Skip to main content

Microfluidic Methods in Single Cell Biology

  • 1918 Accesses

Abstract

Stochastic variations within seemingly homogeneous cell populations determine the emergent properties of complex cellular systems such as biofilms, tumors, pluripotent stem cells, and multispecies ecosystems. The advent of microfluidic technologies, coupled with rapid advances in fluorescence-based molecular imaging and genomic, transcriptomic, and proteomic profiling techniques, has spurred a revolution in biological analysis at the level of single cells. Over the past decade, several microfluidic platforms have been developed that enable the isolation, enrichment, and biochemical or genetic analysis of individual cells with high spatiotemporal resolution in a fashion that is not achievable using macroscale methods. In sharp contrast to population-averaged measurements based on bulk-level techniques, microfluidic cell culture platforms permit the acquisition of multiparametric and high-content information while preserving the identity and monitoring the behavior of individual cells over time. In this way, microfluidics has ushered in new frontiers in single cell biology with a direct impact on applied and foundational studies in microbial ecology, systems biology, therapeutics development, and clinical diagnostics. In this chapter, we describe the transformative impact of microfluidics in single cell biology with particular emphasis on the following areas: (1) microfluidic bioreactors for cellular analysis in dynamically changing microenvironments, (2) microfluidic chips for in vitro drug screening, and (3) single cell confinement and isolation microchips for sorting and profiling rare or unculturable cells in complex environmental consortia.

Keywords

  • Biological noise
  • Stochasticity
  • Laminar flow
  • Antibiotic resistance
  • Single cell genome amplification
  • Circulating tumor cells
  • Unculturable microbes
  • Time-lapse fluorescent microscopy

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-30019-1_2
  • Chapter length: 36 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-30019-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4
Fig. 2.5
Fig. 2.6
Fig. 2.7
Fig. 2.8
Fig. 2.9
Fig. 2.10
Fig. 2.11
Fig. 2.12
Fig. 2.13
Fig. 2.14
Fig. 2.15
Fig. 2.16
Fig. 2.17
Fig. 2.18
Fig. 2.19
Fig. 2.20
Fig. 2.21
Fig. 2.22
Fig. 2.23

References

  1. Samoilov MS, Price G, Arkin AP (2006) From fluctuations to phenotypes: the physiology of noise. Sci Signal 2006(366):re17–re17

    Google Scholar 

  2. Raj A, van Oudenaarden A (2008) Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135(2):216–226

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  3. Thattai M, van Oudenaarden A (2001) Intrinsic noise in gene regulatory networks. Proc Natl Acad Sci U S A 98(15):8614–8619

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  4. Paulsson J (2004) Summing up the noise in gene networks. Nature 427(6973):415–418

    CAS  CrossRef  PubMed  Google Scholar 

  5. Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A (2002) Regulation of noise in the expression of a single gene. Nat Genet 31(1):69–73

    CAS  CrossRef  PubMed  Google Scholar 

  6. Maamar H, Raj A, Dubnau D (2007) Noise in gene expression determines cell fate in Bacillus subtilis. Science 317(5837):526–529

    CAS  CrossRef  PubMed  Google Scholar 

  7. Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297(5584):1183–1186

    CAS  CrossRef  PubMed  Google Scholar 

  8. Zhang Q et al (2011) Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments. Science 333(6050):1764–1767

    CAS  CrossRef  PubMed  Google Scholar 

  9. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic switch. Science 305(5690):1622–1625

    CAS  CrossRef  PubMed  Google Scholar 

  10. Nagrath S et al (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173):1235–1239

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  11. Deng Y et al (2014) An integrated microfluidic chip system for single-cell secretion profiling of rare circulating tumor cells. Sci Rep 4:7499

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  12. Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2(12):905–909

    CAS  CrossRef  PubMed  Google Scholar 

  13. Mukherjee A, Schroeder CM (2015) Flavin-based fluorescent proteins: emerging paradigms in biological imaging. Curr Opin Biotechnol 31:16–23

    CAS  CrossRef  PubMed  Google Scholar 

  14. Zare RN, Kim S (2010) Microfluidic platforms for single-cell analysis. Annu Rev Biomed Eng 12:187–201

    CAS  CrossRef  PubMed  Google Scholar 

  15. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373

    CAS  CrossRef  PubMed  Google Scholar 

  16. Gravesen P, Branebjerg J, Jensen OS (1993) Microfluidics-a review. J Micromech Microeng 3(4):168

    CAS  CrossRef  Google Scholar 

  17. Beebe DJ, Mensing GA, Walker GM (2002) Physics and applications of microfluidics in biology. Annu Rev Biomed Eng 4:261–286

    CAS  CrossRef  PubMed  Google Scholar 

  18. Sia SK, Kricka LJ (2008) Microfluidics and point-of-care testing. Lab Chip 8(12):1982–1983

    CAS  CrossRef  PubMed  Google Scholar 

  19. Kim S, Kim HJ, Jeon NL (2010) Biological applications of microfluidic gradient devices. Integr Biol 2(11-12):584–603

    CAS  CrossRef  Google Scholar 

  20. Breslauer DN, Lee PJ, Lee LP (2006) Microfluidics-based systems biology. Mol Biosyst 2(2):97–112

    CAS  CrossRef  PubMed  Google Scholar 

  21. Bennett MR, Hasty J (2009) Microfluidic devices for measuring gene network dynamics in single cells. Nat Rev Genet 10(9):628–638

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  22. Toriello NM et al (2008) Integrated microfluidic bioprocessor for single-cell gene expression analysis. Proc Natl Acad Sci U S A 105(51):20173–20178

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  23. Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298(5593):580–584

    CAS  CrossRef  PubMed  Google Scholar 

  24. Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3(1):335–373

    CAS  CrossRef  PubMed  Google Scholar 

  25. Sia SK, Whitesides GM (2003) Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24(21):3563–3576

    CAS  CrossRef  PubMed  Google Scholar 

  26. McDonald JC, Whitesides GM (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35(7):491–499

    CAS  CrossRef  PubMed  Google Scholar 

  27. Berthier E, Young EW, Beebe D (2012) Engineers are from PDMS-land, biologists are from polystyrenia. Lab Chip 12(7):1224–1237

    CAS  CrossRef  PubMed  Google Scholar 

  28. Unger MA, Chou H-P, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463):113–116

    CAS  CrossRef  PubMed  Google Scholar 

  29. Suh YK, Kang S (2010) A review on mixing in microfluidics. Micromachines 1(3):82–111

    CrossRef  Google Scholar 

  30. de Jong J, Lammertink RG, Wessling M (2006) Membranes and microfluidics: a review. Lab Chip 6(9):1125–1139

    CrossRef  PubMed  Google Scholar 

  31. Grover WH, Ivester RH, Jensen EC, Mathies RA (2006) Development and multiplexed control of latching pneumatic valves using microfluidic logical structures. Lab Chip 6(5):623–631

    CAS  CrossRef  PubMed  Google Scholar 

  32. Dittrich PS, Manz A (2006) Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discov 5(3):210–218

    CAS  CrossRef  PubMed  Google Scholar 

  33. Bennett MR et al (2008) Metabolic gene regulation in a dynamically changing environment. Nature 454(7208):1119–1122

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  34. Balagaddé FK, You L, Hansen CL, Arnold FH, Quake SR (2005) Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 309(5731):137–140

    CrossRef  PubMed  Google Scholar 

  35. Di Carlo D, Aghdam N, Lee LP (2006) Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays. Anal Chem 78(14):4925–4930

    CrossRef  PubMed  Google Scholar 

  36. Ryley J, Pereira-Smith OM (2006) Microfluidics device for single cell gene expression analysis in Saccharomyces cerevisiae. Yeast 23(14-15):1065–1073

    CAS  CrossRef  PubMed  Google Scholar 

  37. Tanyeri M, Ranka M, Sittipolkul N, Schroeder CM (2011) A microfluidic-based hydrodynamic trap: design and implementation. Lab Chip 11(10):1786–1794

    CAS  CrossRef  PubMed  Google Scholar 

  38. Tanyeri M, Johnson-Chavarria EM, Schroeder CM (2010) Hydrodynamic trap for single particles and cells. Appl Phys Lett 96(22):224101

    CrossRef  PubMed  PubMed Central  Google Scholar 

  39. Johnson-Chavarria EM, Agrawal U, Tanyeri M, Kuhlman TE, Schroeder CM (2014) Automated single cell microbioreactor for monitoring intracellular dynamics and cell growth in free solution. Lab Chip 14(15):2688–2697

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  40. Lucchetta EM, Lee JH, Fu LA, Patel NH, Ismagilov RF (2005) Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 434(7037):1134–1138

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  41. Levario TJ, Zhan M, Lim B, Shvartsman SY, Lu H (2013) Microfluidic trap array for massively parallel imaging of Drosophila embryos. Nat Protoc 8(4):721–736

    CrossRef  PubMed  Google Scholar 

  42. Chung K et al (2011) A microfluidic array for large-scale ordering and orientation of embryos. Nat Methods 8(2):171–176

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  43. Chronis N, Zimmer M, Bargmann CI (2007) Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans. Nat Methods 4(9):727–731

    CAS  CrossRef  PubMed  Google Scholar 

  44. Takayama S et al (2003) Selective chemical treatment of cellular microdomains using multiple laminar streams. Chem Biol 10(2):123–130

    CAS  CrossRef  PubMed  Google Scholar 

  45. Takayama S et al (2001) Laminar flows: subcellular positioning of small molecules. Nature 411(6841):1016–1016

    CAS  CrossRef  PubMed  Google Scholar 

  46. Li Jeon N et al (2002) Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat Biotechnol 20(8):826–830

    CrossRef  PubMed  Google Scholar 

  47. Thorson MR et al (2011) A microfluidic platform for pharmaceutical salt screening. Lab Chip 11(22):3829–3837

    CAS  CrossRef  PubMed  Google Scholar 

  48. King KR et al (2007) A high-throughput microfluidic real-time gene expression living cell array. Lab Chip 7(1):77–85

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  49. Mohan R et al (2013) A multiplexed microfluidic platform for rapid antibiotic susceptibility testing. Biosens Bioelectron 49:118–125

    CAS  CrossRef  PubMed  Google Scholar 

  50. Schudel BR, Tanyeri M, Mukherjee A, Schroeder CM, Kenis PJ (2011) Multiplexed detection of nucleic acids in a combinatorial screening chip. Lab Chip 11(11):1916–1923

    CAS  CrossRef  PubMed  Google Scholar 

  51. Sin A et al (2004) The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors. Biotechnol Prog 20(1):338–345

    CAS  CrossRef  PubMed  Google Scholar 

  52. Sung JH, Kam C, Shuler ML (2010) A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. Lab Chip 10(4):446–455

    CAS  CrossRef  PubMed  Google Scholar 

  53. Hou HW et al (2011) Microfluidic devices for blood fractionation. Micromachines 2(4):319–343

    CrossRef  Google Scholar 

  54. Vincent ME, Liu W, Haney EB, Ismagilov RF (2010) Microfluidic stochastic confinement enhances analysis of rare cells by isolating cells and creating high density environments for control of diffusible signals. Chem Soc Rev 39(3):974–984

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  55. Gleghorn JP et al (2010) Capture of circulating tumor cells from whole blood of prostate cancer patients using geometrically enhanced differential immunocapture (GEDI) and a prostate-specific antibody. Lab Chip 10(1):27–29

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  56. Ma C et al (2011) A clinical microchip for evaluation of single immune cells reveals high functional heterogeneity in phenotypically similar T cells. Nat Med 17(6):738–743

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  57. Love JC, Ronan JL, Grotenbreg GM, van der Veen AG, Ploegh HL (2006) A microengraving method for rapid selection of single cells producing antigen-specific antibodies. Nat Biotechnol 24(6):703–707

    CAS  CrossRef  PubMed  Google Scholar 

  58. Ottesen EA, Hong JW, Quake SR, Leadbetter JR (2006) Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314(5804):1464–1467

    CAS  CrossRef  PubMed  Google Scholar 

  59. Marcy Y et al (2007) Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc Natl Acad Sci U S A 104(29):11889–11894

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  60. Ma L et al (2014) Gene-targeted microfluidic cultivation validated by isolation of a gut bacterium listed in Human Microbiome Project’s Most Wanted taxa. Proc Natl Acad Sci 111(27):9768–9773

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles M. Schroeder Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mukherjee, A., Schroeder, C.M. (2016). Microfluidic Methods in Single Cell Biology. In: Lu, C., Verbridge, S. (eds) Microfluidic Methods for Molecular Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-30019-1_2

Download citation