Skip to main content

Microfluidic Multistage Integration for Analysis of Circulating Exosomes

  • 1909 Accesses

Abstract

The study of circulating exosomes has received growing interest in fields of biology and medicine. Exosomes, small (50–150 nm) membrane vesicles of endocytic origin, have emerged as new mechanisms for regulation of a wide range of biological processes, including intercellular communications, immune response, and cancer metastasis. Molecular analysis of exosomes is an emerging paradigm for noninvasive cancer diagnosis and monitoring of disease treatment; however, exosome analysis is challenging due to current low-efficient isolation and molecular measurement approaches. In this chapter, a novel microfluidic strategy is described for rapid, quantitative isolation and analysis of exosomes, as well as intravesicular markers directly from human blood. This microfluidic platform enables multistage integration of immunomagnetic isolation and enrichment, chemical lysis, and immune-sandwich chemifluorescence probing in one sequential process. The developed microfluidic exosome profiling platform has been employed to measure expression levels of total and phosphorylated IGF-1R in non-small-cell lung cancer patient plasma-derived exosomes, thereby opening a new avenue for monitoring IGF-1R and its activation status in a noninvasive manner (i.e., liquid biopsy). This developed microfluidic exosome profiling platform shows great potential for forming the basis of a critically needed infrastructure to advance the biological and clinical utilization of exosomes.

Keywords

  • Exosomes
  • Biomarker
  • Cancer diagnosis
  • Microfluidic multistage integration
  • Intravesicular marker

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-30019-1_6
  • Chapter length: 27 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-30019-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 6.1
Fig. 6.2
Fig. 6.3
Fig. 6.4
Fig. 6.5
Fig. 6.6
Fig. 6.7
Fig. 6.8
Fig. 6.9
Fig. 6.10
Fig. 6.11
Fig. 6.12

References

  1. Guo MT, Rotem A, Heyman JA, Weitz DA (2012) Droplet microfluidics for high-throughput biological assays. Lab Chip 12:2146–2155

    CAS  CrossRef  PubMed  Google Scholar 

  2. Witters D, Knez K, Ceyssens F, Puers R, Lammertyn J (2013) Digital microfluidics-enabled single-molecule detection by printing and sealing single magnetic beads in femtoliter droplets. Lab Chip 13:2047–2054

    CAS  CrossRef  PubMed  Google Scholar 

  3. Wang T, Zhang M, Dreher DD, Zeng Y (2013) Ultrasensitive microfluidic solid-phase ELISA using an actuatable microwell-patterned PDMS chip. Lab Chip 13(21):4190–4197

    CAS  CrossRef  PubMed  Google Scholar 

  4. Zeng Y, Novak R, Shuga J, Smith MT, Mathies RA (2010) High-performance single cell genetic analysis using microfluidic emulsion generator arrays. Anal Chem 82:3183–3190

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  5. He M, Herr AE (2010) Automated microfluidic protein immunoblotting. Nat Protoc 5:1844–1856

    CAS  CrossRef  PubMed  Google Scholar 

  6. He M, Novak J, Julian BA, Herr AE (2011) Membrane-assisted online renaturation for automated microfluidic lectin blotting. J Am Chem Soc 133:19610–19613

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  7. Chen C, Skog J, Hsu CH, Lessard RT, Balaj L et al (2010) Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab Chip 10:505–511

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  8. Davies RT, Kim J, Jang SC, Choi EJ, Gho YS, Park J (2012) Microfluidic filtration system to isolate extracellular vesicles from blood. Lab Chip 12:5202–5210

    CAS  CrossRef  PubMed  Google Scholar 

  9. Shao H, Chung J, Balaj L, Charest A, Bigner DD et al (2012) Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat Med 18:1835–1840

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  10. Im H, Shao H, Park YI, Peterson VM, Castro CM et al (2014) Label-free detection and molecular profiling of exosomes with a nano-plasmonic sensor. Nat Biotechnol 32:490–495

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  11. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  12. Hendrix A, Hume AN (2011) Exosome signaling in mammary gland development and cancer. Int J Dev Biol 55:879–887

    CrossRef  PubMed  Google Scholar 

  13. Staals RH, Pruijn GJ (2011) The human exosome and disease. Adv Exp Med Biol 702:132–142

    CrossRef  PubMed  Google Scholar 

  14. Schaeffer D, Clark A, Klauer AA, Tsanova B, van Hoof A (2011) Functions of the cytoplasmic exosome. Adv Exp Med Biol 702:79–90

    CrossRef  PubMed  Google Scholar 

  15. Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579

    CAS  PubMed  Google Scholar 

  16. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    CAS  CrossRef  PubMed  Google Scholar 

  17. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L et al (2008) Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol 10:1470–1476

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  18. Guescini M, Genedani S, Stocchi V, Agnati LF (2010) Astrocytes and Glioblastoma cells release exosomes carrying mtDNA. J Neural Transm 117:1–4

    CAS  CrossRef  PubMed  Google Scholar 

  19. Keller S, Ridinger J, Rupp AK, Janssen JW, Altevogt P (2011) Body fluid derived exosomes as a novel template for clinical diagnostics. J Transl Med 9:86

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  20. Rountree RB, Mandl SJ, Nachtwey JM, Dalpozzo K, Do L et al (2011) Exosome targeting of tumor antigens expressed by cancer vaccines can improve antigen immunogenicity and therapeutic efficacy. Cancer Res 71:5235–5244

    CAS  CrossRef  PubMed  Google Scholar 

  21. Taylor DD, Zacharias W, Gercel-Taylor C (2011) Exosome isolation for proteomic analyses and RNA profiling. Methods Mol Biol 728:235–246

    CAS  CrossRef  PubMed  Google Scholar 

  22. Rani S, O’Brien K, Kelleher FC, Corcoran C, Germano S et al (2011) Isolation of exosomes for subsequent mRNA, MicroRNA, and protein profiling. Methods Mol Biol 784:181–195

    CAS  CrossRef  PubMed  Google Scholar 

  23. Bobrie A, Colombo M, Krumeich S, Raposo G, Thery C (2012) Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. J Extracell Vesicles 1:18397

    Google Scholar 

  24. Gyorgy B, Modos K, Pallinger E, Paloczi K, Pasztoi M et al (2011) Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters. Blood 117:e39–e48

    CAS  CrossRef  PubMed  Google Scholar 

  25. Kalra H, Adda CG, Liem M, Ang CS, Mechler A et al (2013) Comparative proteomics evaluation of plasma exosome isolation techniques and assessment of the stability of exosomes in normal human blood plasma. Proteomics 13:3354–3364

    CAS  CrossRef  PubMed  Google Scholar 

  26. Sokolova V, Ludwig AK, Hornung S, Rotan O, Horn PA et al (2011) Characterisation of exosomes derived from human cells by nanoparticle tracking analysis and scanning electron microscopy. Colloids Surf B Biointerfaces 87:146–150

    CAS  CrossRef  PubMed  Google Scholar 

  27. Dragovic RA, Collett GP, Hole P, Ferguson DJ, Redman CW et al (2015) Isolation of syncytiotrophoblast microvesicles and exosomes and their characterisation by multicolour flow cytometry and fluorescence nanoparticle tracking analysis. Methods 87:64–74

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  28. van der Pol E, Coumans FA, Grootemaat AE, Gardiner C, Sargent IL et al (2014) Particle size distribution of exosomes and microvesicles determined by transmission electron microscopy, flow cytometry, nanoparticle tracking analysis, and resistive pulse sensing. J Thromb Haemost 12:1182–1192

    CrossRef  PubMed  Google Scholar 

  29. Siegel R, Ma J, Zou Z, Jemal A (2014) Cancer statistics, 2014. Cancer J Clin 64:9–29

    CrossRef  Google Scholar 

  30. Hirsh V (2012) Future of personalized medicine in non-small-cell lung cancer. Curr Oncol 19:S86

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kucherlapati R (2010) Personalized medicine for non-small-cell lung cancer. Oncology (Williston Park) 24:399–400

    Google Scholar 

  32. Scagliotti GV, Novello S (2012) The role of the insulin-like growth factor signaling pathway in non-small cell lung cancer and other solid tumors. Cancer Treat Rev 38:292–302

    CAS  CrossRef  PubMed  Google Scholar 

  33. Nakagawa M, Uramoto H, Oka S, Chikaishi Y, Iwanami T et al (2012) Clinical significance of IGF1R expression in non-small-cell lung cancer. Clin Lung Cancer 13:136–142

    CAS  CrossRef  PubMed  Google Scholar 

  34. Ofiara LM, Navasakulpong A, Ezer N, Gonzalez AV (2012) The importance of a satisfactory biopsy for the diagnosis of lung cancer in the era of personalized treatment. Curr Oncol 19:S16–S23

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  35. Clyne M (2012) Prostate cancer: reducing IGF-1 levels unlikely to ProtecT against prostate cancer initiation. Nat Rev Urol 9:6

    CrossRef  Google Scholar 

  36. Rosell R, Wei J, Taron M (2009) Circulating MicroRNA signatures of tumor-derived exosomes for early diagnosis of non-small-cell lung cancer. Clin Lung Cancer 10:8–9

