Heller MJ (2002) DNA microarray technology: devices, systems, and applications. Annu Rev Biomed Eng 4:129–153
CAS
CrossRef
PubMed
Google Scholar
Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921
CAS
CrossRef
PubMed
Google Scholar
Ota T et al (2004) Complete sequencing and characterization of 21,243 full-length human cDNAs. Nat Genet 36(1):40–45
CrossRef
PubMed
Google Scholar
Blattner FR et al (1997) The complete genome sequence of Escherichia coli K-12. Science 277(5331):1453–1462
CAS
CrossRef
PubMed
Google Scholar
Cohen SN et al (1973) Construction of biologically functional bacterial plasmids in-vitro. Proc Natl Acad Sci U S A 70(11):3240–3244
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Levin BR, Bull JJ (2004) Population and evolutionary dynamics of phage therapy. Nat Rev Microbiol 2(2):166–173
CAS
CrossRef
PubMed
Google Scholar
Bailey JE (1991) Toward a science of metabolic engineering. Science 252(5013):1668–1675
CAS
CrossRef
PubMed
Google Scholar
Stephanopoulos GN, Aristidou AA, Nielsen J (1998) Metabolic engineering: principles and methodologies. Elsevier, San Diego
Google Scholar
Woolston BM, Edgar S, Stephanopoulos G (2013) Metabolic engineering: past and future. Annu Rev Chem Biomol Eng 4:259–288
CAS
CrossRef
PubMed
Google Scholar
Brown PO, Botstein D (1999) Exploring the new world of the genome with DNA microarrays. Nat Genet 21:33–37
CAS
CrossRef
PubMed
Google Scholar
Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97(12):6640–6645
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Bailey JE et al (2002) Inverse metabolic engineering: a strategy for directed genetic engineering of useful phenotypes. Biotechnol Bioeng 79(5):568–579
CAS
CrossRef
PubMed
Google Scholar
Koffas MAG, Jung GY, Stephanopoulos G (2003) Engineering metabolism and product formation in Corynebacterium glutamicum by coordinated gene overexpression. Metab Eng 5(1):32–41
CAS
CrossRef
PubMed
Google Scholar
Nakamura CE, Whited GM (2003) Metabolic engineering for the microbial production of 1,3-propanediol. Curr Opin Biotechnol 14(5):454–459
CAS
CrossRef
PubMed
Google Scholar
Stephanopoulos G (2007) Challenges in engineering microbes for biofuels production. Science 315(5813):801–804
CAS
CrossRef
PubMed
Google Scholar
Stephanopoulos G (2002) Metabolic engineering by genome shuffling. Nat Biotechnol 20(7):666–668
CAS
CrossRef
PubMed
Google Scholar
Biot-Pelletier D, Martin VJJ (2014) Evolutionary engineering by genome shuffling. Appl Microbiol Biotechnol 98(9):3877–3887
CAS
CrossRef
PubMed
Google Scholar
Zhang YX et al (2002) Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415(6872):644–646
CAS
CrossRef
PubMed
Google Scholar
Barrios-Gonzalez J, Fernandez FJ, Tomasini A (2003) Microbial secondary metabolites production and strain improvement. Indian J Biotechnol 2(3):322–333
CAS
Google Scholar
Patnaik R et al (2002) Genome shuffling of Lactobacillus for improved acid tolerance. Nat Biotechnol 20(7):707–712
CAS
CrossRef
PubMed
Google Scholar
Yomano LP, York SW, Ingram LO (1998) Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J Ind Microbiol Biotechnol 20(2):132–138
CAS
CrossRef
PubMed
Google Scholar
Smith KM, Liao JC (2011) An evolutionary strategy for isobutanol production strain development in Escherichia coli. Metab Eng 13(6):674–681
CAS
CrossRef
PubMed
Google Scholar
Alper H, Stephanopoulos G (2007) Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab Eng 9(3):258–267
CAS
CrossRef
PubMed
Google Scholar
Klein-Marcuschamer D, Stephanopoulos G (2008) Assessing the potential of mutational strategies to elicit new phenotypes in industrial strains. Proc Natl Acad Sci U S A 105(7):2319–2324
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Liu WS, Jiang RR (2015) Combinatorial and high-throughput screening approaches for strain engineering. Appl Microbiol Biotechnol 99(5):2093–2104
CAS
CrossRef
PubMed
Google Scholar
Skretas G, Kolisis FN (2012) Combinatorial approaches for inverse metabolic engineering applications. Comput Struct Biotechnol J 3:e201210021
PubMed
PubMed Central
Google Scholar
Vasdekis AE, Stephanopoulos G (2015) Review of methods to probe single cell metabolism and bioenergetics. Metab Eng 27:115–135
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Lidstrom ME, Konopka MC (2010) The role of physiological heterogeneity in microbial population behavior. Nat Chem Biol 6(10):705–712
CAS
CrossRef
PubMed
Google Scholar
Kaern M et al (2005) Stochasticity in gene expression: from theories to phenotypes. Nat Rev Genet 6(6):451–464
CAS
CrossRef
PubMed
Google Scholar
Li G-W, Xie XS (2011) Central dogma at the single-molecule level in living cells. Nature 475(7356):308–315
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Zenobi R (2013) Single-cell metabolomics: analytical and biological perspectives. Science 342(6163):1201
CAS
CrossRef
Google Scholar
Blake WJ et al (2003) Noise in eukaryotic gene expression. Nature 422(6932):633–637
CAS
CrossRef
PubMed
Google Scholar
Heinemann M, Zenobi R (2011) Single cell metabolomics. Curr Opin Biotechnol 22(1):26–31
CAS
CrossRef
PubMed
Google Scholar
Vasdekis E, Silverman AM, Stephanopoulos G (2015) Origins of cell-to-cell bioprocessing diversity and implications of the extracellular environment revealed at the single-cell level. Sci Rep 5:17689. doi:10.1038/srep17689
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Wang BL et al (2014) Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption. Nat Biotechnol 32(5):473–478
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Doughty DM et al (2014) Probing the subcellular localization of hopanoid lipids in bacteria using NanoSIMS. PLos One 9(1):e84455
CrossRef
PubMed
PubMed Central
Google Scholar
Di Carlo D, Wu LY, Lee LP (2006) Dynamic single cell culture array. Lab Chip 6(11):1445–1449
CrossRef
PubMed
Google Scholar
Tan W-H, Takeuchi S (2007) A trap-and-release integrated microfluidic system for dynamic microarray applications. Proc Natl Acad Sci U S A 104(4):1146–1151
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Vasdekis AE (2013) Single microbe trap and release in sub-microfluidics. RSC Adv 3(18):6343–6346
CAS
CrossRef
Google Scholar
Wu AR et al (2014) Quantitative assessment of single-cell RNRNA-sequencing methods. Nat Methods 11(1):41
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Pushkarev D, Neff NF, Quake SR (2009) Single-molecule sequencing of an individual human genome. Nat Biotechnol 27(9):847–850
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Fan HC et al (2012) Non-invasive prenatal measurement of the fetal genome. Nature 487(7407):320
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Santos CNS, Stephanopoulos G (2008) Melanin-based high-throughput screen for l-tyrosine production in Escherichia coli. Appl Environ Microbiol 74(4):1190–1197
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Lutke-Eversloh T, Stephanopoulos G (2007) A semi-quantitative high-throughput screening method for microbial l-tyrosine production in microtiter plates. J Ind Microbiol Biotechnol 34(12):807–811
CrossRef
PubMed
Google Scholar
Gu MB, Mitchell RJ, Kim BC (2004) Whole-cell-based biosensors for environmental biomonitoring and application. Biomanufacturing 87:269–305
CAS
CrossRef
Google Scholar
Binder S et al (2012) A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol 13(5):R40
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Blombach B et al (2008) Corynebacterium glutamicum tailored for high-yield l-valine production. Appl Microbiol Biotechnol 79(3):471–479
CAS
CrossRef
PubMed
Google Scholar
Mustafi N et al (2012) The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids. Metab Eng 14(4):449–457
CAS
CrossRef
PubMed
Google Scholar
Hebisch E et al (2013) High variation of fluorescence protein maturation times in closely related Escherichia coli strains. PLos One 8(10):e75991
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Dietrich JA, McKee AE, Keasling JD (2010) High-throughput metabolic engineering: advances in small-molecule screening and selection. In: Kornberg RD (ed) Annual review of biochemistry, vol 79. pp 563–590. doi:10.1146/annurev-biochem-062608-095938. http://www.annualreviews.org/doi/abs/10.1146/annurev-biochem-062608-095938
Google Scholar
Tracy BP, Gaida SM, Papoutsakis ET (2010) Flow cytometry for bacteria: enabling metabolic engineering, synthetic biology and the elucidation of complex phenotypes. Curr Opin Biotechnol 21(1):85–99
CAS
CrossRef
PubMed
Google Scholar
Farinas ET (2006) Fluorescence activated cell sorting for enzymatic activity. Comb Chem High Throughput Screen 9(4):321–328
CAS
CrossRef
PubMed
Google Scholar
Yang GY, Withers SG (2009) Ultrahigh-throughput FACS-based screening for directed enzyme evolution. Chembiochem 10(17):2704–2715
CAS
CrossRef
PubMed
Google Scholar
Croslandtaylor PJ (1953) A device for counting small particles suspended in a fluid through a tube. Nature 171(4340):37–38
CAS
CrossRef
Google Scholar
Kamentsky LA, Melamed MR, Derman H (1965) Spectrophotometer—new instrument for ultrarapid cell analysis. Science 150(3696):630
