Samoilov MS, Price G, Arkin AP (2006) From fluctuations to phenotypes: the physiology of noise. Sci Signal 2006(366):re17–re17
Google Scholar
Raj A, van Oudenaarden A (2008) Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135(2):216–226
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Thattai M, van Oudenaarden A (2001) Intrinsic noise in gene regulatory networks. Proc Natl Acad Sci U S A 98(15):8614–8619
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Paulsson J (2004) Summing up the noise in gene networks. Nature 427(6973):415–418
CAS
CrossRef
PubMed
Google Scholar
Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A (2002) Regulation of noise in the expression of a single gene. Nat Genet 31(1):69–73
CAS
CrossRef
PubMed
Google Scholar
Maamar H, Raj A, Dubnau D (2007) Noise in gene expression determines cell fate in Bacillus subtilis. Science 317(5837):526–529
CAS
CrossRef
PubMed
Google Scholar
Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297(5584):1183–1186
CAS
CrossRef
PubMed
Google Scholar
Zhang Q et al (2011) Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments. Science 333(6050):1764–1767
CAS
CrossRef
PubMed
Google Scholar
Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic switch. Science 305(5690):1622–1625
CAS
CrossRef
PubMed
Google Scholar
Nagrath S et al (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173):1235–1239
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Deng Y et al (2014) An integrated microfluidic chip system for single-cell secretion profiling of rare circulating tumor cells. Sci Rep 4:7499
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2(12):905–909
CAS
CrossRef
PubMed
Google Scholar
Mukherjee A, Schroeder CM (2015) Flavin-based fluorescent proteins: emerging paradigms in biological imaging. Curr Opin Biotechnol 31:16–23
CAS
CrossRef
PubMed
Google Scholar
Zare RN, Kim S (2010) Microfluidic platforms for single-cell analysis. Annu Rev Biomed Eng 12:187–201
CAS
CrossRef
PubMed
Google Scholar
Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373
CAS
CrossRef
PubMed
Google Scholar
Gravesen P, Branebjerg J, Jensen OS (1993) Microfluidics-a review. J Micromech Microeng 3(4):168
CAS
CrossRef
Google Scholar
Beebe DJ, Mensing GA, Walker GM (2002) Physics and applications of microfluidics in biology. Annu Rev Biomed Eng 4:261–286
CAS
CrossRef
PubMed
Google Scholar
Sia SK, Kricka LJ (2008) Microfluidics and point-of-care testing. Lab Chip 8(12):1982–1983
CAS
CrossRef
PubMed
Google Scholar
Kim S, Kim HJ, Jeon NL (2010) Biological applications of microfluidic gradient devices. Integr Biol 2(11-12):584–603
CAS
CrossRef
Google Scholar
Breslauer DN, Lee PJ, Lee LP (2006) Microfluidics-based systems biology. Mol Biosyst 2(2):97–112
CAS
CrossRef
PubMed
Google Scholar
Bennett MR, Hasty J (2009) Microfluidic devices for measuring gene network dynamics in single cells. Nat Rev Genet 10(9):628–638
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Toriello NM et al (2008) Integrated microfluidic bioprocessor for single-cell gene expression analysis. Proc Natl Acad Sci U S A 105(51):20173–20178
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298(5593):580–584
CAS
CrossRef
PubMed
Google Scholar
Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3(1):335–373
CAS
CrossRef
PubMed
Google Scholar
Sia SK, Whitesides GM (2003) Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24(21):3563–3576
CAS
CrossRef
PubMed
Google Scholar
McDonald JC, Whitesides GM (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35(7):491–499
CAS
CrossRef
PubMed
Google Scholar
Berthier E, Young EW, Beebe D (2012) Engineers are from PDMS-land, biologists are from polystyrenia. Lab Chip 12(7):1224–1237
CAS
CrossRef
PubMed
Google Scholar
Unger MA, Chou H-P, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463):113–116
CAS
CrossRef
PubMed
Google Scholar
Suh YK, Kang S (2010) A review on mixing in microfluidics. Micromachines 1(3):82–111
CrossRef
Google Scholar
de Jong J, Lammertink RG, Wessling M (2006) Membranes and microfluidics: a review. Lab Chip 6(9):1125–1139
CrossRef
PubMed
Google Scholar
Grover WH, Ivester RH, Jensen EC, Mathies RA (2006) Development and multiplexed control of latching pneumatic valves using microfluidic logical structures. Lab Chip 6(5):623–631
CAS
CrossRef
PubMed
Google Scholar
Dittrich PS, Manz A (2006) Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discov 5(3):210–218
CAS
CrossRef
PubMed
Google Scholar
Bennett MR et al (2008) Metabolic gene regulation in a dynamically changing environment. Nature 454(7208):1119–1122
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Balagaddé FK, You L, Hansen CL, Arnold FH, Quake SR (2005) Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 309(5731):137–140
CrossRef
PubMed
Google Scholar
Di Carlo D, Aghdam N, Lee LP (2006) Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays. Anal Chem 78(14):4925–4930
CrossRef
PubMed
Google Scholar
Ryley J, Pereira-Smith OM (2006) Microfluidics device for single cell gene expression analysis in Saccharomyces cerevisiae. Yeast 23(14-15):1065–1073
CAS
CrossRef
PubMed
Google Scholar
Tanyeri M, Ranka M, Sittipolkul N, Schroeder CM (2011) A microfluidic-based hydrodynamic trap: design and implementation. Lab Chip 11(10):1786–1794
CAS
CrossRef
PubMed
Google Scholar
Tanyeri M, Johnson-Chavarria EM, Schroeder CM (2010) Hydrodynamic trap for single particles and cells. Appl Phys Lett 96(22):224101
CrossRef
PubMed
PubMed Central
Google Scholar
Johnson-Chavarria EM, Agrawal U, Tanyeri M, Kuhlman TE, Schroeder CM (2014) Automated single cell microbioreactor for monitoring intracellular dynamics and cell growth in free solution. Lab Chip 14(15):2688–2697
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Lucchetta EM, Lee JH, Fu LA, Patel NH, Ismagilov RF (2005) Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 434(7037):1134–1138
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Levario TJ, Zhan M, Lim B, Shvartsman SY, Lu H (2013) Microfluidic trap array for massively parallel imaging of Drosophila embryos. Nat Protoc 8(4):721–736
CrossRef
PubMed
Google Scholar
Chung K et al (2011) A microfluidic array for large-scale ordering and orientation of embryos. Nat Methods 8(2):171–176
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Chronis N, Zimmer M, Bargmann CI (2007) Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans. Nat Methods 4(9):727–731
CAS
CrossRef
PubMed
Google Scholar
Takayama S et al (2003) Selective chemical treatment of cellular microdomains using multiple laminar streams. Chem Biol 10(2):123–130
CAS
CrossRef
PubMed
Google Scholar
Takayama S et al (2001) Laminar flows: subcellular positioning of small molecules. Nature 411(6841):1016–1016
CAS
CrossRef
PubMed
Google Scholar
Li Jeon N et al (2002) Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat Biotechnol 20(8):826–830
CrossRef
PubMed
Google Scholar
Thorson MR et al (2011) A microfluidic platform for pharmaceutical salt screening. Lab Chip 11(22):3829–3837
CAS
CrossRef
PubMed
Google Scholar
King KR et al (2007) A high-throughput microfluidic real-time gene expression living cell array. Lab Chip 7(1):77–85
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Mohan R et al (2013) A multiplexed microfluidic platform for rapid antibiotic susceptibility testing. Biosens Bioelectron 49:118–125
CAS
CrossRef
PubMed
Google Scholar
Schudel BR, Tanyeri M, Mukherjee A, Schroeder CM, Kenis PJ (2011) Multiplexed detection of nucleic acids in a combinatorial screening chip. Lab Chip 11(11):1916–1923
CAS
CrossRef
PubMed
Google Scholar
Sin A et al (2004) The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors. Biotechnol Prog 20(1):338–345
CAS
CrossRef
PubMed
Google Scholar
Sung JH, Kam C, Shuler ML (2010) A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. Lab Chip 10(4):446–455
CAS
CrossRef
PubMed
Google Scholar
Hou HW et al (2011) Microfluidic devices for blood fractionation. Micromachines 2(4):319–343
CrossRef
Google Scholar
Vincent ME, Liu W, Haney EB, Ismagilov RF (2010) Microfluidic stochastic confinement enhances analysis of rare cells by isolating cells and creating high density environments for control of diffusible signals. Chem Soc Rev 39(3):974–984
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Gleghorn JP et al (2010) Capture of circulating tumor cells from whole blood of prostate cancer patients using geometrically enhanced differential immunocapture (GEDI) and a prostate-specific antibody. Lab Chip 10(1):27–29
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Ma C et al (2011) A clinical microchip for evaluation of single immune cells reveals high functional heterogeneity in phenotypically similar T cells. Nat Med 17(6):738–743
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Love JC, Ronan JL, Grotenbreg GM, van der Veen AG, Ploegh HL (2006) A microengraving method for rapid selection of single cells producing antigen-specific antibodies. Nat Biotechnol 24(6):703–707
CAS
CrossRef
PubMed
Google Scholar
Ottesen EA, Hong JW, Quake SR, Leadbetter JR (2006) Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314(5804):1464–1467
CAS
CrossRef
PubMed
Google Scholar
Marcy Y et al (2007) Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc Natl Acad Sci U S A 104(29):11889–11894
CAS
CrossRef
PubMed
PubMed Central
Google Scholar
Ma L et al (2014) Gene-targeted microfluidic cultivation validated by isolation of a gut bacterium listed in Human Microbiome Project’s Most Wanted taxa. Proc Natl Acad Sci 111(27):9768–9773
CAS
CrossRef
PubMed
PubMed Central
Google Scholar