    CAS  CrossRef  PubMed  Google Scholar 

  37. Taylor DD, Gercel-Taylor C (2008) MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol 110:13–21

    CAS  CrossRef  PubMed  Google Scholar 

  38. Pisitkun T, Gandolfo MT, Das S, Knepper MA, Bagnasco SM (2012) Application of systems biology principles to protein biomarker discovery: urinary exosomal proteome in renal transplantation. Proteomics Clin Appl 6:268–278

    CAS  CrossRef  PubMed  Google Scholar 

  39. Madhavan B, Yue S, Galli U, Rana S, Gross W et al (2015) Combined evaluation of a panel of protein and miRNA serum-exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity. Int J Cancer 136:2616–2627

    CAS  CrossRef  PubMed  Google Scholar 

  40. Alvarez ML, Khosroheidari M, Kanchi Ravi R, DiStefano JK (2012) Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int 82:1024–1032

    CAS  CrossRef  PubMed  Google Scholar 

  41. Orita T, Moore LR, Joshi P, Tomita M, Horiuchi T, Zborowski M (2013) A quantitative determination of magnetic nanoparticle separation using on-off field operation of quadrupole magnetic field-flow fractionation (QMgFFF). Anal Sci 29:761–764

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  42. Minc N, Futterer C, Dorfman KD, Bancaud A, Gosse C et al (2004) Quantitative microfluidic separation of DNA in self-assembled magnetic matrixes. Anal Chem 76:3770–3776

    CAS  CrossRef  PubMed  Google Scholar 

  43. Sinha A, Ganguly R, Puri IK (2009) Magnetic separation from superparamagnetic particle suspensions. J Magn Magn Mater 321:2251–2256

    CAS  CrossRef  Google Scholar 

  44. Atay S, Gercel-Taylor C, Kesimer M, Taylor DD (2011) Morphologic and proteomic characterization of exosomes released by cultured extravillous trophoblast cells. Exp Cell Res 317:1192–1202

    CAS  CrossRef  PubMed  Google Scholar 

  45. Conde-Vancells J, Rodriguez-Suarez E, Embade N, Gil D, Matthiesen R et al (2008) Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J Proteome Res 7:5157–5166

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  46. Sethu P, Anahtar M, Moldawer LL, Tompkins RG, Toner M (2004) Continuous flow microfluidic device for rapid erythrocyte lysis. Anal Chem 76:6247–6253

    CAS  CrossRef  PubMed  Google Scholar 

  47. Proczek G, Gassner AL, Busnel JM, Girault HH (2012) Total serum IgE quantification by microfluidic ELISA using magnetic beads. Anal Bioanal Chem 402:2645–2653

    CAS  CrossRef  PubMed  Google Scholar 

  48. Herrmann M, Veres T, Tabrizian M (2006) Enzymatically-generated fluorescent detection in micro-channels with internal magnetic mixing for the development of parallel microfluidic ELISA. Lab Chip 6:555–560

    CAS  CrossRef  PubMed  Google Scholar 

  49. Kumar D, Gupta D, Shankar S, Srivastava RK (2015) Biomolecular characterization of exosomes released from cancer stem cells: Possible implications for biomarker and treatment of cancer. Oncotarget 6:3280–3291

    CrossRef  PubMed  PubMed Central  Google Scholar 

  50. Aliotta JM (2011) Tumor exosomes: a novel biomarker? J Gastrointest Oncol 2:203–205

    PubMed  PubMed Central  Google Scholar 

  51. Hosseini-Beheshti E, Pham S, Adomat H, Li N, Tomlinson Guns ES (2012) Exosomes as biomarker enriched microvesicles: characterization of exosomal proteins derived from a panel of prostate cell lines with distinct AR phenotypes. Mol Cell Proteomics 11:863–885

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  52. Lasser C (2015) Exosomes in diagnostic and therapeutic applications: biomarker, vaccine and RNA interference delivery vehicle. Expert Opin Biol Ther 15:103–117

    CrossRef  PubMed  Google Scholar 

  53. Rabinowits G, Gercel-Taylor C, Day JM, Taylor DD, Kloecker GH (2009) Exosomal microRNA: a diagnostic marker for lung cancer. Clin Lung Cancer 10:42–46

    CAS  CrossRef  PubMed  Google Scholar 

  54. Larsson O, Girnita A, Girnita L (2005) Role of insulin-like growth factor 1 receptor signalling in cancer. Br J Cancer 92:2097–2101

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  55. Akers JC, Gonda D, Kim R, Carter BS, Chen CC (2013) Biogenesis of extracellular vesicles (EV): exosomes, microvesicles, retrovirus-like vesicles, and apoptotic bodies. J Neurooncol 113:1–11

    CrossRef  PubMed  Google Scholar 

  56. Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S et al (2012) Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 56:293–304

    CAS  CrossRef  PubMed  Google Scholar 

  57. Cocucci E, Racchetti G, Meldolesi J (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol 19:43–51

    CAS  CrossRef  PubMed  Google Scholar 

  58. Poliakov A, Spilman M, Dokland T, Amling CL, Mobley JA (2009) Structural heterogeneity and protein composition of exosome-like vesicles (prostasomes) in human semen. Prostate 69:159–167

    CrossRef  PubMed  Google Scholar 

  59. Jorgensen M, Baek R, Pedersen S, Sondergaard EK, Kristensen SR, Varming K (2013) Extracellular vesicle (EV) array: microarray capturing of exosomes and other extracellular vesicles for multiplexed phenotyping. J Extracell Vesicles 2:20920

    Google Scholar 

  60. Cheminant M, Labia R (1991) The Michaelis-Menten equation: computing substrate concentration as a function of time without restrictions on the initial conditions. Comput Appl Biosci 7:99–101

    CAS  PubMed  Google Scholar 

  61. Gong Y, Yao E, Shen R, Goel A, Arcila M et al (2009) High expression levels of total IGF-1R and sensitivity of NSCLC cells in vitro to an anti-IGF-1R antibody (R1507). PLoS One 4:e7273

    CrossRef  PubMed  PubMed Central  Google Scholar 

  62. Janeway KA, Zhu MJ, Barretina J, Perez-Atayde A, Demetri GD, Fletcher JA (2010) Strong expression of IGF1R in pediatric gastrointestinal stromal tumors without IGF1R genomic amplification. Int J Cancer 127:2718–2722

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  63. Tarn C, Rink L, Merkel E, Flieder D, Pathak H et al (2008) Insulin-like growth factor 1 receptor is a potential therapeutic target for gastrointestinal stromal tumors. Proc Natl Acad Sci U S A 105:8387–8392

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  64. Yeo CD, Park KH, Park CK, Lee SH, Kim SJ et al (2015) Expression of insulin-like growth factor 1 receptor (IGF-1R) predicts poor responses to epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors in non-small cell lung cancer patients harboring activating EGFR mutations. Lung Cancer 87:311–317

    CrossRef  PubMed  Google Scholar 

  65. Peled N, Wynes MW, Ikeda N, Ohira T, Yoshida K et al (2013) Insulin-like growth factor-1 receptor (IGF-1R) as a biomarker for resistance to the tyrosine kinase inhibitor gefitinib in non-small cell lung cancer. Cell Oncol 36:277–288

    CAS  CrossRef  Google Scholar 

  66. Tisi E, Lissoni P, Rovelli F, Mandelli D, Barni S, Tancini G (1991) Blood levels of IGF-I in non-small cell lung cancer: relation to clinical data. Int J Biol Markers 6:99–102

    CAS  PubMed  Google Scholar 

  67. Khosravi J, Krishna RG, Bodani U, Diamandi A, Khaja N et al (2007) Immunoassay of serine-phosphorylated isoform of insulin-like growth factor (IGF) binding protein (IGFBP)-1. Clin Biochem 40:86–93

    CAS  CrossRef  PubMed  Google Scholar 

  68. Mobergslien A, Sioud M (2014) Exosome-derived miRNAs and cellular miRNAs activate innate immunity. J Innate Immun 6:105–110

    CAS  CrossRef  PubMed  Google Scholar 

  69. Pollak M (2012) The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat Rev Cancer 12:159–169

    CAS  PubMed  Google Scholar 

  70. Fidler MJ, Shersher DD, Borgia JA, Bonomi P (2012) Targeting the insulin-like growth factor receptor pathway in lung cancer: problems and pitfalls. Ther Adv Med Oncol 4:51–60

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  71. Han JY, Choi BG, Choi JY, Lee SY, Ju SY (2006) The prognostic significance of pretreatment plasma levels of insulin-like growth factor (IGF)-1, IGF-2, and IGF binding protein-3 in patients with advanced non-small cell lung cancer. Lung Cancer 54:227–234

    CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zeng Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

He, M., Godwin, A., Zeng, Y. (2016). Microfluidic Multistage Integration for Analysis of Circulating Exosomes. In: Lu, C., Verbridge, S. (eds) Microfluidic Methods for Molecular Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-30019-1_6

Download citation