CAS
CrossRef
PubMed
Google Scholar
Shapiro HM (2003) Practical flow cytometry. John Wiley & Sons Inc., Hoboken, NJ
CrossRef
Google Scholar
Taylor LD (2007) High content screening. In: Taylor LD, Haskins JR, Giuliano KA (eds) Methods in molecular biology. Humana Press Inc., Totowa, NJ
Google Scholar
Fattaccioli J et al (2009) Size and fluorescence measurements of individual droplets by flow cytometry. Soft Matter 5(11):2232–2238
CAS
CrossRef
Google Scholar
Diaz M et al (2010) Application of flow cytometry to industrial microbial bioprocesses. Biochem Eng J 48(3):385–407
CAS
CrossRef
Google Scholar
Becker S et al (2004) Ultra-high-throughput screening based on cell-surface display and fluorescence-activated cell sorting for the identification of novel biocatalysts. Curr Opin Biotechnol 15(4):323–329
CAS
CrossRef
PubMed
Google Scholar
Olsen MJ et al (2000) Function-based isolation of novel enzymes from a large library. Nat Biotechnol 18(10):1071–1074
CAS
CrossRef
PubMed
Google Scholar
Aharoni A et al (2006) High-throughput screening methodology for the directed evolution of glycosyltransferases. Nat Methods 3(8):609–614
CAS
CrossRef
PubMed
Google Scholar
Papadimitriou K et al (2007) Acid tolerance of Streptococcus macedonicus as assessed by flow cytometry and single-cell sorting. Appl Environ Microbiol 73(2):465–476
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Amanullah A et al (2003) Measurement of strain-dependent toxicity in the indene bioconversion using multiparameter flow cytometry. Biotechnol Bioeng 81(4):405–420
CAS
CrossRef
PubMed
Google Scholar
Da Silveira MG, Abee T (2009) Activity of ethanol-stressed Oenococcus oeni cells: a flow cytometric approach. J Appl Microbiol 106(5):1690–1696
CrossRef
PubMed
Google Scholar
Xiao H, Bao Z, Zhao H (2015) High throughput screening and selection methods for directed enzyme evolution. Ind Eng Chem Res 54(16):4011–4020
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Guo MT et al (2012) Droplet microfluidics for high-throughput biological assays. Lab Chip 12(12):2146–2155
CAS
CrossRef
PubMed
Google Scholar
Shim J-U et al (2009) Simultaneous determination of gene expression and enzymatic activity in individual bacterial cells in microdroplet compartments. J Am Chem Soc 131(42):15251–15256
CAS
CrossRef
PubMed
Google Scholar
Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using “flow focusing” in microchannels. Appl Phys Lett 82(3):364–366
CAS
CrossRef
Google Scholar
Thorsen T et al (2001) Dynamic pattern formation in a vesicle-generating microfluidic device. Phys Rev Lett 86(18):4163–4166
CAS
CrossRef
PubMed
Google Scholar
Baroud CN, Gallaire F, Dangla R (2010) Dynamics of microfluidic droplets. Lab Chip 10(16):2032–2045
CAS
CrossRef
PubMed
Google Scholar
Garstecki P et al (2006) Formation of droplets and bubbles in a microfluidic T-junction—scaling and mechanism of break-up. Lab Chip 6(3):437–446
CAS
CrossRef
PubMed
Google Scholar
Nisisako T, Torii T, Higuchi T (2002) Droplet formation in a microchannel network. Lab Chip 2(1):24–26
CAS
CrossRef
PubMed
Google Scholar
Miller OJ et al (2006) Directed evolution by in vitro compartmentalization. Nat Methods 3(7):561–570
CAS
CrossRef
PubMed
Google Scholar
Turner NJ (2003) Directed evolution of enzymes for applied biocatalysis. Trends Biotechnol 21(11):474–478
CAS
CrossRef
PubMed
Google Scholar
Schaerli Y et al (2009) Continuous-flow polymerase chain reaction of single-copy DNA in microfluidic microdroplets. Anal Chem 81(1):302–306
CAS
CrossRef
PubMed
Google Scholar
Leung K et al (2012) A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities. Proc Natl Acad Sci U S A 109(20):7665–7670
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Huebner A et al (2007) Quantitative detection of protein expression in single cells using droplet microfluidics. Chem Commun 12:1218–1220
CrossRef
Google Scholar
Edd JF et al (2008) Controlled encapsulation of single-cells into monodisperse picolitre drops. Lab Chip 8(8):1262–1264
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Sjostrom SL et al (2014) High-throughput screening for industrial enzyme production hosts by droplet microfluidics. Lab Chip 14(4):806–813
CAS
CrossRef
PubMed
Google Scholar
Sonderegger M, Schumperli M, Sauer U (2005) Selection of quiescent Escherichia coli with high metabolic activity. Metab Eng 7(1):4–9
CAS
CrossRef
PubMed
Google Scholar
Daugherty PS et al (1998) Antibody affinity maturation using bacterial surface display. Protein Eng 11(9):825–832
CAS
CrossRef
PubMed
Google Scholar