Skip to main content

Single-Cell Phenotypic Screening in Inverse Metabolic Engineering

  • 1884 Accesses

Abstract

Contrary to classical approaches centering on debottlenecking flux-limiting steps in a metabolic pathway, inverse metabolic engineering (IME) aims at identifying and modulating all gene factors that contribute to an optimal phenotype. Within IME, mutant libraries are generated and screened in order to select mutants with the desired phenotype. The screening process is traditionally performed using microtiter well plates, a laborious and expensive process of limited throughput. Here, we review emerging screening methods that address these throughput and cost-effectiveness shortcomings, but also operate at the single-cell level. We discuss the importance of single-cell analyses in IME and detail two specific single-cell screening approaches: the first is fluorescence-activated cell sorting for phenotypic discrimination based on cytosolic or cell-membrane-bound products. The second is droplet microfluidics for screening of cells capable of overproducing secreted products or overconsuming substrates, properties that require confinement to isolate mutants with specific secretory phenotypes.

Keywords

  • Metabolic engineering
  • Single-cell analysis
  • Microfluidics
  • Flow cytometry

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-30019-1_9
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-30019-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 9.1
Fig. 9.2
Fig. 9.3
Fig. 9.4
Fig. 9.5
Fig. 9.6
Fig. 9.7

References

  1. Heller MJ (2002) DNA microarray technology: devices, systems, and applications. Annu Rev Biomed Eng 4:129–153

    CAS  CrossRef  PubMed  Google Scholar 

  2. Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921

    CAS  CrossRef  PubMed  Google Scholar 

  3. Ota T et al (2004) Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet 36(1):40–45

    CrossRef  PubMed  Google Scholar 

  4. Blattner FR et al (1997) The complete genome sequence of Escherichia coli K-12. Science 277(5331):1453–1462

    CAS  CrossRef  PubMed  Google Scholar 

  5. Cohen SN et al (1973) Construction of biologically functional bacterial plasmids in-vitro. Proc Natl Acad Sci U S A 70(11):3240–3244

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  6. Levin BR, Bull JJ (2004) Population and evolutionary dynamics of phage therapy. Nat Rev Microbiol 2(2):166–173

    CAS  CrossRef  PubMed  Google Scholar 

  7. Bailey JE (1991) Toward a science of metabolic engineering. Science 252(5013):1668–1675

    CAS  CrossRef  PubMed  Google Scholar 

  8. Stephanopoulos GN, Aristidou AA, Nielsen J (1998) Metabolic engineering: principles and methodologies. Elsevier, San Diego

    Google Scholar 

  9. Woolston BM, Edgar S, Stephanopoulos G (2013) Metabolic engineering: past and future. Annu Rev Chem Biomol Eng 4:259–288

    CAS  CrossRef  PubMed  Google Scholar 

  10. Brown PO, Botstein D (1999) Exploring the new world of the genome with DNA microarrays. Nat Genet 21:33–37

    CAS  CrossRef  PubMed  Google Scholar 

  11. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97(12):6640–6645

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  12. Bailey JE et al (2002) Inverse metabolic engineering: a strategy for directed genetic engineering of useful phenotypes. Biotechnol Bioeng 79(5):568–579

    CAS  CrossRef  PubMed  Google Scholar 

  13. Koffas MAG, Jung GY, Stephanopoulos G (2003) Engineering metabolism and product formation in Corynebacterium glutamicum by coordinated gene overexpression. Metab Eng 5(1):32–41

    CAS  CrossRef  PubMed  Google Scholar 

  14. Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14(5):454–459

    CAS  CrossRef  PubMed  Google Scholar 

  15. Stephanopoulos G (2007) Challenges in engineering microbes for biofuels production. Science 315(5813):801–804

    CAS  CrossRef  PubMed  Google Scholar 

  16. Stephanopoulos G (2002) Metabolic engineering by genome shuffling. Nat Biotechnol 20(7):666–668

    CAS  CrossRef  PubMed  Google Scholar 

  17. Biot-Pelletier D, Martin VJJ (2014) Evolutionary engineering by genome shuffling. Appl Microbiol Biotechnol 98(9):3877–3887

    CAS  CrossRef  PubMed  Google Scholar 

  18. Zhang YX et al (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415(6872):644–646

    CAS  CrossRef  PubMed  Google Scholar 

  19. Barrios-Gonzalez J, Fernandez FJ, Tomasini A (2003) Microbial secondary metabolites production and strain improvement. Indian J Biotechnol 2(3):322–333

    CAS  Google Scholar 

  20. Patnaik R et al (2002) Genome shuffling of Lactobacillus for improved acid tolerance. Nat Biotechnol 20(7):707–712

    CAS  CrossRef  PubMed  Google Scholar 

  21. Yomano LP, York SW, Ingram LO (1998) Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J Ind Microbiol Biotechnol 20(2):132–138

    CAS  CrossRef  PubMed  Google Scholar 

  22. Smith KM, Liao JC (2011) An evolutionary strategy for isobutanol production strain development in Escherichia coli. Metab Eng 13(6):674–681

    CAS  CrossRef  PubMed  Google Scholar 

  23. Alper H, Stephanopoulos G (2007) Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng 9(3):258–267

    CAS  CrossRef  PubMed  Google Scholar 

  24. Klein-Marcuschamer D, Stephanopoulos G (2008) Assessing the potential of mutational strategies to elicit new phenotypes in industrial strains. Proc Natl Acad Sci U S A 105(7):2319–2324

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  25. Liu WS, Jiang RR (2015) Combinatorial and high-throughput screening approaches for strain engineering. Appl Microbiol Biotechnol 99(5):2093–2104

    CAS  CrossRef  PubMed  Google Scholar 

  26. Skretas G, Kolisis FN (2012) Combinatorial approaches for inverse metabolic engineering applications. Comput Struct Biotechnol J 3:e201210021

    PubMed  PubMed Central  Google Scholar 

  27. Vasdekis AE, Stephanopoulos G (2015) Review of methods to probe single cell metabolism and bioenergetics. Metab Eng 27:115–135

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  28. Lidstrom ME, Konopka MC (2010) The role of physiological heterogeneity in microbial population behavior. Nat Chem Biol 6(10):705–712

    CAS  CrossRef  PubMed  Google Scholar 

  29. Kaern M et al (2005) Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet 6(6):451–464

    CAS  CrossRef  PubMed  Google Scholar 

  30. Li G-W, Xie XS (2011) Central dogma at the single-molecule level in living cells. Nature 475(7356):308–315

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  31. Zenobi R (2013) Single-cell metabolomics: analytical and biological perspectives. Science 342(6163):1201

    CAS  CrossRef  Google Scholar 

  32. Blake WJ et al (2003) Noise in eukaryotic gene expression. Nature 422(6932):633–637

    CAS  CrossRef  PubMed  Google Scholar 

  33. Heinemann M, Zenobi R (2011) Single cell metabolomics. Curr Opin Biotechnol 22(1):26–31

    CAS  CrossRef  PubMed  Google Scholar 

  34. Vasdekis E, Silverman AM, Stephanopoulos G (2015) Origins of cell-to-cell bioprocessing diversity and implications of the extracellular environment revealed at the single-cell level. Sci Rep 5:17689. doi:10.1038/srep17689

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  35. Wang BL et al (2014) Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption. Nat Biotechnol 32(5):473–478

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  36. Doughty DM et al (2014) Probing the subcellular localization of hopanoid lipids in bacteria using NanoSIMS. PLos One 9(1):e84455

    CrossRef  PubMed  PubMed Central  Google Scholar 

  37. Di Carlo D, Wu LY, Lee LP (2006) Dynamic single cell culture array. Lab Chip 6(11):1445–1449

    CrossRef  PubMed  Google Scholar 

  38. Tan W-H, Takeuchi S (2007) A trap-and-release integrated microfluidic system for dynamic microarray applications. Proc Natl Acad Sci U S A 104(4):1146–1151

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  39. Vasdekis AE (2013) Single microbe trap and release in sub-microfluidics. RSC Adv 3(18):6343–6346

    CAS  CrossRef  Google Scholar 

  40. Wu AR et al (2014) Quantitative assessment of single-cell RNRNA-sequencing methods. Nat Methods 11(1):41

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  41. Pushkarev D, Neff NF, Quake SR (2009) Single-molecule sequencing of an individual human genome. Nat Biotechnol 27(9):847–850

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  42. Fan HC et al (2012) Non-invasive prenatal measurement of the fetal genome. Nature 487(7407):320

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  43. Santos CNS, Stephanopoulos G (2008) Melanin-based high-throughput screen for l-tyrosine production in Escherichia coli. Appl Environ Microbiol 74(4):1190–1197

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  44. Lutke-Eversloh T, Stephanopoulos G (2007) A semi-quantitative high-throughput screening method for microbial l-tyrosine production in microtiter plates. J Ind Microbiol Biotechnol 34(12):807–811

    CrossRef  PubMed  Google Scholar 

  45. Gu MB, Mitchell RJ, Kim BC (2004) Whole-cell-based biosensors for environmental biomonitoring and application. Biomanufacturing 87:269–305

    CAS  CrossRef  Google Scholar 

  46. Binder S et al (2012) A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol 13(5):R40

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  47. Blombach B et al (2008) Corynebacterium glutamicum tailored for high-yield l-valine production. Appl Microbiol Biotechnol 79(3):471–479

    CAS  CrossRef  PubMed  Google Scholar 

  48. Mustafi N et al (2012) The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids. Metab Eng 14(4):449–457

    CAS  CrossRef  PubMed  Google Scholar 

  49. Hebisch E et al (2013) High variation of fluorescence protein maturation times in closely related Escherichia coli strains. PLos One 8(10):e75991

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  50. Dietrich JA, McKee AE, Keasling JD (2010) High-throughput metabolic engineering: advances in small-molecule screening and selection. In: Kornberg RD (ed) Annual review of biochemistry, vol 79. pp 563–590. doi:10.1146/annurev-biochem-062608-095938. http://www.annualreviews.org/doi/abs/10.1146/annurev-biochem-062608-095938

    Google Scholar 

  51. Tracy BP, Gaida SM, Papoutsakis ET (2010) Flow cytometry for bacteria: enabling metabolic engineering, synthetic biology and the elucidation of complex phenotypes. Curr Opin Biotechnol 21(1):85–99

    CAS  CrossRef  PubMed  Google Scholar 

  52. Farinas ET (2006) Fluorescence activated cell sorting for enzymatic activity. Comb Chem High Throughput Screen 9(4):321–328

    CAS  CrossRef  PubMed  Google Scholar 

  53. Yang GY, Withers SG (2009) Ultrahigh-throughput FACS-based screening for directed enzyme evolution. Chembiochem 10(17):2704–2715

    CAS  CrossRef  PubMed  Google Scholar 

  54. Croslandtaylor PJ (1953) A device for counting small particles suspended in a fluid through a tube. Nature 171(4340):37–38

    CAS  CrossRef  Google Scholar 

  55. Kamentsky LA, Melamed MR, Derman H (1965) Spectrophotometer—new instrument for ultrarapid cell analysis. Science 150(3696):630

    CAS  CrossRef  PubMed  Google Scholar 

  56. Shapiro HM (2003) Practical flow cytometry. John Wiley & Sons Inc., Hoboken, NJ

    CrossRef  Google Scholar 

  57. Taylor LD (2007) High content screening. In: Taylor LD, Haskins JR, Giuliano KA (eds) Methods in molecular biology. Humana Press Inc., Totowa, NJ

    Google Scholar 

  58. Fattaccioli J et al (2009) Size and fluorescence measurements of individual droplets by flow cytometry. Soft Matter 5(11):2232–2238

    CAS  CrossRef  Google Scholar 

  59. Diaz M et al (2010) Application of flow cytometry to industrial microbial bioprocesses. Biochem Eng J 48(3):385–407

    CAS  CrossRef  Google Scholar 

  60. Becker S et al (2004) Ultra-high-throughput screening based on cell-surface display and fluorescence-activated cell sorting for the identification of novel biocatalysts. Curr Opin Biotechnol 15(4):323–329

    CAS  CrossRef  PubMed  Google Scholar 

  61. Olsen MJ et al (2000) Function-based isolation of novel enzymes from a large library. Nat Biotechnol 18(10):1071–1074

    CAS  CrossRef  PubMed  Google Scholar 

  62. Aharoni A et al (2006) High-throughput screening methodology for the directed evolution of glycosyltransferases. Nat Methods 3(8):609–614

    CAS  CrossRef  PubMed  Google Scholar 

  63. Papadimitriou K et al (2007) Acid tolerance of Streptococcus macedonicus as assessed by flow cytometry and single-cell sorting. Appl Environ Microbiol 73(2):465–476

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  64. Amanullah A et al (2003) Measurement of strain-dependent toxicity in the indene bioconversion using multiparameter flow cytometry. Biotechnol Bioeng 81(4):405–420

    CAS  CrossRef  PubMed  Google Scholar 

  65. Da Silveira MG, Abee T (2009) Activity of ethanol-stressed Oenococcus oeni cells: a flow cytometric approach. J Appl Microbiol 106(5):1690–1696

    CrossRef  PubMed  Google Scholar 

  66. Xiao H, Bao Z, Zhao H (2015) High throughput screening and selection methods for directed enzyme evolution. Ind Eng Chem Res 54(16):4011–4020

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  67. Guo MT et al (2012) Droplet microfluidics for high-throughput biological assays. Lab Chip 12(12):2146–2155

    CAS  CrossRef  PubMed  Google Scholar 

  68. Shim J-U et al (2009) Simultaneous determination of gene expression and enzymatic activity in individual bacterial cells in microdroplet compartments. J Am Chem Soc 131(42):15251–15256

    CAS  CrossRef  PubMed  Google Scholar 

  69. Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82(3):364–366

    CAS  CrossRef  Google Scholar 

  70. Thorsen T et al (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86(18):4163–4166

    CAS  CrossRef  PubMed  Google Scholar 

  71. Baroud CN, Gallaire F, Dangla R (2010) Dynamics of microfluidic droplets. Lab Chip 10(16):2032–2045

    CAS  CrossRef  PubMed  Google Scholar 

  72. Garstecki P et al (2006) Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6(3):437–446

    CAS  CrossRef  PubMed  Google Scholar 

  73. Nisisako T, Torii T, Higuchi T (2002) Droplet formation in a microchannel network. Lab Chip 2(1):24–26

    CAS  CrossRef  PubMed  Google Scholar 

  74. Miller OJ et al (2006) Directed evolution by in vitro compartmentalization. Nat Methods 3(7):561–570

    CAS  CrossRef  PubMed  Google Scholar 

  75. Turner NJ (2003) Directed evolution of enzymes for applied biocatalysis. Trends Biotechnol 21(11):474–478

    CAS  CrossRef  PubMed  Google Scholar 

  76. Schaerli Y et al (2009) Continuous-flow polymerase chain reaction of single-copy DNA in microfluidic microdroplets. Anal Chem 81(1):302–306

    CAS  CrossRef  PubMed  Google Scholar 

  77. Leung K et al (2012) A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities. Proc Natl Acad Sci U S A 109(20):7665–7670

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  78. Huebner A et al (2007) Quantitative detection of protein expression in single cells using droplet microfluidics. Chem Commun 12:1218–1220

    CrossRef  Google Scholar 

  79. Edd JF et al (2008) Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab Chip 8(8):1262–1264

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  80. Sjostrom SL et al (2014) High-throughput screening for industrial enzyme production hosts by droplet microfluidics. Lab Chip 14(4):806–813

    CAS  CrossRef  PubMed  Google Scholar 

  81. Sonderegger M, Schumperli M, Sauer U (2005) Selection of quiescent Escherichia coli with high metabolic activity. Metab Eng 7(1):4–9

    CAS  CrossRef  PubMed  Google Scholar 

  82. Daugherty PS et al (1998) Antibody affinity maturation using bacterial surface display. Protein Eng 11(9):825–832

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Vasdekis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vasdekis, A.E., Stephanopoulos, G. (2016). Single-Cell Phenotypic Screening in Inverse Metabolic Engineering. In: Lu, C., Verbridge, S. (eds) Microfluidic Methods for Molecular Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-30019-1_9

Download citation