Microfluidic Methods in Single Cell Biology

  • Arnab Mukherjee
  • Charles M. SchroederEmail author


Stochastic variations within seemingly homogeneous cell populations determine the emergent properties of complex cellular systems such as biofilms, tumors, pluripotent stem cells, and multispecies ecosystems. The advent of microfluidic technologies, coupled with rapid advances in fluorescence-based molecular imaging and genomic, transcriptomic, and proteomic profiling techniques, has spurred a revolution in biological analysis at the level of single cells. Over the past decade, several microfluidic platforms have been developed that enable the isolation, enrichment, and biochemical or genetic analysis of individual cells with high spatiotemporal resolution in a fashion that is not achievable using macroscale methods. In sharp contrast to population-averaged measurements based on bulk-level techniques, microfluidic cell culture platforms permit the acquisition of multiparametric and high-content information while preserving the identity and monitoring the behavior of individual cells over time. In this way, microfluidics has ushered in new frontiers in single cell biology with a direct impact on applied and foundational studies in microbial ecology, systems biology, therapeutics development, and clinical diagnostics. In this chapter, we describe the transformative impact of microfluidics in single cell biology with particular emphasis on the following areas: (1) microfluidic bioreactors for cellular analysis in dynamically changing microenvironments, (2) microfluidic chips for in vitro drug screening, and (3) single cell confinement and isolation microchips for sorting and profiling rare or unculturable cells in complex environmental consortia.


Biological noise Stochasticity Laminar flow Antibiotic resistance Single cell genome amplification Circulating tumor cells Unculturable microbes Time-lapse fluorescent microscopy 


  1. 1.
    Samoilov MS, Price G, Arkin AP (2006) From fluctuations to phenotypes: the physiology of noise. Sci Signal 2006(366):re17–re17Google Scholar
  2. 2.
    Raj A, van Oudenaarden A (2008) Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135(2):216–226CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Thattai M, van Oudenaarden A (2001) Intrinsic noise in gene regulatory networks. Proc Natl Acad Sci U S A 98(15):8614–8619CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Paulsson J (2004) Summing up the noise in gene networks. Nature 427(6973):415–418CrossRefPubMedGoogle Scholar
  5. 5.
    Ozbudak EM, Thattai M, Kurtser I, Grossman AD, van Oudenaarden A (2002) Regulation of noise in the expression of a single gene. Nat Genet 31(1):69–73CrossRefPubMedGoogle Scholar
  6. 6.
    Maamar H, Raj A, Dubnau D (2007) Noise in gene expression determines cell fate in Bacillus subtilis. Science 317(5837):526–529CrossRefPubMedGoogle Scholar
  7. 7.
    Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297(5584):1183–1186CrossRefPubMedGoogle Scholar
  8. 8.
    Zhang Q et al (2011) Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments. Science 333(6050):1764–1767CrossRefPubMedGoogle Scholar
  9. 9.
    Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic switch. Science 305(5690):1622–1625CrossRefPubMedGoogle Scholar
  10. 10.
    Nagrath S et al (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450(7173):1235–1239CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Deng Y et al (2014) An integrated microfluidic chip system for single-cell secretion profiling of rare circulating tumor cells. Sci Rep 4:7499CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2(12):905–909CrossRefPubMedGoogle Scholar
  13. 13.
    Mukherjee A, Schroeder CM (2015) Flavin-based fluorescent proteins: emerging paradigms in biological imaging. Curr Opin Biotechnol 31:16–23CrossRefPubMedGoogle Scholar
  14. 14.
    Zare RN, Kim S (2010) Microfluidic platforms for single-cell analysis. Annu Rev Biomed Eng 12:187–201CrossRefPubMedGoogle Scholar
  15. 15.
    Whitesides GM (2006) The origins and the future of microfluidics. Nature 442(7101):368–373CrossRefPubMedGoogle Scholar
  16. 16.
    Gravesen P, Branebjerg J, Jensen OS (1993) Microfluidics-a review. J Micromech Microeng 3(4):168CrossRefGoogle Scholar
  17. 17.
    Beebe DJ, Mensing GA, Walker GM (2002) Physics and applications of microfluidics in biology. Annu Rev Biomed Eng 4:261–286CrossRefPubMedGoogle Scholar
  18. 18.
