial molecular patterns by Toll-like receptors. Immunol Rev 250:216–229

    Article  PubMed  CAS  Google Scholar 

  91. Sutterwala FS, Haasken S, Cassel SL (2014) Mechanism of NLRP3 inflammasome activation. Ann N Y Acad Sci 1319:82–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Sutterwala FS, Ogura Y, Zamboni DS, Roy CR, Flavell RA (2006) NALP3: a key player in caspase-1 activation. J Endotoxin Res 12:251–256

    Article  CAS  PubMed  Google Scholar 

  93. Suzuki T, Franchi L, Toma C, Ashida H, Ogawa M, Yoshikawa Y, Mimuro H, Inohara N, Sasakawa C, Núñez G (2007) Differential regulation of caspase-1 activation pyroptosis and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog 3:e111

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140:805–820

    Article  CAS  PubMed  Google Scholar 

  95. Tigno-Aranjuez JT, Abbott DW (2012) Ubiquitination and phosphorylation in the regulation of NOD2 signaling and NOD2-mediated disease. Biochim Biophys Acta 1823:2022–2028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Travassos LH, Carneiro LAM, Ramjeet M, Hussey S, Kim Y-G, Magalhães JG, Yuan L, Soares F, Chea E, Le Bourhis L et al (2010) Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat Immunol 11:55–62

    Article  CAS  PubMed  Google Scholar 

  97. van Bruggen R, Koker MY, Jansen M, van Houdt M, Roos D, Kuijpers TW, van den Berg TK (2010) Human NLRP3 inflammasome activation is Nox1-4 independent. Blood 115:5398–5400

    Article  PubMed  CAS  Google Scholar 

  98. Vladimer GI, Weng D, Paquette SWM, Vanaja SK, Rathinam VAK, Aune MH, Conlon JE, Burbage JJ, Proulx MK, Liu Q et al (2012) The NLRP12 inflammasome recognizes Yersinia pestis. Immunity 37:96–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Warren SE, Mao DP, Rodriguez AE, Miao EA, Aderem A (2008) Multiple Nod-like receptors activate caspase 1 during Listeria monocytogenes infection. J Immunol 180:7558–7564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Watanabe H, Gaide O, Petrilli V, Martinon F, Contassot E, Roques S, Kummer JA, Tschopp J, French LE (2007) Activation of the IL-1beta-processing inflammasome is involved in contact hypersensitivity. J Invest Dermatol 127:1956–1963

    Article  CAS  PubMed  Google Scholar 

  101. Williams-Bey Y, Boularan C, Vural A, Huang NN, Hwang IY, Shan-Shi C, Kehrl JH (2014) Omega-3 free fatty acids suppress macrophage inflammasome activation by inhibiting NF-kappaB activation and enhancing autophagy. PLoS One 9:e97957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Xia X, Cui J, Wang HY, Zhu L, Matsueda S, Wang Q, Yang X, Hong J, Songyang Z, Chen ZJ et al (2011) NLRX1 negatively regulates TLR-induced NF-kappaB signaling by targeting TRAF6 and IKK. Immunity 34:843–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Xu H, Yang J, Gao W, Li L, Li P, Zhang L, Gong YN, Peng X, Xi JJ, Chen S et al (2014) Innate immune sensing of bacterial modifications of Rho GTPases by the Pyrin inflammasome. Nature 513:237–241

    Article  CAS  PubMed  Google Scholar 

  104. Yamasaki K, Muto J, Taylor KR, Cogen AL, Audish D, Bertin J, Grant EP, Coyle AJ, Misaghi A, Hoffman HM et al (2009) NLRP3/cryopyrin is necessary for interleukin-1beta (IL-1beta) release in response to hyaluronan an endogenous trigger of inflammation in response to injury. J Biol Chem 284:12762–12771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yang J, Xu H, Shao F (2014) The immunological function of familial Mediterranean fever disease protein Pyrin. Sci China Life Sci 57(12):1156–1161

    Article  CAS  PubMed  Google Scholar 

  106. Zhao Y, Yang J, Shi J, Gong YN, Lu Q, Xu H, Liu L, Shao F (2011) The NLRC4 inflammasome receptors for bacterial flagellin and type III secretion apparatus. Nature 477:596–600

    Article  CAS  PubMed  Google Scholar 

  107. Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J (2010) Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol 11:136–140

    Article  CAS  PubMed  Google Scholar 

  108. Zhou R, Yazdi AS, Menu P, Tschopp J (2010) A role for mitochondria in NLRP3 inflammasome activation. Nature 469:221–225

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiming Liang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Liang, Q., Ge, J., Jin, X. (2016). Interplay Between Autophagy and Inflammasomes. In: Maiuri, M., De Stefano, D. (eds) Autophagy Networks in Inflammation. Progress in Inflammation Research. Springer, Cham. https://doi.org/10.1007/978-3-319-30079-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-30079-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-30077-1

  • Online ISBN: 978-3-319-30079-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics