Skip to main content

Microfluidic Single-Cell Functional Proteomics

  • 1858 Accesses

Abstract

We review an emerging microfluidic single-cell functional proteomics field and the associated technologies. Functional proteins, such as secreted signaling proteins from immune cells and phosphoproteins in cancer cells, refer to those that play important roles in promoting live cells’ physiological activities. Assay of single-cell functional proteins can be carried out by either cytometry or newly developed microfluidic tools, each of which possesses its own advantages and disadvantages. The use of microfluidic chips brings benefits of high multiplexity, low cost, and high flexibility to integrate various cell manipulation strategies into one platform, while such platforms are normally less developed and automated. We focus the discussion specifically on single-cell barcode technology, which has been more mature than others, and is able to quantitate up to 42 different functional proteins from single cells. This platform has also been uniquely extended to the study of cell–cell interactions. Quantitative analysis of the single-cell functional proteins offers new perspectives of biological systems and provides a conduit between biology and the physicochemical laws. And finally we discuss the challenges and future of the microfluidic single-cell functional proteomics field.

Keywords

  • Single-cell proteomics
  • Signaling networks
  • Functional proteomics
  • Microfluidics
  • Immunoassay

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-30019-1_7
  • Chapter length: 19 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-30019-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 7.1
Fig. 7.2
Fig. 7.3
Fig. 7.4

References

  1. Irish JM, Kotecha N, Nolan GP (2006) Innovation—mapping normal and cancer cell signalling networks: towards single-cell proteomics. Nat Rev Cancer 6(2):146–155

    CAS  CrossRef  PubMed  Google Scholar 

  2. Altschuler SJ, Wu LF (2010) Cellular heterogeneity: do differences make a difference? Cell 141(4):559–563

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  3. Rawlings JS, Rosler KM, Harrison DA (2004) The JAK/STAT signaling pathway. J Cell Sci 117(8):1281–1283

    CAS  CrossRef  PubMed  Google Scholar 

  4. Monti M, Orru S, Pagnozzi D, Pucci P (2005) Functional proteomics. Clin Chim Acta 357(2):140–150

    CAS  CrossRef  PubMed  Google Scholar 

  5. Wei W, Shin YS, Ma C, Wang J, Elitas M, Fan R et al (2013) Microchip platforms for multiplex single-cell functional proteomics with applications to immunology and cancer research. Genome Med 5(8):75

    CrossRef  PubMed  PubMed Central  Google Scholar 

  6. Yu J, Zhou J, Sutherland A, Wei W, Shin YS, Xue M et al (2014) Microfluidics-based single-cell functional proteomics for fundamental and applied biomedical applications. Annu Rev Anal Chem 7:275–295

    CAS  CrossRef  Google Scholar 

  7. Chattopadhyay PK, Gierahn TM, Roederer M, Love JC (2014) Single-cell technologies for monitoring immune systems. Nat Immunol 15(2):128–135

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  8. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8(10):755–768

    CAS  CrossRef  PubMed  Google Scholar 

  9. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM et al (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314(5796):126–129

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  10. Kershaw MH, Westwood JA, Darcy PK (2013) Gene-engineered T cells for cancer therapy. Nat Rev Cancer 13(8):525–541

    CAS  CrossRef  PubMed  Google Scholar 

  11. Ma C, Fan R, Ahmad H, Shi QH, Comin-Anduix B, Chodon T et al (2011) A clinical microchip for evaluation of single immune cells reveals high functional heterogeneity in phenotypically similar T cells. Nat Med 17(6):738–743

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  12. Ma C, Cheung AF, Chodon T, Koya RC, Wu ZQ, Ng C et al (2013) Multifunctional T-cell analyses to study response and progression in adoptive cell transfer immunotherapy. Cancer Discov 3(4):418–429

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  13. Zhao JL, Ma C, O'Connell RM, Mehta A, DiLoreto R, Heath JR et al (2014) Conversion of danger signals into cytokine signals by hematopoietic stem and progenitor cells for regulation of stress-induced hematopoiesis. Cell Stem Cell 14(4):445–459

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  14. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    CAS  CrossRef  PubMed  Google Scholar 

  15. Logue JS, Morrison DK (2012) Complexity in the signaling network: insights from the use of targeted inhibitors in cancer therapy. Gene Dev 26(7):641–650

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  16. Gottesman MM (2002) Mechanisms of cancer drug resistance. Annu Rev Med 53:615–627

    CAS  CrossRef  PubMed  Google Scholar 

  17. Holohan C, Van Schaeybroeck S, Longley DB, Johnston PG (2013) Cancer drug resistance: an evolving paradigm. Nat Rev Cancer 13(10):714–726

    CAS  CrossRef  PubMed  Google Scholar 

  18. Shi QH, Qin LD, Wei W, Geng F, Fan R, Shin YS et al (2012) Single-cell proteomic chip for profiling intracellular signaling pathways in single tumor cells. Proc Natl Acad Sci U S A 109(2):419–424

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  19. Wei W, Shi QH, Remacle F, Qin LD, Shackelford DB, Shin YS et al (2013) Hypoxia induces a phase transition within a kinase signaling network in cancer cells. Proc Natl Acad Sci U S A 110(15):E1352–E1360

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  20. Perfetto SP, Chattopadhyay PK, Roederer M (2004) Innovation—seventeen-colour flow cytometry: unravelling the immune system. Nat Rev Immunol 4(8):648–655

    CAS  CrossRef  PubMed  Google Scholar 

  21. De Rosa SC, Herzenberg LA, Herzenberg LA, Roederer M (2001) 11-Color, 13-parameter flow cytometry: identification of human naive T cells by phenotype, function, and T-cell receptor diversity. Nat Med 7(2):245–248

    CrossRef  PubMed  Google Scholar 

  22. Bendall SC, Simonds EF, Qiu P, Amir EAD, Krutzik PO, Finck R et al (2011) Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332(6030):687–696

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  23. Newell EW, Sigel N, Bendall SC, Nolan GP, Davis MM (2013) Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8(+) T cell phenotypes (vol 36, pg 142, 2012). Immunity 38(1):198–199

    CAS  CrossRef  Google Scholar 

  24. Newell EW, Sigal N, Bendall SC, Nolan GP, Davis MM (2012) Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8(+) T cell phenotypes. Immunity 36(1):142–152

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  25. Czerkinsky CC, Nilsson LA, Nygren H, Ouchterlony O, Tarkowski A (1983) A solid-phase enzyme-linked immunospot (ELISPOT) assay for enumeration of specific antibody-secreting cells. J Immunol Methods 65(1–2):109–121

    CAS  CrossRef  PubMed  Google Scholar 

  26. Bao N, Wang J, Lu C (2008) Recent advances in electric analysis of cells in microfluidic systems. Anal Bioanal Chem 391(3):933–942

    CAS  CrossRef  PubMed  Google Scholar 

  27. Fu AY, Spence C, Scherer A, Arnold FH, Quake SR (1999) A microfabricated fluorescence-activated cell sorter. Nat Biotechnol 17(11):1109–1111

    CAS  CrossRef  PubMed  Google Scholar 

  28. Faley SL, Copland M, Wlodkowic D, Kolch W, Seale KT, Wikswo JP et al (2009) Microfluidic single cell arrays to interrogate signalling dynamics of individual, patient-derived hematopoietic stem cells. Lab Chip 9(18):2659–2664

    CAS  CrossRef  PubMed  Google Scholar 

  29. Brouzes E, Medkova M, Savenelli N, Marran D, Twardowski M, Hutchison JB et al (2009) Droplet microfluidic technology for single-cell high-throughput screening. Proc Natl Acad Sci U S A 106(34):14195–14200

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  30. Ahmad H, Sutherland A, Shin YS, Hwang K, Qin LD, Krom RJ et al (2011) A robotics platform for automated batch fabrication of high density, microfluidics-based DNA microarrays, with applications to single cell, multiplex assays of secreted proteins. Rev Sci Instrum 82(9):094301

    CrossRef  PubMed  PubMed Central  Google Scholar 

  31. Nguyen CQ, Ogunniyi AO, Karabiyik A, Love JC (2013) Single-cell analysis reveals isotype-specific autoreactive B cell repertoires in Sjogren’s syndrome. Plos One 8(3):e58127

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  32. Varadarajan N, Julg B, Yamanaka YJ, Chen HB, Ogunniyi AO, McAndrew E et al (2011) A high-throughput single-cell analysis of human CD8(+) T cell functions reveals discordance for cytokine secretion and cytolysis. J Clin Invest 121(11):4322–4331

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  33. Wang J, Tham D, Wei W, Shin YS, Ma C, Ahmad H et al (2012) Quantitating cell-cell interaction functions with applications to glioblastoma multiforme cancer cells. Nano Lett 12(12):6101–6106

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  34. Fan R, Vermesh O, Srivastava A, Yen BKH, Qin LD, Ahmad H et al (2008) Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nat Biotechnol 26(12):1373–1378

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  35. Heath JR (2005) NanoSystems biology and cancer. Abstr Pap Am Chem S 230:U187–U

    Google Scholar 

  36. Heath JR, Davis ME (2008) Nanotechnology and cancer. Annu Rev Med 59:251–265

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  37. Khalil IG, Hill C (2005) Systems biology for cancer. Curr Opin Oncol 17(1):44–48

    CAS  CrossRef  PubMed  Google Scholar 

  38. Zheng GF, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23(10):1294–1301

    CAS  CrossRef  PubMed  Google Scholar 

  39. Bailey RC, Kwong GA, Radu CG, Witte ON, Heath JR (2007) DNA-encoded antibody libraries: a unified platform for multiplexed cell sorting and detection of genes and proteins. J Am Chem Soc 129(7):1959–1967

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  40. Lu Y, Xue Q, Eisele MR, Sulistijo ES, Brower K, Han L et al (2015) Highly multiplexed profiling of single-cell effector functions reveals deep functional heterogeneity in response to pathogenic ligands. Proc Natl Acad Sci U S A 112(7):E607–E615

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  41. Vermesh U, Vermesh O, Wang J, Kwong GA, Ma C, Hwang K et al (2011) High-density, multiplexed patterning of cells at single-cell resolution for tissue engineering and other applications. Angew Chem Int Edit 50(32):7378–7380

    CAS  CrossRef  Google Scholar 

  42. Shin YS, Ahmad H, Shi QH, Kim H, Pascal TA, Fan R et al (2010) Chemistries for patterning robust DNA microbarcodes enable multiplex assays of cytoplasm proteins from single cancer cells. Chemphyschem 11(14):3063–3069

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  43. Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298(5593):580–584

    CAS  CrossRef  PubMed  Google Scholar 

  44. Tlsty TD, Coussens LM (2006) Tumor stroma and regulation of cancer development. Annu Rev Pathol-Mech 1(1):119–150

    CAS  CrossRef  Google Scholar 

  45. Gagliano N, Costa F, Cossetti C, Pettinari L, Bassi R, Chiriva-Internati M et al (2009) Glioma-astrocyte interaction modifies the astrocyte phenotype in a co-culture experimental model. Oncol Rep 22(6):1349–1356

    CAS  CrossRef  PubMed  Google Scholar 

  46. Bonavia R, Inda MD, Cavenee WK, Furnari FB (2011) Heterogeneity maintenance in glioblastoma: a social network. Cancer Res 71(12):4055–4060

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  47. Shin YS, Remacle F, Fan R, Hwang K, Wei W, Ahmad H et al (2011) Protein signaling networks from single cell fluctuations and information theory profiling. Biophys J 100(10):2378–2386

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  48. Kravchenko-Balasha N, Wang J, Remacle F, Levine RD, Heath JR (2014) Glioblastoma cellular architectures are predicted through the characterization of two-cell interactions. Proc Natl Acad Sci U S A 111(17):6521–6526

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  49. Li HY, Bergeron S, Juncker D (2012) Microarray-to-microarray transfer of reagents by snapping of two chips for cross-reactivity-free multiplex immunoassays. Anal Chem 84(11):4776–4783

    CAS  CrossRef  PubMed  Google Scholar 

  50. Elitas M, Brower K, Lu Y, Chen JJ, Fan R (2014) A microchip platform for interrogating tumor-macrophage paracrine signaling at the single-cell level. Lab Chip 14(18):3582–3588

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mailloux, S., Ramirez, L., Wang, J. (2016). Microfluidic Single-Cell Functional Proteomics. In: Lu, C., Verbridge, S. (eds) Microfluidic Methods for Molecular Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-30019-1_7

Download citation