    Sia SK, Kricka LJ (2008) Microfluidics and point-of-care testing. Lab Chip 8(12):1982–1983CrossRefPubMedGoogle Scholar
  19. 19.
    Kim S, Kim HJ, Jeon NL (2010) Biological applications of microfluidic gradient devices. Integr Biol 2(11-12):584–603CrossRefGoogle Scholar
  20. 20.
    Breslauer DN, Lee PJ, Lee LP (2006) Microfluidics-based systems biology. Mol Biosyst 2(2):97–112CrossRefPubMedGoogle Scholar
  21. 21.
    Bennett MR, Hasty J (2009) Microfluidic devices for measuring gene network dynamics in single cells. Nat Rev Genet 10(9):628–638CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Toriello NM et al (2008) Integrated microfluidic bioprocessor for single-cell gene expression analysis. Proc Natl Acad Sci U S A 105(51):20173–20178CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298(5593):580–584CrossRefPubMedGoogle Scholar
  24. 24.
    Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3(1):335–373CrossRefPubMedGoogle Scholar
  25. 25.
    Sia SK, Whitesides GM (2003) Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24(21):3563–3576CrossRefPubMedGoogle Scholar
  26. 26.
    McDonald JC, Whitesides GM (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35(7):491–499CrossRefPubMedGoogle Scholar
  27. 27.
    Berthier E, Young EW, Beebe D (2012) Engineers are from PDMS-land, biologists are from polystyrenia. Lab Chip 12(7):1224–1237CrossRefPubMedGoogle Scholar
  28. 28.
    Unger MA, Chou H-P, Thorsen T, Scherer A, Quake SR (2000) Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 288(5463):113–116CrossRefPubMedGoogle Scholar
  29. 29.
    Suh YK, Kang S (2010) A review on mixing in microfluidics. Micromachines 1(3):82–111CrossRefGoogle Scholar
  30. 30.
    de Jong J, Lammertink RG, Wessling M (2006) Membranes and microfluidics: a review. Lab Chip 6(9):1125–1139CrossRefPubMedGoogle Scholar
  31. 31.
    Grover WH, Ivester RH, Jensen EC, Mathies RA (2006) Development and multiplexed control of latching pneumatic valves using microfluidic logical structures. Lab Chip 6(5):623–631CrossRefPubMedGoogle Scholar
  32. 32.
    Dittrich PS, Manz A (2006) Lab-on-a-chip: microfluidics in drug discovery. Nat Rev Drug Discov 5(3):210–218CrossRefPubMedGoogle Scholar
  33. 33.
    Bennett MR et al (2008) Metabolic gene regulation in a dynamically changing environment. Nature 454(7208):1119–1122CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Balagaddé FK, You L, Hansen CL, Arnold FH, Quake SR (2005) Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 309(5731):137–140CrossRefPubMedGoogle Scholar
  35. 35.
    Di Carlo D, Aghdam N, Lee LP (2006) Single-cell enzyme concentrations, kinetics, and inhibition analysis using high-density hydrodynamic cell isolation arrays. Anal Chem 78(14):4925–4930CrossRefPubMedGoogle Scholar
  36. 36.
    Ryley J, Pereira-Smith OM (2006) Microfluidics device for single cell gene expression analysis in Saccharomyces cerevisiae. Yeast 23(14-15):1065–1073CrossRefPubMedGoogle Scholar
  37. 37.
    Tanyeri M, Ranka M, Sittipolkul N, Schroeder CM (2011) A microfluidic-based hydrodynamic trap: design and implementation. Lab Chip 11(10):1786–1794CrossRefPubMedGoogle Scholar
  38. 38.
    Tanyeri M, Johnson-Chavarria EM, Schroeder CM (2010) Hydrodynamic trap for single particles and cells. Appl Phys Lett 96(22):224101CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Johnson-Chavarria EM, Agrawal U, Tanyeri M, Kuhlman TE, Schroeder CM (2014) Automated single cell microbioreactor for monitoring intracellular dynamics and cell growth in free solution. Lab Chip 14(15):2688–2697CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Lucchetta EM, Lee JH, Fu LA, Patel NH, Ismagilov RF (2005) Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 434(7037):1134–1138CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Levario TJ, Zhan M, Lim B, Shvartsman SY, Lu H (2013) Microfluidic trap array for massively parallel imaging of Drosophila embryos. Nat Protoc 8(4):721–736CrossRefPubMedGoogle Scholar
  42. 42.
