Skip to main content

Application of Green Metrics Analysis to the Synthesis of Dicyclohexylcarbodiimide (DCC) – Comparison of Chlorine Versus Non-chlorine-Based Routes

  • Chapter
  • First Online:
Chemistry Beyond Chlorine

Abstract

Green metrics at four levels of analysis are determined for various synthesis plans for dicyclohexylcarbodiimide (DCC) covering material efficiency, environmental impact, safety-hazard impact, and energy input demands to identify the greenest plan available to make this important dehydrating reagent. Chlorine-based routes using phosgene chemistry are juxtaposed against non-chlorine-based routes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmidt E, Hitzler F, Lahde E (1938) Zur Kenntnis aliphatischer Carbodiimide. Chem Ber 71:1933–1938

    Article  Google Scholar 

  2. Sheehan JC, Hess GP (1955) A new method of forming peptide bonds. J Am Chem Soc 77:1067–1068

    Article  CAS  Google Scholar 

  3. Han SY, Kim YA (2004) Recent development of peptide coupling reagents in organic synthesis. Tetrahedron 60:2447–2467

    Article  CAS  Google Scholar 

  4. Montalbetti CAGN, Falque V (2005) Amide bond formation and peptide coupling. Tetrahedron 61:10827–10852

    Article  CAS  Google Scholar 

  5. Joullié MM, Lassen KM (2010) Evolution of amide bond formation. Arkivoc 8:189–250

    Google Scholar 

  6. Kvasnica M (2007) Dicyclohexylcarbodiimide (DCC). Synlett 2306–2307

    Google Scholar 

  7. Scott PJH (ed) (2009) Linker strategies in solid-phase organic synthesis. Wiley, Sussex

    Google Scholar 

  8. Kates SA, Albericio F (eds) (2000) Solid-phase synthesis – a practical guide. Marcel Dekker, New York

    Google Scholar 

  9. Czarnik AW (ed) (2001) Solid-phase organic syntheses, vol I. Wiley, New York

    Google Scholar 

  10. Dörwald FZ (2002) Organic synthesis on solid phase – supports, linkers, reactions. Wiley-VCH, Weinheim

    Book  Google Scholar 

  11. Burgess K (ed) (2000) Solid-phase organic synthesis. Wiley, New York

    Google Scholar 

  12. Toy PH, Lam Y (eds) (2012) Solid-phase organic synthesis – concepts, strategies, and applications. Wiley, New York

    Google Scholar 

  13. Seneci P (2000) Solid-phase synthesis and combinatorial technologies. Wiley, New York

    Book  Google Scholar 

  14. Andraos J (2009) Global green chemistry metrics analysis algorithm and spreadsheets: evaluation of the material efficiency performances of synthesis plans for oseltamivir phosphate (Tamiflu) as a test case. Org Process Res Dev 13:161–185

    Article  CAS  Google Scholar 

  15. Werner L, Machara A, Sullivan B, Carrera I, Moser M, Adams DR, Hudlicky T, Andraos J (2011) Several generations of chemoenzymatic synthesis of oseltamivir (Tamiflu): evolution of strategy, quest for a process-quality synthesis, and evaluation of efficiency metrics. J Org Chem 76:10050–10067

    Article  CAS  Google Scholar 

  16. Andraos J (2013) Application of green metrics to scalable industrial synthesis plans: an update on syntheses of oseltamivir phosphate (Tamiflu). In: Koenig S (ed) Scalable green chemistry: case studies from the pharmaceutical industry. Pan Stanford Publishing, Singapore, pp 75–104

    Chapter  Google Scholar 

  17. Andraos J (2012) The algebra of organic synthesis – green metrics, design strategy, route selection, and optimization. CRC Press, Boca Raton

    Google Scholar 

  18. Andraos J (2011) A database tool for process chemists and chemical engineers to gauge the material and synthetic efficiencies of synthesis plans to industrially important targets. Pure Appl Chem 83:1361–1378

    Article  CAS  Google Scholar 

  19. Andraos J (2012) A green metrics assessment of phosgene and phosgene-free syntheses of industrially important commodity chemicals. Pure Appl Chem 84:827–860

    CAS  Google Scholar 

  20. Trost BM (1991) The atom economy – a search for synthetic efficiency. Science 254:1471–1477

    Article  CAS  Google Scholar 

  21. Constable DJC, Curzons AD, Freitas dos Santos LM, Geen GR, Hannah RE, Hayler JD, Kitteringham J, McGuire MA, Richardson JE, Smith P, Webb RL, Yu M (2001) Green chemistry measures for process research and development. Green Chem 3:7–9

    Article  CAS  Google Scholar 

  22. Constable DJC, Curzons AD, Cunningham VL (2002) Metrics to ‘green’ chemistry – which are the best? Green Chem 4:521–527

    Article  CAS  Google Scholar 

  23. Curzons AD, Constable DJC, Mortimer DN, Cunningham VL (2001) So you think your process is green, how do you know? Using principles of sustainability to determine what is green – a corporate perspective. Green Chem 3:1–6

    Article  CAS  Google Scholar 

  24. Sheldon RA (1994) Consider the environmental Quotient. ChemTech 24(3):38–47

    CAS  Google Scholar 

  25. Jiménez-González C, Ponder CS, Broxterman QB, Manley JB (2011) Using the right green yardstick: why process mass intensity is used in the pharmaceutical industry to drive more sustainable processes. Org Process Res Dev 15:912–917

    Article  Google Scholar 

  26. Jiménez-González C, Poechlauer P, Broxterman QB, Yang BS, Am Ende D, Baird J, Bertsch C, Hannah RE, Dell’Orco P, Noorman H, Yee S, Reintjens R, Wells A, Massonneau V, Manley J (2011) Key green engineering research areas for sustainable manufacturing: a perspective from pharmaceutical and fine chemicals manufacturers. Org Process Res Dev 15:900–911

    Article  Google Scholar 

  27. Andraos J (2012) Inclusion of environmental impact parameters in radial pentagon material efficiency metrics analysis: using benign indices as a step towards a complete assessment of “greenness” for chemical reactions and synthesis plans. Org Process Res Dev 16:1482–1506

    Article  CAS  Google Scholar 

  28. Andraos J (2013) Safety/hazard indices: completion of a unified suite of metrics for the assessment of “greenness” for chemical reactions and synthesis plans. Org Process Res Dev 17:175–192

    Article  CAS  Google Scholar 

  29. Reaxys database, http://www.elsevier.com/online-tools/reaxys. Accessed Mar 2015

  30. Faith WL, Keyes DB, Clark RL (1966) Industrial chemicals, 3rd edn. Wiley, New York

    Google Scholar 

  31. Slocombe RJ, Hardy EE, Saunders JH, Jenkins RL (1950) Phosgene derivatives. The preparation of isocyanates, carbamyl chlorides and cyanuric acid. J Am Chem Soc 72:1888–1891

    Article  CAS  Google Scholar 

  32. Dabritz E, Herlinger H (1967) Procédé de préparation de carbodiimides. FR patent 1,469,946, 9 Jan 1967

    Google Scholar 

  33. Dombek BD, Angelici RJJ (1977) A mechanistic investigation of the decacarbonyldimanganese-catalyzed carbonylation of amines. J Organomet Chem 134:203–217

    Article  CAS  Google Scholar 

  34. Hussenet P, Le Goff P, Sennyey G (1996) Procédé de synthèse de carbodiimides substitués. EP patent 723,955, 18 Jan 1966

    Google Scholar 

  35. Hussenet P, Le Goff P, Sennyey G (1997) Process for the synthesis of substituted carbodiimides. US patent 5,648,537, 15 Jul 1997

    Google Scholar 

  36. Kersten H, Heinrichs G, Meyer G, Laudien D (1971) Verfahren zur Herstellung von aliphatisch und cycloaliphatisch 1,3-substituerten symmetrischen Thioharnstoffen. DE patent 2,015,010, 25 Nov 1971

    Google Scholar 

  37. Wilson BD (1966) Preparation of carbodiimides. US patent 3,236,882, 22 Feb 1966

    Google Scholar 

  38. Ramadas K, Janarthanan N (1997) New synthetic strategy for urea herbicides. Synth Commun 27:2357–2362

    Article  CAS  Google Scholar 

  39. Hansgunter W (1961) Verfahren zur Herstellung von Dicyclohexylcarbodiimid. DD patent 22,437, 22 Dec 1961

    Google Scholar 

  40. Bennet WB, Saunders JH, Hardy EE (1953) The preparation of isocyanates by the thermal decomposition of substituted ureas. J Am Chem Soc 75:2101–2103

    Article  CAS  Google Scholar 

  41. Tomishige K, Ikeda Y, Sakaihori T, Fujimoto K (2000) Catalytic properties and structure of zirconia catalysts for direct synthesis of dimethyl carbonate from methanol and carbon dioxide. J Catal 192:355–362

    Article  CAS  Google Scholar 

  42. Wang B, He J, Sun RC (2010) Carbamate synthesis from amines and dialkyl carbonate over inexpensive and clean acidic catalyst – sulfamic acid. Chin Chem Lett 21:794–797

    Article  CAS  Google Scholar 

  43. Mironov VF, Kozyukov VP, Orlov GI (1981) Reaction of urethanes with chlorosilanes – a new procedure for producing isocyanates. Zh Obshch Khim 51:1814–1816

    CAS  Google Scholar 

  44. Andraos J, Ballerini E, Vaccaro L (2015) A comparative approach to the most sustainable for the β-azidation of α, β-unsaturated ketones and acids. Green Chem 17:913–925

    Article  CAS  Google Scholar 

  45. Andraos J, Sayed M (2007) On the use of ‘green’ metrics in the undergraduate organic chemistry lecture and laboratory to assess the mass efficiency of organic reactions. J Chem Educ 84:1004–1010

    Article  CAS  Google Scholar 

  46. Smith JM, van Hess HC (1987) Introduction to chemical engineering thermodynamics. McGraw-Hill Book Co., New York

    Google Scholar 

  47. Mann U (2009) Principles of chemical reactor analysis and design, 2nd edn. Wiley, New York, p 133

    Book  Google Scholar 

  48. Design Institute for Physical Property Data (DIPPR) (2015) Project 801, http://www.aiche.org/dippr/projects/801. Accessed Feb 2015

  49. Yaws CL (1999) Chemical properties handbook. McGraw-Hill Book Co., New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Andraos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Andraos, J. (2016). Application of Green Metrics Analysis to the Synthesis of Dicyclohexylcarbodiimide (DCC) – Comparison of Chlorine Versus Non-chlorine-Based Routes. In: Tundo, P., He, LN., Lokteva, E., Mota, C. (eds) Chemistry Beyond Chlorine. Springer, Cham. https://doi.org/10.1007/978-3-319-30073-3_22

Download citation

Publish with us

Policies and ethics