Skip to main content

Convective PCR Thermocycling with Smartphone-Based Detection: A Versatile Platform for Rapid, Inexpensive, and Robust Mobile Diagnostics

Abstract

Development of portable PCR-based diagnostic instruments has potential to greatly expand availability of advanced health care technologies. But issues associated with cost, complexity, electrical power requirements, and product detection continue to make PCR challenging to deploy outside of conventional laboratory environments. Here we review exciting recent progress toward development of convective thermocycling approaches that promise to overcome these limitations, laying a foundation for a new generation of inexpensive and greatly simplified diagnostic tools that can be readily deployed in a host of field-based settings.

Key words

  • Point of care
  • PCR
  • Portable diagnostics
  • Smartphone

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-30019-1_3
  • Chapter length: 15 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-30019-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3
Fig. 3.4
Fig. 3.5
Fig. 3.6

References

  1. Farrar JS, Wittwer CT (2015) Extreme PCR: efficient and specific DNA amplification in 15–60 seconds. Clin Chem 61:145–153

    CrossRef  PubMed  Google Scholar 

  2. Hühmer A, Landers J (2000) Noncontact infrared-mediated thermocycling for effective polymerase chain reaction amplification of DNA in nanoliter volumes. Anal Chem 72:5507–5512

    CrossRef  PubMed  Google Scholar 

  3. Pal R et al (2005) An integrated microfluidic device for influenza and other genetic analyses. Lab Chip 5:1024–1032

    CAS  CrossRef  PubMed  Google Scholar 

  4. Kopp MU, De Mello AJ, Manz A (1998) Chemical amplification: continuous-flow PCR on a chip. Science 280:1046–1048

    CAS  CrossRef  PubMed  Google Scholar 

  5. West J et al (2002) Application of magnetohydrodynamic actuation to continuous flow chemistry. Lab Chip 2:224–230

    CAS  CrossRef  PubMed  Google Scholar 

  6. Krishnan M, Ugaz VM, Burns MA (2002) PCR in a Rayleigh-Bénard convection cell. Science 298:793–793

    CrossRef  PubMed  Google Scholar 

  7. Braun D, Goddard NL, Libchaber A (2003) Exponential DNA replication by laminar convection. Phys Rev Lett 91:158103

    CrossRef  PubMed  Google Scholar 

  8. Wheeler E et al (2004) Convectively driven polymerase chain reaction thermal cycler. Anal Chem 76:4011–4016

    CAS  CrossRef  PubMed  Google Scholar 

  9. Priye A, Hassan YA, Ugaz VM (2013) Microscale chaotic advection enables robust convective DNA replication. Anal Chem 85:10536–10541

    CAS  CrossRef  PubMed  Google Scholar 

  10. Muddu R, Hassan YA, Ugaz VM (2011) Chaotically accelerated polymerase chain reaction by microscale Rayleigh–Bénard convection. Angew Chem Int Ed 50:3048–3052

    CAS  CrossRef  Google Scholar 

  11. Yao D-J, Chen J-R, Ju W-T (2007) Micro–Rayleigh-Bénard convection polymerase chain reaction system. J Micro Nanolith Mem 6:043007

    CrossRef  Google Scholar 

  12. Hennig M, Braun D (2005) Convective polymerase chain reaction around micro immersion heater. Appl Phys Lett 87:183901

    CrossRef  Google Scholar 

  13. Braun D (2004) PCR by thermal convection. Mod Phys Lett B 18:775–784

    CAS  CrossRef  Google Scholar 

  14. Agrawal N, Hassan YA, Ugaz VM (2007) A pocket‐sized convective PCR thermocycler. Angew Chem Int Ed 46:4316–4319

    CAS  CrossRef  Google Scholar 

  15. Zhang C, Xing D (2009) Parallel DNA amplification by convective polymerase chain reaction with various annealing temperatures on a thermal gradient device. Anal Biochem 387:102–112

    CAS  CrossRef  PubMed  Google Scholar 

  16. Chen Z, Qian S, Abrams WR, Malamud D, Bau HH (2004) Thermosiphon-based PCR reactor: experiment and modeling. Anal Chem 76:3707–3715

    CAS  CrossRef  PubMed  Google Scholar 

  17. Chung KH, Park SH, Choi YH (2010) A palmtop PCR system with a disposable polymer chip operated by the thermosiphon effect. Lab Chip 10:202–210

    CAS  CrossRef  PubMed  Google Scholar 

  18. Chou WP et al (2011) Rapid DNA amplification in a capillary tube by natural convection with a single isothermal heater. BioTechniques 50:52–57

    CAS  CrossRef  PubMed  Google Scholar 

  19. Chang HFG et al (2012) A thermally baffled device for highly stabilized convective PCR. Biotechnol J 7:662–666

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  20. Hsieh Y-F et al (2013) A real-time convective PCR machine in a capillary tube instrumented with a CCD-based fluorometer. Sensors Actuators B Chem 183:434–440

    CAS  CrossRef  Google Scholar 

  21. Ulrich M et al (2006) Evaluation of the Cepheid GeneXpert® system for detecting Bacillus anthracis. J Appl Microbiol 100:1011–1016

    CAS  CrossRef  PubMed  Google Scholar 

  22. Raja S et al (2005) Technology for automated, rapid, and quantitative PCR or reverse transcription-PCR clinical testing. Clin Chem 51:882–890

    CAS  CrossRef  PubMed  Google Scholar 

  23. Tanriverdi S, Chen L, Chen S (2010) A rapid and automated sample-to-result HIV load test for near-patient application. J Infect Dis 201:S52–S58

    CAS  CrossRef  PubMed  Google Scholar 

  24. Goldenberg SD, Edgeworth JD (2015) The Enigma ML FluAB-RSV assay: a fully automated molecular test for the rapid detection of influenza A, B and respiratory syncytial viruses in respiratory specimens. Exp Rev Mol Diagn 15:23–32

    CAS  CrossRef  Google Scholar 

  25. Poritz MA et al (2011) FilmArray, an automated nested multiplex PCR system for multi-pathogen detection: development and application to respiratory tract infection. PLoS ONE 6, e26047

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  26. Jiang L et al (2014) Solar thermal polymerase chain reaction for smartphone-assisted molecular diagnostics. Sci Rep 4:4137

    PubMed  PubMed Central  Google Scholar 

  27. Cecilia D et al (2015) Development of a multiplex real-time RT-PCR assay for simultaneous detection of dengue and chikungunya viruses. Arch Virol 160:323–327

    CAS  CrossRef  PubMed  Google Scholar 

  28. Ehrmeyer SS, Laessig RH (2007) Point-of-care testing, medical error, and patient safety: a 2007 assessment. Clin Chem Lab Med 45:766–773

    CAS  CrossRef  PubMed  Google Scholar 

  29. Niemz A, Ferguson TM, Boyle DS (2011) Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol 29:240–250

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  30. Lim S, Nan H, Lee M-J, Kang SH (2014) Fast on-site diagnosis of influenza A virus by Palm PCR and portable capillary electrophoresis. J Chromatogr B 963:134–139

    CAS  CrossRef  Google Scholar 

  31. Mölsä M et al (2012) Detection of influenza A viruses with a portable real-time PCR instrument. J Virol Methods 181:188–191

    CrossRef  PubMed  Google Scholar 

  32. Christensen DR et al (2006) Detection of biological threat agents by real-time PCR: comparison of assay performance on the RAPID, the LightCycler, and the Smart Cycler platforms. Clin Chem 52:141–145

    CAS  CrossRef  PubMed  Google Scholar 

  33. Tsai Y-L et al (2012) Development of TaqMan probe-based insulated isothermal PCR (iiPCR) for sensitive and specific on-site pathogen detection. PLoS One 7:e45278

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  34. Priye A et al (2016) Lab-on-a-drone: toward pinpoint deployment of smartphone-enabled nucleic acid-based diagnostics for mobile health care. Anal Chem 88. doi: 10.1021/acs.analchem.5b04153

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the US National Science Foundation (NSF) under grant CBET-1034002. We thank Magda Lagoudas for supporting an undergraduate team to assist in prototype instrument development via the Texas A&M AggiE-Challenge program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor M. Ugaz Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Priye, A., Ugaz, V.M. (2016). Convective PCR Thermocycling with Smartphone-Based Detection: A Versatile Platform for Rapid, Inexpensive, and Robust Mobile Diagnostics. In: Lu, C., Verbridge, S. (eds) Microfluidic Methods for Molecular Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-30019-1_3

Download citation