Skip to main content

Beyond Chlorine Reagents: Organic Carbonate Chemistry

  • Chapter
  • First Online:
Chemistry Beyond Chlorine
  • 1483 Accesses

Abstract

The organic cyclic carbonates, polycarbonates, including their enantiomers, were documented. Their applications in organic synthesis, new material fabrications, industry, agriculture, and medical treatment were described and envisioned. The mechanism of formation of polycarbonates and cyclic carbonated might be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shaikh A-AG, Sivaram S (1996) Organic carbonates. Chem Rev 96:951–976

    Article  CAS  Google Scholar 

  2. Aresta M, Dibenedetto A (2000) Synthesis of organic carbonates based on CO2 as raw material. In: Williams DJ, Durie RA, McMullan P et al (eds) Greenhouse gas control technologies. CSIRO Publishing, Collingwood, pp 653–658

    Google Scholar 

  3. Pasquato L, Modona G, Cotarsa L et al (2000) Conversion of bis(trichloromethyl) carbonate to phosgene and reactivity of triphosgene, diphosgene, and phosgene with methanol. J Org Chem 65:8224–8228

    Article  CAS  Google Scholar 

  4. Darensbourg DJ, Holtcamp MW (1996) Catalysts for the reactions of epoxides and carbon dioxide. Coord Chem Rev 153:155–174

    Article  CAS  Google Scholar 

  5. Jing HW, Edulji SK, Nguyen ST et al (2004) (Salen)Tin complexes: syntheses, characterization, crystal structures, and catalytic activity in the formation of propylene carbonate from CO2 and propylene oxide. Inorg Chem 43:4315–4327

    Article  CAS  Google Scholar 

  6. He Q, O’Brien JW, Kerton FM et al (2014) Synthesis of cyclic carbonates from CO2 and epoxides using ionic liquids and related catalysts including choline chloride–metal halide mixtures. Catal Sci Technol 4:1513–1528

    Article  CAS  Google Scholar 

  7. Lu XB, Darensbourg DJ (2012) Cobalt catalysts for the coupling of CO2 and epoxides to provide polycarbonates and cyclic carbonates. Chem Soc Rev 41:1462–1484

    Article  CAS  Google Scholar 

  8. Xu BH, Wang JQ, Zhang SJ et al (2015) Fixation of CO2 into cyclic carbonates catalyzed by ionic liquids: a multi-scale approach. Green Chem 17:108–122

    Article  CAS  Google Scholar 

  9. Liu AH, Li YN, He LN (2012) Organic synthesis using carbon dioxide as phosgene-free carbonyl reagent. Pure Appl Chem 84:581–602

    Article  CAS  Google Scholar 

  10. North M, Pasquale R, Young C (2010) Synthesis of cyclic carbonates from epoxides and CO2. Green Chem 12:1514–1539

    Article  CAS  Google Scholar 

  11. Jin LL, Jing HW, Chang T et al (2007) Metal porphyrin/phenyltrimethylammonium tribromide: high efficient catalysts for coupling reaction of CO2 and epoxides. J Mol Catal A Chem 261:262–266

    Article  CAS  Google Scholar 

  12. Bai D, Duan S, Jing HW et al (2012) Carbon dioxide fixation by cycloaddition with epoxides catalyzed by biomimetic metalloporphyrins. ChemCatChem 4:1752–1758

    Article  CAS  Google Scholar 

  13. Kruper WJ, Dellar DV (1995) Catalytic formation of cyclic carbonates from epoxides and CO2 with chromium metalloporphyrinates. J Org Chem 60:725–727

    Article  CAS  Google Scholar 

  14. Razali NAM, Lee KT, Mohamed AR et al (2012) Heterogeneous catalysts for production of chemicals using carbon dioxide as raw material: a review. Renew Sustain Energy Rev 16:4951–4964

    Article  CAS  Google Scholar 

  15. Liu J, Wang A, Jing HW (2014) TiO2-based green heterogeneous catalysts for the cycloaddition of CO2 to epoxides. Chin J Catal 35:1669–1675

    Article  CAS  Google Scholar 

  16. Jing HW, Nguyen ST (2007) SnCl4-organic base: highly efficient catalyst system for coupling reaction of CO2 and epoxides. J Mol Catal A Chem 261:12–15

    Article  CAS  Google Scholar 

  17. Chen Y, Qiu Y, Yin SF (2014) Organoantimony and organobismuth complexes for CO2 fixation. RSC Adv 4:11907–11918

    Article  CAS  Google Scholar 

  18. Hansen KB, Leighton JL, Jacobsen EN (1996) On the mechanism of asymmetric nucleophilic ring-opening of epoxides catalyzed by (Salen)Cr(III) complexes. J Am Chem Soc 118:10924–10925

    Article  CAS  Google Scholar 

  19. Peng JJ, Deng YQ (2001) Cycloaddition of carbon dioxide to propylene oxide catalyzed by ionic liquids. New J Chem 25:639–641

    Article  CAS  Google Scholar 

  20. Zhang S, Huang Y, Jing HW et al (2009) Chiral ionic liquids improved the asymmetric cycloaddition of CO2 to epoxides. Green Chem 11:935–938

    Article  CAS  Google Scholar 

  21. Jing HW, Chang T, Jin L et al (2007) Ruthenium Salen/phenyltrimethylammonium tribromide catalyzed coupling reaction of carbon dioxide and epoxides. Catal Commun 8:1630–1634

    Article  CAS  Google Scholar 

  22. Chang T, Jing HW, Jin L et al (2007) Quaternary onium tribromide catalyzed cyclic carbonate synthesis from carbon dioxide and epoxides. J Mol Catal A Chem 264:241–247

    Article  CAS  Google Scholar 

  23. Castro-Gómez, Salassa G, Kleij AW et al (2013) A DFT Study on the mechanism of the cycloaddition reaction of CO2 to epoxides catalyzed by Zn(Salphen) complexes. Chem Eur J 19:6289–6298

    Article  CAS  Google Scholar 

  24. Wang TT, Xie Y, Deng WQ (2014) Reaction mechanism of epoxide cycloaddition to CO2 catalyzed by SalenM (M = Co, Al, Zn). J Phys Chem A 118:9239–9243

    Article  CAS  Google Scholar 

  25. Aresta M, Dibenedetto A, Angelini A (2014) Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem Rev 114:1709–1742

    Article  CAS  Google Scholar 

  26. Ema T, Miyazaki Y, Hasegawa J et al (2014) Bifunctional porphyrin catalysts for the synthesis of cyclic carbonates from epoxides and CO2: structural optimization and mechanistic study. J Am Chem Soc 136:15270–15279

    Article  CAS  Google Scholar 

  27. Dai WL, Jin B, Luo SL et al (2014) Polymers anchored with carboxyl-functionalized di-cation ionic liquids as efficient catalysts for the fixation of CO2 into cyclic carbonates. Catal Sci Technol 4:556–562

    Article  CAS  Google Scholar 

  28. Cheng W, Su Q, Ng FTT (2013) Ionic liquids: the synergistic catalytic effect in the synthesis of cyclic carbonates. Catalysts 3:878–901

    Article  CAS  Google Scholar 

  29. Martín C, Fiorani G, Kleij AW (2015) Recent advances in the catalytic preparation of cyclic organic carbonates. ACS Catal 5:1353–1370

    Article  CAS  Google Scholar 

  30. Sun YB, Cao CY, Song WG et al (2014) C60 fullerenol as an active and stable catalyst for the synthesis of cyclic carbonates from CO2 and epoxides. Chem Commun 50:10307–10310

    Article  CAS  Google Scholar 

  31. Ma X, Zou B, Cao M et al (2014) Nitrogen-doped porous carbon monolith as a highly efficient catalyst for CO2 conversion. J Mater Chem A 2:18360–18366

    Article  CAS  Google Scholar 

  32. Shiels RA, Jones CW (2007) Homogeneous and heterogeneous 4-(N, N-dialkylamino)pyridines as effective single component catalysts in the synthesis of propylene carbonate. J Mol Catal A Chem 261:160–166

    Article  CAS  Google Scholar 

  33. Yu KMK, Curcic I, Gabriel J et al (2010) Catalytic coupling of CO2 with epoxide over supported and unsupported amines. J Phys Chem A 114:3863–3872

    Article  CAS  Google Scholar 

  34. Liu H, Zeng R, Hua R (2014) 2,2′,2″-terpyridine-catalyzed synthesis of cyclic carbonates from epoxides and carbon dioxide under solvent-free conditions. Int J Mol Sci 15:9945–9951

    Article  CAS  Google Scholar 

  35. Lan DH, Au CT, Yin SF (2015) Zn-EDTA complexes as easy-to-handle and stable heterogeneous catalysts for cycloaddition of carbon dioxide to epoxides. Curr Green Chem 2:35–42

    Article  CAS  Google Scholar 

  36. Paddock RL, Nguyen ST (2001) Chemical CO2 fixation: Cr(III) salen complexes as highly efficient catalysts for the coupling of CO2 and epoxides. J Am Chem Soc 123:11498–11499

    Article  CAS  Google Scholar 

  37. Meléndez J, North M, Villuendas P (2009) One-component catalysts for cyclic carbonate synthesis. Chem Commun 18:2577–2579

    Google Scholar 

  38. Clegg M, Harrington RW, North M et al (2010) Cyclic carbonate synthesis catalysed by bimetallic aluminium–salen complexes. Chem Eur J 16:6828–6843

    Article  CAS  Google Scholar 

  39. Decortes A, Belmonte MM, Benet-Buchholz J et al (2010) Efficient carbonate synthesis under mild conditions through cycloaddition of carbon dioxide to oxiranes using a Zn(salphen) catalyst. Chem Commun 46:4580–4582

    Article  CAS  Google Scholar 

  40. Taherimehr M, Decortes A, Kleij AW et al (2012) A highly active Zn(salphen) catalyst for production of organic carbonates in a green CO2 medium. Catal Sci Technol 2:2231–2237

    Article  CAS  Google Scholar 

  41. Tian DW, Liu BY, Darensbourg DJ et al (2011) Formation of cyclic carbonates from carbon dioxide and epoxides coupling reactions efficiently catalyzed by robust, recyclable one-component aluminum-salen complexes. ACS Catal 2:2029–2035

    Article  CAS  Google Scholar 

  42. North M, Wang BD, Young C (2011) Influence of flue gas on the catalytic activity of an immobilized aluminium (salen) complex for cyclic carbonate synthesis. Energy Environ Sci 4:4163–4170

    Article  CAS  Google Scholar 

  43. Ren WM, Liu Y, Lu XB (2014) Bifunctional aluminum catalyst for CO2 fixation: regioselective ring opening of three-membered heterocyclic compounds. J Org Chem 79:9771–9777

    Article  CAS  Google Scholar 

  44. Verma S, Kureshy RI, Roy T et al (2015) A novel supported salenCr(III)Cl catalyst for alternating copolymerization of cyclohexene oxide with carbon dioxide. Catal Commun 61:78–82

    Article  CAS  Google Scholar 

  45. Paddock RL, Hiyama Y, Nguyen ST et al (2004) Co(III) porphyrin/DMAP: an efficient catalyst system for the synthesis of cyclic carbonates from CO2 and epoxides. Tetrahedron Lett 45:2023–2026

    Article  CAS  Google Scholar 

  46. Sheng XF, Guo HC, Qin YS et al (2015) A novel metalloporphyrin-based conjugated microporous polymer for capture and conversion of CO2. RSC Adv 5:31664–31669

    Article  CAS  Google Scholar 

  47. Ema T, Miyazaki Y, Koyama S et al (2012) A bifunctional catalyst for carbon dioxide fixation: cooperative double activation of epoxides for the synthesis of cyclic carbonates. Chem Commun 48:4489–4491

    Article  CAS  Google Scholar 

  48. Ema T, Miyazaki Y, Taniguchi T et al (2013) Robust porphyrin catalysts immobilized on biogenous iron oxide for the repetitive conversions of epoxides and CO2 into cyclic carbonates. Green Chem 15:2485–2492

    Article  CAS  Google Scholar 

  49. Maeda C, Taniguchi T, Ogawa K et al (2015) Bifunctional catalysts based on m-phenylene-bridged porphyrin dimer and trimer platforms: synthesis of cyclic carbonates from carbon dioxide and epoxides. Angew Chem Int Ed 54:134–138

    Article  CAS  Google Scholar 

  50. Kawanami H, Sasaki A, Matsui K et al (2003) A rapid and effective synthesis of propylene carbonate using a supercritical CO2–ionic liquid system. Chem Commun 34(7):896–897

    Google Scholar 

  51. Han L, Choi HJ, Choi SJ et al (2011) Ionic liquids containing carboxyl acid moieties grafted onto silica: synthesis and application as heterogeneous catalysts for cycloaddition reactions of epoxide and carbon dioxide. Green Chem 13:1023–1028

    Article  CAS  Google Scholar 

  52. Huo ZY, Zhao J, Bu ZW et al (2014) Synthesis of cyclic carbonates from carbon dioxide and epoxides catalyzed by a Keggin-type polyoxometalate-supported rhenium carbonyl derivate in ionic liquid. ChemCatChem 6:3096–3100

    Article  CAS  Google Scholar 

  53. Song JL, Zhang ZF, Han BX et al (2009) MOF-5/n-Bu4NBr: an efficient catalyst system for the synthesis of cyclic carbonates from epoxides and CO2 under mild conditions. Green Chem 11:1031–1036

    Article  CAS  Google Scholar 

  54. Zalomaeva OV, Chibiryaev AM, Fedin VP et al (2013) Cyclic carbonates synthesis from epoxides and CO2 over metal–organic framework Cr-MIL-101. J Catal 298:179–185

    Article  CAS  Google Scholar 

  55. Feng DW, Darensbourg DJ, Zhou HC et al (2013) Construction of ultrastable porphyrin Zr metal−organic frameworks through linker elimination. J Am Chem Soc 135:17105–17110

    Article  CAS  Google Scholar 

  56. Beyzavi MH, Stoddart JF, Hupp JT et al (2014) A hafnium-based metal−organic framework as an efficient and multifunctional catalyst for facile CO2 fixation and regioselective and enantioretentive epoxide activation. J Am Chem Soc 136:15861–15864

    Article  CAS  Google Scholar 

  57. An Q, Li ZF, Wang CC et al (2015) Core-double-shell Fe3O4@carbon@poly (In(III)-carboxylate) microspheres: cycloaddition of CO2 and epoxides on coordination polymer shells constituted by imidazolium-derived Al(III)−salen bifunctional catalysts. ACS Appl Mater Interfaces 7:4969–4978

    Article  CAS  Google Scholar 

  58. Liu MS, Liu B, Sun JM et al (2015) Melamine–ZnI2 as heterogeneous catalysts for efficient chemical fixation of carbon dioxide to cyclic carbonates. RSC Adv 5:960–966

    Article  CAS  Google Scholar 

  59. Zhang W, Liu TY, Wu HH et al (2015) Direct synthesis of ordered imidazolyl-functionalized mesoporous polymers for efficient chemical fixation of CO2. Chem Commun 51:682–684

    Article  CAS  Google Scholar 

  60. Wu LX, Yang HP, Lu JX et al (2015) Electrosynthesis of cyclic carbonates from CO2 and epoxides on a reusable copper nanoparticle cathode. RSC Adv 5:23189–23192

    Article  CAS  Google Scholar 

  61. Yano T, Matsui H, Koike T et al (1997) Magnesium oxide-catalysed reaction of carbon dioxide with an epoxide with retention of stereochemistry. Chem Commun 12:1129–1130

    Article  Google Scholar 

  62. Ema T, Fukuhara K, Sakai T et al (2015) Quaternary ammonium hydroxide as a metal-free and halogen-free catalyst for the synthesis of cyclic carbonates from epoxides and carbon dioxide. Catal Sci Technol 5:2314–2321

    Article  CAS  Google Scholar 

  63. Hoffman WA III (1982) Convenient preparation of carbonates from alcohols and carbon dioxide. J Org Chem 47:5210–5214

    Article  Google Scholar 

  64. Guo CX, Ma R, He LN (2014) Metal-promoted synthesis of cyclic carbonates from 1,2-diols and carbon dioxide. Open Org Chem J 8:6–14

    Article  CAS  Google Scholar 

  65. Honda M, Tamura M, Tomishige K et al (2014) Direct cyclic carbonate synthesis from CO2 and diol over carboxylation/hydration cascade catalyst of CeO2 with 2-cyanopyridine. ACS Catal 4:1893–1896

    Article  CAS  Google Scholar 

  66. Fan BB, Li HY, Fan WB et al (2012) Direct synthesis of dimethyl carbonate from methanol and carbon dioxide over organotin-functionalized mesoporous benzene-silica. Pure Appl Chem 84:663–673

    CAS  Google Scholar 

  67. Sakakura T, Choi JC, Saito Y et al (1999) Metal-catalyzed dimethyl carbonate synthesis from carbon dioxide and acetals. J Org Chem 64:4506–4508

    Article  CAS  Google Scholar 

  68. Du Y, Kong DL, He LN (2005) Sn-catalyzed synthesis of propylene carbonate from propylene glycol and CO2 under supercritical conditions. J Mol Catal A Chem 241:233–237

    Article  CAS  Google Scholar 

  69. Honda M, Tamura M, Nakao K et al (2014) Direct cyclic carbonate synthesis from CO2 and diol over carboxylation/hydration cascade catalyst of CeO2 with 2‑Cyanopyridine. ACS Catal 4:1893–1896

    Article  CAS  Google Scholar 

  70. Jiang HF, Wang AZ, Liu HL et al (2008) Reusable polymer-supported amine-copper catalyst for the formation of alpha-alkylidene cyclic carbonates in supercritical carbon dioxide. Eur J Org Chem 2008:2309–2312

    Article  CAS  Google Scholar 

  71. Yoshida M, Fujita M, Ishii T et al (2003) A novel methodology for the synthesis of cyclic carbonates based on the palladium-catalyzed cascade reaction of 4-methoxycarbonyloxy-2-butyn-1-ols with phenols, involving a novel carbon dioxide elimination-fixation process. J Am Chem Soc 125:4874–4881

    Article  CAS  Google Scholar 

  72. Paquin AM (1946) Reactions of urea with alcohols. Z Naturforsch 1:518–523

    CAS  Google Scholar 

  73. Ball P, Füllmann H, Heitz W (1980) Carbonates and polycarbonates from urea and alcohol. Angew Chem Int Ed 19:718–720

    Article  Google Scholar 

  74. Li Q, Zhang W, Zhao N et al (2006) Synthesis of cyclic carbonates from urea and diols over metal oxides. Catal Today 115:111–116

    Article  CAS  Google Scholar 

  75. Wang M, Zhao N, Wei W et al (2005) Synthesis of dimethyl carbonate from urea and methanol over ZnO. Ind Eng Chem Res 44:7596–7599

    Article  CAS  Google Scholar 

  76. Wu DF, Guo YL, Geng S et al (2012) Synthesis of propylene carbonate from urea and 1,2-propylene glycol in a monolithic stirrer reactor. Ind Eng Chem Res 52:1216–1223

    Article  CAS  Google Scholar 

  77. Aresta M, Dibenedetto A, Bourova OA et al (2004) New catalysts for the conversion of urea into carbamates and carbonates with C1 and C2 alcohols. Stud Surf Sci Catal 153:213–220

    Article  CAS  Google Scholar 

  78. Aresta M, Dibenedetto A, Tommasi I (2000) Direct synthesis of cyclic carbonates by oxidative carboxylation of olefins catalyzed by metal oxides: developing green chemistry based on carbon dioxide. Appl Organomet Chem 14:799–802

    Article  CAS  Google Scholar 

  79. Zhang S, Chen Y, Li F et al (2006) Fixation and conversion of CO2 using ionic liquids. Catal Today 115:61–69

    Article  CAS  Google Scholar 

  80. Bai D, Jing HW (2010) Aerobic oxidative carboxylation of olefins with metalloporphyrin catalysts. Green Chem 12:39–41

    Article  CAS  Google Scholar 

  81. Wang JL, Wang JQ, He LN et al (2008) Direct conversion of styrene into styrene carbonate catalyzed by sodium phosphotungstate/n-Bu4NBr. Green Chem 10:1218–1223

    Article  CAS  Google Scholar 

  82. Sun J, Fujita SI, Arai M et al (2005) Direct synthesis of styrene carbonates from styrene with the Au/SiO2- ZnBr2/Bu4NBr catalyst system. J Catal 230:398–405

    Article  CAS  Google Scholar 

  83. Sun JS, Liang L, Sun JM et al (2011) Direct synthetic processes for cyclic carbonates from olefins and CO2. Catal Surv Asia 15:49–54

    Article  CAS  Google Scholar 

  84. Yang X, Wu J, Hatton TA et al (2014) Microwave assisted synthesis of cyclic carbonates from olefins with sodium bicarbonates as the C1 source. Chem Commun 50:3245–3248

    Article  CAS  Google Scholar 

  85. Yan P, Tan X, Jing HW et al (2011) One approach to cyclic carbonates via a three-component cyclization of phenacyl bromide, CO2, and aldehyde. J Org Chem 76:2459–2464

    Article  CAS  Google Scholar 

  86. Aher RD, Kumar BS, Sudalai A (2014) One-pot synthesis of cyclic carbonates from aldehydes, sulfur ylide, and CO2. Synlett 25:97–101

    CAS  Google Scholar 

  87. Burk RM, Roof MB (1993) A safe and efficient method for conversion of 1,2- and 1,3-diols to cyclic carbonates utilizing triphosgene. Tetrahedron Lett 34:395–398

    Article  CAS  Google Scholar 

  88. Lu XB, Liang B, Zhang YJ et al (2004) Asymmetric catalysis with CO2: direct synthesis of optically active propylene carbonate from racemic epoxides. J Am Chem Soc 126:3732–3733

    Google Scholar 

  89. Berkessel A, Brandenburg M (2006) Catalytic asymmetric addition of carbon dioxide to propylene oxide with unprecedented enantioselectivity. Org Lett 8:4401–4404

    Article  CAS  Google Scholar 

  90. Chang T, Jin LL, Jing HW (2009) Bifunctional chiral catalyst for the synthesis of chiral cyclic carbonates from carbon dioxide and epoxides. ChemCatChem 1:379–383

    Article  CAS  Google Scholar 

  91. Jin LL, Huang Y, Jing HW et al (2008) Chiral catalysts for the asymmetric cycloaddition of carbon dioxide with epoxides. Tetrahedron Asymmetry 19:1947–1953

    Article  CAS  Google Scholar 

  92. Yan P, Jing HW (2009) Catalytic asymmetric cycloaddition of carbon dioxide and propylene oxide using novel chiral polymers of BINOL-Salen-cobalt (III) salts. Adv Synth Catal 351:1325–1332

    Article  CAS  Google Scholar 

  93. Ren WM, Wu GP, Lu XB et al (2012) Role of the co-catalyst in the asymmetric coupling of racemic epoxides with CO2 using multichiral Co(III) complexes: product selectivity and enantioselectivity. Chem Sci 3:2094–2102

    Article  CAS  Google Scholar 

  94. Darensbourg DJ, Wilson SJ (2012) What’s new with CO2? Recent advances in its copolymerization with oxiranes. Green Chem 14:2665–2671

    Article  CAS  Google Scholar 

  95. Darensbourg DJ, Mackiewicz RM, Phelps AL et al (2004) Copolymerization of CO2 and epoxides catalyzed by metal Salen complexes. Acc Chem Res 37:836–844

    Article  CAS  Google Scholar 

  96. Coates GW, Moore DR (2004) Discrete metal-based catalysts for the copolymerization of CO2 and epoxides: discovery, reactivity, optimization, and mechanism. Angew Chem Int Ed 43:6618–6639

    Article  CAS  Google Scholar 

  97. Inoue S, Koinuma H, Tsuruta T (1969) Copolymerization of carbon dioxide and epoxide. J Polym Sci Part B Polym Lett 7:287–292

    Article  CAS  Google Scholar 

  98. Cheng M, Lobkovsky EB, Coates GW (1998) Catalytic reactions involving C1 feedstocks: new high-activity Zn(II)-based catalysts for alternating copolymerization of carbon dioxide and epoxides. J Am Chem Soc 120:11018–11019

    Article  CAS  Google Scholar 

  99. Darensbourg DJ, Mackiewicz RM, Rodgers JL et al (2004) Cyclohexene oxide/CO2 copolymerization catalyzed by chromium(III) salens and N-methylimidazole: effects of varying Salen ligand substituents and relative cocatalyst loading. Inorg Chem 43:6024–6034

    Article  CAS  Google Scholar 

  100. Ren WM, Liu ZW, Lu XB et al (2009) Mechanistic aspects of the copolymerization of CO2 with epoxides using a thermally stable single-site cobalt(III) catalyst. J Am Chem Soc 131:11509–11518

    Article  CAS  Google Scholar 

  101. Chatterjee C, Chisholm MH, El-Khaldy A et al (2013) Influence of the metal (Al, Cr, and Co) and substituents of the porphyrin in controlling reactions involved in copolymerization of propylene oxide and carbon dioxide by porphyrin metal(III) complexes cobalt chemistry. Inorg Chem 52:4547–4553

    Article  CAS  Google Scholar 

  102. Robert C, Ohkawara T, Nozaki K (2014) Manganese-corrole complexes as versatile catalysts for the ring-opening homo- and Co-polymerization of epoxide. Chem Eur J 20:4789–4795

    Article  CAS  Google Scholar 

  103. Lu XB, Ren WM, WU GP (2012) CO2 copolymers from epoxides: catalyst activity, product selectivity, and stereochemistry control. Acc Chem Res 45:1721–1735

    Article  CAS  Google Scholar 

  104. Guerin W, Diallo AK, Guillaume SM et al (2014) Enantiopure isotactic PCHC synthesized by ring-opening polymerization of cyclohexene carbonate. Macromolecules 47:4230–4235

    Article  CAS  Google Scholar 

  105. Darensbourg DJ, Chung WC, Arp CJ et al (2014) Copolymerization and cycloaddition products derived from coupling reactions of 1,2-epoxy-4-cyclohexene and carbon dioxide. postpolymerization functionalization via thiol−ene click reactions. Macromolecules 47:7347–7353

    Article  CAS  Google Scholar 

  106. Darensbourg DJ, Tsai FT (2014) Postpolymerization functionalization of copolymers produced from carbon dioxide and 2-Vinyloxirane: amphiphilic/water-soluble CO2-based polycarbonates. Macromolecules 47:3806–3813

    Article  CAS  Google Scholar 

  107. Liu Y, Deng K, Xiao M et al (2015) A novel biodegradable polymeric surfactant synthesized from carbon dioxide, maleic anhydride and propylene epoxide. Polym Chem 6:2076–2083

    Article  CAS  Google Scholar 

  108. Liu Y, Ren WM, Lu XB et al (2015) Crystalline-gradient polycarbonates prepared from enantioselective terpolymerization of meso-epoxides with CO2. Nat Commun 5:5687

    Article  CAS  Google Scholar 

  109. Zozaki K, Nakano K, Hiyama T (1999) Optically active polycarbonates: asymmetric alternative copolymerization of cyclohexene oxide and carbon dioxide. J Am Chem Soc 121:11008–11009

    Article  CAS  Google Scholar 

  110. Cheng M, Darling NA, Coates GW et al (2000) Enantiomerically-enriched organic reagents via polymer synthesis: enantioselective copolymerization of cycloalkene oxides and CO2 using homogeneous, zinc-based catalysts. Chem Commun 20:2007–2008

    Article  Google Scholar 

  111. Byrne CM, Allen SD, Coates GW et al (2004) Alternating copolymerization of limonene oxide and carbon dioxide. J Am Chem Soc 126:1404–11405

    Article  CAS  Google Scholar 

  112. Kim JG, Coates GW (2012) Synthesis and polymerization of norbornenyl-terminated multiblock poly(cyclohexene carbonate)s: a consecutive ring-opening polymerization route to multisegmented graft polycarbonates. Macromolecules 45:7878–7883

    Article  CAS  Google Scholar 

  113. Auriemma F, De Rosa C, Coates GW et al (2015) Crystallization of alternating limonene oxide/carbon dioxide copolymers: determination of the crystal structure of stereocomplex poly(limonene carbonate). Macromolecules 48:2534–2550

    Article  CAS  Google Scholar 

  114. Qin ZQ, Thomas CM, Coates GW et al (2003) Cobalt-based complexes for the copolymerization of propylene oxide and CO2: active and selective catalysts for polycarbonate synthesis. Angew Chem Int Ed 42:5484–5487

    Article  CAS  Google Scholar 

  115. Cohen CT, Chu T, Coates GW (2005) Cobalt catalysts for the alternating copolymerization of propylene oxide and carbon dioxide: combining high activity and selectivity. J Am Chem Soc 127:10869–10878

    Article  CAS  Google Scholar 

  116. Childers MI, Longo JM, Van Zee NJ et al (2014) Stereoselective epoxide polymerization and copolymerization. Chem Rev 114:8129–8152

    Article  CAS  Google Scholar 

  117. Klaus S, Lehenmeier MW, Rieger B et al (2011) Recent advances in CO2/epoxide copolymerization—new strategies and cooperative mechanisms. Coord Chem Rev 255:1460–1479

    Article  CAS  Google Scholar 

  118. Lu XB, Darensbourg DJ (2012) Cobalt catalysts for the coupling of CO2 and epoxides to provide polycarbonates and cyclic carbonates. Chem Soc Rev 41:1462–1484

    Article  CAS  Google Scholar 

  119. Lu XB, Ren WM, Wu GP (2012) CO2 Copolymers from epoxides: catalyst activity, product selectivity, and stereochemistry control. Account Chem Res 45:1721–1735

    Article  CAS  Google Scholar 

  120. Darensbourg DJ (2007) Making plastics from carbon dioxide: salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2. Chem Rev 107:2388–2410

    Article  CAS  Google Scholar 

  121. Nakano K, Kobayashi K, Nozaki K et al (2013) Copolymerization of epoxides with carbon dioxide catalyzed by iron−corrole complexes: synthesis of a crystalline copolymer. J Am Chem Soc 135:8456–8459

    Article  CAS  Google Scholar 

  122. Taherimehr M, Sertã JPCC, Kleij AW et al (2015) New iron pyridylamino-bis(phenolate) catalyst for converting CO2 into cyclic carbonates and cross-linked polycarbonates. ChemSusChem 8:1034–1042

    Article  CAS  Google Scholar 

  123. Zhang XH, Wei RJ, Fan ZQ et al (2015) Carbon dioxide/epoxide copolymerization via a nanosized zinc−cobalt(III) double metal cyanide complex: substituent effects of epoxides on polycarbonate selectivity, regioselectivity and glass transition temperatures. Macromolecules 48:536–544

    Article  CAS  Google Scholar 

  124. Darensbourg DJ, Yarbrough JC (2002) Mechanistic aspects of the copolymerization reaction of carbon dioxide and epoxides, using a chiral salenchromium chloride catalyst. J Am Chem Soc 124:6335–6342

    Article  CAS  Google Scholar 

  125. Moore DR, Cheng M, Coates GW et al (2003) Mechanism of the alternating copolymerization of epoxides and CO2 using β-diiminate zinc catalysts: evidence for a bimetallic epoxide enchainment. J Am Chem Soc 125:11911–11924

    Article  CAS  Google Scholar 

  126. Liu J, Ren WM, Lu XB et al (2013) Kinetic study on the coupling of CO2 and epoxides catalyzed by Co(III) complex with an inter- or intramolecular nucleophilic cocatalyst. Macromolecules 46:1343–1349

    Article  CAS  Google Scholar 

  127. Jiang X, Gou F, Jing HW (2014) Alternating copolymerization of CO2 and propylene oxide catalyzed by C2v-porphyrin cobalt: selectivity control and a kinetic study. J Catal 313:159–167

    Article  CAS  Google Scholar 

  128. Fu XY, Jing HW (2015) Quaternary onium modified SalenCoXY catalysts for alternating copolymerization of CO2 and propylene oxide: a kinetic study. J Catal 329:317–324

    Article  CAS  Google Scholar 

  129. Schäffner B, Schäffner F, Borner A et al (2010) Organic carbonates as solvents in synthesis and catalysis. Chem Rev 110:4554–4581

    Article  CAS  Google Scholar 

  130. Verevkin SP, Emel’yanenko VN, Kozlova SA (2008) Organic carbonates: experiment and ab initio calculations for prediction of thermochemical properties. J Phys Chem A 112:10667–10673

    Article  CAS  Google Scholar 

  131. Darensbourg DJ, Yeung (2013) Thermodynamics of the carbon dioxide−epoxide copolymerization and kinetics of the metal-free degradation: a computational study. Macromolecules 46:83–95

    Article  CAS  Google Scholar 

  132. Darensbourg DJ, Wei SH, Yeung AD et al (2013) An efficient method of depolymerization of poly(cyclopentenecarbonate) to its comonomers: cyclopentene oxide and carbon dioxide. Macromolecules 46:5850–5855

    Article  CAS  Google Scholar 

  133. Darensbourg DJ, Wilson SJ (2013) Synthesis of CO2-derived poly(indene carbonate) from indene oxide utilizing bifunctional cobalt(III) catalysts. Macromolecules 46:5929–5934

    Article  CAS  Google Scholar 

  134. Wu M, Guo JS, Jing HW (2008) Organic base catalyzed oligomerization of propylene carbonate and bisphenol A: unexpected polyether diol formation. Catal Commun 9:120–125

    Article  CAS  Google Scholar 

  135. Kim SH, Hong SH (2014) Transfer hydrogenation of organic formates and cyclic carbonates: an alternative route to methanol from carbon dioxide. ACS Catal 4:3630–3636

    Article  CAS  Google Scholar 

  136. Blain M, Jean-Gérard L, Andrioletti B et al (2014) Rational investigations in the ring opening of cyclic carbonates by amines. Green Chem 16:4286–4291

    Article  CAS  Google Scholar 

  137. Wang B, Yang S, Gao GH et al (2014) Eco-efficient synthesis of cyclic carbamates/dithiocarbonimidates from cyclic carbonates/trithiocarbonate and aromatic amines catalyzed by ionic liquid BmimOAc. Adv Synth Catal 356:3125–3134

    Article  CAS  Google Scholar 

  138. Song YY, Cheng C, Jing H (2014) Aza-crown ether complex cation ionic liquids: preparation and applications in organic reactions. Chem Eur J 20:12894–12900

    Article  CAS  Google Scholar 

  139. McElroy CR, Aricò F, Tundo P et al (2012) Cyclization reaction of amines with dialkyl carbonates to yield 1,3-oxazinan-2-ones. Pure Appl Chem 84:707–719

    CAS  Google Scholar 

  140. Makiguchi K, Ogasawara Y, Kakuchi T et al (2013) Diphenyl phosphate as an efficient acidic organocatalyst for controlled/living ring-opening polymerization of trimethylene carbonates leading to block, end-functionalized, and macrocyclic polycarbonates. Macromolecules 46:1772–1782

    Article  CAS  Google Scholar 

  141. Olsson JV, Hult D, Malkoch M et al (2014) Reactive imidazole intermediates: simplified synthetic approach to functional aliphatic cyclic carbonates. Polym Chem 5:6651–6655

    Article  CAS  Google Scholar 

  142. Phillips ST, DiLauro AM (2015) Continuous head-to-tail depolymerization: an emerging concept for imparting amplified responses to stimuli-responsive materials. ACS Macro Lett 3:298–304

    Article  CAS  Google Scholar 

  143. Chernyak Y (2008) Phase equilibria in binary mixtures of water with cyclic alkylene carbonates. J Chem Eng Data 53:603–606

    Article  CAS  Google Scholar 

  144. Parker HL, Sherwood J, Hunt AJ (2014) Cyclic carbonates as green alternative solvents for the Heck reaction. ACS Sustain Chem Eng 2:1739–1742

    Article  CAS  Google Scholar 

  145. Laserna V, Whiteoak CJ, Kleij AW et al (2015) Carbon dioxide as a protecting group: highly efficient and selective catalytic access to cyclic cis-diol scaffolds. Angew Chem Int Ed 53:10416–10419

    Article  CAS  Google Scholar 

  146. Kim SH, Tan JPK, Hedrick JL et al (2011) Thermoresponsive nanostructured polycarbonate block copolymers as biodegradable therapeutic delivery agents. Biomaterials 32:5505–5514

    Article  CAS  Google Scholar 

  147. Nedeberg F, Hedrick JL, Yang YY et al (2011) Biodegradable nanostructures with selective lysis of microbial membranes. Nat Commun 3:409–414

    Google Scholar 

  148. Voo ZX, Hedrick JL, Yang YY et al (2015) Antimicrobial/antifouling polycarbonate coatings: role of block copolymer architecture. Macromolecules 48:1055–1064

    Article  CAS  Google Scholar 

  149. Park JH, Jeon JY, Lee BY et al (2013) Preparation of high-molecular-weight aliphatic polycarbonates by condensation polymerization of diols and dimethyl carbonate. Macromolecules 46:3301–3308

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huanwang Jing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jing, H. (2016). Beyond Chlorine Reagents: Organic Carbonate Chemistry. In: Tundo, P., He, LN., Lokteva, E., Mota, C. (eds) Chemistry Beyond Chlorine. Springer, Cham. https://doi.org/10.1007/978-3-319-30073-3_17

Download citation

Publish with us

Policies and ethics