    Chung K et al (2011) A microfluidic array for large-scale ordering and orientation of embryos. Nat Methods 8(2):171–176CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Chronis N, Zimmer M, Bargmann CI (2007) Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans. Nat Methods 4(9):727–731CrossRefPubMedGoogle Scholar
  44. 44.
    Takayama S et al (2003) Selective chemical treatment of cellular microdomains using multiple laminar streams. Chem Biol 10(2):123–130CrossRefPubMedGoogle Scholar
  45. 45.
    Takayama S et al (2001) Laminar flows: subcellular positioning of small molecules. Nature 411(6841):1016–1016CrossRefPubMedGoogle Scholar
  46. 46.
    Li Jeon N et al (2002) Neutrophil chemotaxis in linear and complex gradients of interleukin-8 formed in a microfabricated device. Nat Biotechnol 20(8):826–830CrossRefPubMedGoogle Scholar
  47. 47.
    Thorson MR et al (2011) A microfluidic platform for pharmaceutical salt screening. Lab Chip 11(22):3829–3837CrossRefPubMedGoogle Scholar
  48. 48.
    King KR et al (2007) A high-throughput microfluidic real-time gene expression living cell array. Lab Chip 7(1):77–85CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Mohan R et al (2013) A multiplexed microfluidic platform for rapid antibiotic susceptibility testing. Biosens Bioelectron 49:118–125CrossRefPubMedGoogle Scholar
  50. 50.
    Schudel BR, Tanyeri M, Mukherjee A, Schroeder CM, Kenis PJ (2011) Multiplexed detection of nucleic acids in a combinatorial screening chip. Lab Chip 11(11):1916–1923CrossRefPubMedGoogle Scholar
  51. 51.
    Sin A et al (2004) The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors. Biotechnol Prog 20(1):338–345CrossRefPubMedGoogle Scholar
  52. 52.
    Sung JH, Kam C, Shuler ML (2010) A microfluidic device for a pharmacokinetic-pharmacodynamic (PK-PD) model on a chip. Lab Chip 10(4):446–455CrossRefPubMedGoogle Scholar
  53. 53.
    Hou HW et al (2011) Microfluidic devices for blood fractionation. Micromachines 2(4):319–343CrossRefGoogle Scholar
  54. 54.
    Vincent ME, Liu W, Haney EB, Ismagilov RF (2010) Microfluidic stochastic confinement enhances analysis of rare cells by isolating cells and creating high density environments for control of diffusible signals. Chem Soc Rev 39(3):974–984CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Gleghorn JP et al (2010) Capture of circulating tumor cells from whole blood of prostate cancer patients using geometrically enhanced differential immunocapture (GEDI) and a prostate-specific antibody. Lab Chip 10(1):27–29CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Ma C et al (2011) A clinical microchip for evaluation of single immune cells reveals high functional heterogeneity in phenotypically similar T cells. Nat Med 17(6):738–743CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Love JC, Ronan JL, Grotenbreg GM, van der Veen AG, Ploegh HL (2006) A microengraving method for rapid selection of single cells producing antigen-specific antibodies. Nat Biotechnol 24(6):703–707CrossRefPubMedGoogle Scholar
  58. 58.
    Ottesen EA, Hong JW, Quake SR, Leadbetter JR (2006) Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314(5804):1464–1467CrossRefPubMedGoogle Scholar
  59. 59.
    Marcy Y et al (2007) Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc Natl Acad Sci U S A 104(29):11889–11894CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Ma L et al (2014) Gene-targeted microfluidic cultivation validated by isolation of a gut bacterium listed in Human Microbiome Project’s Most Wanted taxa. Proc Natl Acad Sci 111(27):9768–9773CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Department of Chemical and Biomolecular Engineering, Center for Biophysics and Computational Biology, Institute for Genomic Biology/Biosystems DesignUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations