Skip to main content

Microfluidics for High-Throughput Cellular Isolation and Analysis in Biomedicine

  • 1880 Accesses

Abstract

Rare or low-abundance cells in a much larger population of background cells require extremely accurate as well as high-throughput selection and enumeration for a variety of biomedical applications. Conventional bench-top techniques have limited capabilities to isolate and analyze these rare cells because of their generally low selectivity, significant sample loss, and limited ability for bulk measurements in heterogeneous cell populations. Microfluidics has enabled facile handling of minute sample volumes and massively parallel multiplexing capabilities for high-throughput processing, making this platform excellent to deal with the transport, isolation, and analysis of rare cells. We classify the microfluidic rare cell isolation techniques based on the manner in which they achieve isolation through taking advantage of differences in cell properties such as size, surface marker expression, and behavior. In this chapter, we focus on recently published work utilizing microfluidic isolation techniques for circulating tumor cells (CTCs), immune cells, pathogens, and stem cells. We also cover methodologies for analyzing rare cell phenotypes, including migration patterns, using microfluidic platforms with integrated biosensors. Finally, we discuss future applications for microfluidic technology in advancing human health and basic biological understanding of rare cell types, such as CTCs.

Keywords

  • Circulating tumor cells (CTCs)
  • Immune cell
  • Migration phenotype
  • Individualized medicine

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-30019-1_14
  • Chapter length: 28 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-30019-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 14.1
Fig. 14.2
Fig. 14.3
Fig. 14.4
Fig. 14.5
Fig. 14.6
Fig. 14.7
Fig. 14.8
Fig. 14.9
Fig. 14.10
Fig. 14.11
Fig. 14.12
Fig. 14.13
Fig. 14.14

References

  1. Dharmasiri U, Witek MA, Adams AA, Soper SA (2010) Microsystems for the capture of low-abundance cells. Annu Rev Anal Chem (Palo Alto Calif) 3:409–431. doi:10.1146/annurev.anchem.111808.073610

    CAS  CrossRef  Google Scholar 

  2. Hyun KA, Jung HI (2013) Microfluidic devices for the isolation of circulating rare cells: a focus on affinity-based, dielectrophoresis, and hydrophoresis. Electrophoresis 34:1028–1041. doi:10.1002/elps.201200417

    CAS  CrossRef  PubMed  Google Scholar 

  3. Faley SL et al (2009) Microfluidic single cell arrays to interrogate signalling dynamics of individual, patient-derived hematopoietic stem cells. Lab Chip 9:2659–2664. doi:10.1039/b902083g

    CAS  CrossRef  PubMed  Google Scholar 

  4. Chen Y et al (2014) Rare cell isolation and analysis in microfluidics. Lab Chip 14:626–645. doi:10.1039/c3lc90136j

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  5. Patterson AS et al (2013) Microfluidic chip-based detection and intraspecies strain discrimination of Salmonella serovars derived from whole blood of septic mice. Appl Environ Microbiol 79:2302–2311. doi:10.1128/AEM.03882-12

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  6. Lee MG, Shin JH, Bae CY, Choi S, Park JK (2013) Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress. Anal Chem 85:6213–6218. doi:10.1021/ac4006149

    CAS  CrossRef  PubMed  Google Scholar 

  7. Xu L et al (2015) Optimization and evaluation of a novel size based circulating tumor cell isolation system. PLoS One 10:e0138032. doi:10.1371/journal.pone.0138032

    CrossRef  PubMed  PubMed Central  Google Scholar 

  8. Huang X et al (2015) Meta-analysis of the prognostic value of circulating tumor cells detected with the Cell Search System in colorectal cancer. BMC Cancer 15:202. doi:10.1186/s12885-015-1218-9

    CrossRef  PubMed  PubMed Central  Google Scholar 

  9. Fiddler M (2014) Fetal cell based prenatal diagnosis: perspectives on the present and future. J Clin Med 3:972–985. doi:10.3390/jcm3030972

    CrossRef  PubMed  PubMed Central  Google Scholar 

  10. Wang CH, Weng CH, Che YJ, Wang K, Lee GB (2015) Cancer cell-specific oligopeptides selected by an integrated microfluidic system from a phage display library for ovarian cancer diagnosis. Theranostics 5:431–442. doi:10.7150/thno.10891

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  11. Shields CW, Reyes CD, Lopez GP (2015) Microfluidic cell sorting: a review of the advances in the separation of cells from debulking to rare cell isolation. Lab Chip 15:1230–1249. doi:10.1039/c4lc01246a

    CrossRef  PubMed  PubMed Central  Google Scholar 

  12. Yu M, Stott S, Toner M, Maheswaran S, Haber DA (2011) Circulating tumor cells: approaches to isolation and characterization. J Cell Biol 192:373–382. doi:10.1083/jcb.201010021

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  13. Faltas B (2012) Cornering metastases: therapeutic targeting of circulating tumor cells and stem cells. Front Oncol 2:68. doi:10.3389/fonc.2012.00068

    CrossRef  PubMed  PubMed Central  Google Scholar 

  14. Nagrath S et al (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450:1235–1239. doi:10.1038/nature06385

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  15. Murlidhar V et al (2014) A radial flow microfluidic device for ultra-high-throughput affinity-based isolation of circulating tumor cells. Small 10:4895–4904. doi:10.1002/smll.201400719

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  16. Gleghorn JP et al (2010) Capture of circulating tumor cells from whole blood of prostate cancer patients using geometrically enhanced differential immunocapture (GEDI) and a prostate-specific antibody. Lab Chip 10:27–29. doi:10.1039/b917959c

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  17. Kirby BJ et al (2012) Functional characterization of circulating tumor cells with a prostate-cancer-specific microfluidic device. PLoS One 7:e35976. doi:10.1371/journal.pone.0035976

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  18. Stott SL et al (2010) Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci U S A 107:18392–18397. doi:10.1073/pnas.1012539107

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  19. Watanabe M, Serizawa M (2014) A novel flow cytometry-based cell capture platform for the detection, capture and molecular characterization of rare tumor cells in blood. J Transl Med 12:143. doi:10.1186/1479-5876-12-143

    CrossRef  PubMed  PubMed Central  Google Scholar 

  20. Watanabe M et al (2013) Multicolor detection of rare tumor cells in blood using a novel flow cytometry-based system. Cytometry A 85:206–213. doi:10.1002/cyto.a.22422

    CrossRef  PubMed  Google Scholar 

  21. Plouffe BD, Mahalanabis M, Lewis LH, Klapperich CM, Murthy SK (2012) Clinically relevant microfluidic magnetophoretic isolation of rare-cell populations for diagnostic and therapeutic monitoring applications. Anal Chem 84:1336–1344. doi:10.1021/ac2022844

    CAS  CrossRef  PubMed  Google Scholar 

  22. Chang C-L et al (2015) Circulating tumor cell detection using a parallel flow micro-aperture chip system. Lab Chip 15:1677–1688. doi:10.1039/C5LC00100E

    CAS  CrossRef  PubMed  Google Scholar 

  23. Hoshino K et al (2011) Microchip-based immunomagnetic detection of circulating tumor cells. Lab Chip 11:3449–3457. doi:10.1039/c1lc20270g

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  24. Kang JH et al (2012) A combined micromagnetic-microfluidic device for rapid capture and culture of rare circulating tumor cells. Lab Chip 12:2175. doi:10.1039/c2lc40072c

    CAS  CrossRef  PubMed  Google Scholar 

  25. Lee JJ et al (2014) Synthetic ligand-coated magnetic nanoparticles for microfluidic bacterial separation from blood. Nano Lett 14:1–5. doi:10.1021/nl3047305

    CrossRef  PubMed  Google Scholar 

  26. Riahi R, Gogoi P, Sepehri S (2014) A novel microchannel-based device to capture and analyze circulating tumor cells (CTCs) of breast cancer. Int J Oncol 44:1870–1878. doi:10.3892/ijo.2014.2353

    PubMed  PubMed Central  Google Scholar 

  27. Desitter I, Guerrouahen BS, Benali-Furet N (2011) A new device for rapid isolation by size and characterization of rare circulating tumor cells. Anticancer Res 31(2):427–441

    PubMed  Google Scholar 

  28. Vona G et al (2000) Isolation by size of epithelial tumor cells: a new method for the immunomorphological and molecular characterization of circulating tumor cells. Am J Pathol 156:57–63

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  29. Zabaglo L et al (2003) Cell filtration-laser scanning cytometry for the characterisation of circulating breast cancer cells. Cytometry A 55A:102–108. doi:10.1002/cyto.a.10071

    CrossRef  Google Scholar 

  30. Warkiani M et al (2014) An ultra-high-throughput spiral microfluidic biochip for the enrichment of circulating tumor cells. Analyst 139:3245–3255

    CAS  CrossRef  PubMed  Google Scholar 

  31. Hou HW et al (2013) Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci Rep 3:1259. doi:10.1038/srep01259

    PubMed  PubMed Central  Google Scholar 

  32. Bhagat A, Hou H, Li L, Lim C, Han J (2011) Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation. Lab Chip 11:1870–1878

    CAS  CrossRef  PubMed  Google Scholar 

  33. Sollier E et al (2014) Size-selective collection of circulating tumor cells using Vortex technology. Lab Chip 14:63–77. doi:10.1039/c3lc50689d

    CAS  CrossRef  PubMed  Google Scholar 

  34. Antfolk M, Magnusson C, Augustsson P, Lilja H, Laurell T (2015) Acoustofluidic, label-free separation and simultaneous concentration of rare tumor cells from white blood cells. Anal Chem 87:9322–9328. doi:10.1021/acs.analchem.5b02023

    CAS  CrossRef  PubMed  Google Scholar 

  35. Sarioglu AF et al (2015) A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat Methods 12:685–691. doi:10.1038/nmeth.3404

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  36. Hur SC, Henderson-Maclennan NK, Mccabe ERB, Di Carlo D (2011) Deformability-based cell classification and enrichment using inertial microfluidics. Lab Chip 11:912–920. doi:10.1039/c0lc00595a

    CAS  CrossRef  PubMed  Google Scholar 

  37. Ozkumur E et al (2013) Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells. Sci Transl Med 5:179ra147. doi:10.1126/scitranslmed.3005616

    Google Scholar 

  38. Karabacak NM et al (2014) Microfluidic, marker-free isolation of circulating tumor cells from blood samples. Nat Protoc 9:694–710. doi:10.1038/nprot.2014.044

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  39. Sajay BNG et al (2014) Microfluidic platform for negative enrichment of circulating tumor cells. Biomed Microdevices 16:537–548. doi:10.1007/s10544-014-9856-2

    CAS  CrossRef  PubMed  Google Scholar 

  40. de Wit S et al (2015) The detection of EpCAM+ and EpCAM− circulating tumor cells. Sci Rep: 1–10. doi:10.1038/srep12270.

  41. Davis JA et al (2006) Deterministic hydrodynamics: taking blood apart. Proc Natl Acad Sci U S A 103:14779–14784. doi:10.1073/pnas.0605967103

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  42. Aceto N, Toner M, Maheswaran S, Haber DA (2015) En route to metastasis: circulating tumor cell clusters and epithelial-to-mesenchymal transition. Trends Cancer 1:44–52. doi:10.1016/j.trecan.2015.07.006

    CrossRef  Google Scholar 

  43. Javaid S et al (2015) MAPK7 regulates EMT features and modulates the Generation of CTCs. Mol Cancer Res 13:934–943. doi:10.1158/1541-7786.MCR-14-0604

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  44. Sundaresan TK et al (2015) Detection of T790M, the acquired resistance EGFR mutation, by tumor biopsy versus noninvasive blood-based analyses. Clin Cancer Res. doi:10.1158/1078-0432.CCR-15-1031.

    Google Scholar 

  45. Satelli A, Brownlee Z, Mitra A, Meng QH, Li S (2014) Circulating tumor cell enumeration with a combination of epithelial cell adhesion molecule- and cell-surface vimentin-based methods for monitoring breast cancer therapeutic response. Clin Chem 61:259–266. doi:10.1373/clinchem.2014.228122

    CrossRef  PubMed  PubMed Central  Google Scholar 

  46. Satelli A et al (2014) Universal marker and detection tool for human sarcoma circulating tumor cells. Cancer Res 74:1645–1650. doi:10.1158/0008-5472.CAN-13-1739

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  47. Schwesinger F et al (2000) Unbinding forces of single antibody-antigen complexes correlate with their thermal dissociation rates. Proc Natl Acad Sci U S A 97:9972–9977

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  48. Maheswaran S et al (2008) Detection of mutations in EGFR in circulating lung-cancer cells. N Engl J Med 359:366–377. doi:10.1056/NEJMoa0800668

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  49. Stott SL et al (2010) Isolation and characterization of circulating tumor cells from patients with localized and metastatic prostate cancer. Sci Transl Med 2:25ra23. doi:10.1126/scitranslmed.3000403

    PubMed  PubMed Central  Google Scholar 

  50. Zhu H, Yan J, Revzin A (2008) Catch and release cell sorting: electrochemical desorption of T-cells from antibody-modified microelectrodes. Colloids Surf B Biointerfaces 64:260–268. doi:10.1016/j.colsurfb.2008.02.010

    CAS  CrossRef  PubMed  Google Scholar 

  51. Wan Y et al (2012) Capture, isolation and release of cancer cells with aptamer-functionalized glass bead array. Lab Chip 12:4693–4701. doi:10.1039/c2lc21251j

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  52. Allard WJ et al (2004) Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res 10:6897–6904. doi:10.1158/1078-0432.CCR-04-0378

    CrossRef  PubMed  Google Scholar 

  53. de Bono JS et al (2008) Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res 14:6302–6309. doi:10.1158/1078-0432.CCR-08-0872

    CrossRef  PubMed  Google Scholar 

  54. Ilyas A, Asghar W, Kim YT, Iqbal SM (2014) Parallel recognition of cancer cells using an addressable array of solid-state micropores. Biosens Bioelectron 62:343–349. doi:10.1016/j.bios.2014.06.048

    CAS  CrossRef  PubMed  Google Scholar 

  55. Asghar W et al (2012) Electrical fingerprinting, 3D profiling and detection of tumor cells with solid-state micropores. Lab Chip 12:2345–2352. doi:10.1039/c2lc21012f

    CAS  CrossRef  PubMed  Google Scholar 

  56. Di Carlo D (2009) Inertial microfluidics. Lab Chip 9:3038–3046. doi:10.1039/b912547g

    CrossRef  PubMed  Google Scholar 

  57. Di Carlo D, Irimia D, Tompkins RG, Toner M (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci U S A 104:18892–18897. doi:10.1073/pnas.0704958104

    CrossRef  PubMed  PubMed Central  Google Scholar 

  58. Di Carlo D, Edd JF, Irimia D, Tompkins RG, Toner M (2008) Equilibrium separation and filtration of particles using differential inertial focusing. Anal Chem 80:2204–2211. doi:10.1021/ac702283m

    CrossRef  PubMed  Google Scholar 

  59. Oakey J et al (2010) Particle focusing in staged inertial microfluidic devices for flow cytometry. Anal Chem 82:3862–3867. doi:10.1021/ac100387b

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  60. de Wit S et al (2015) The detection of EpCAM(+) and EpCAM(−) circulating tumor cells. Sci Rep 5:12270. doi:10.1038/srep12270

    CrossRef  PubMed  PubMed Central  Google Scholar 

  61. Jackson EL, Lu H (2013) Advances in microfluidic cell separation and manipulation. Curr Opin Chem Eng 2:398–404. doi:10.1016/j.coche.2013.10.001

    CrossRef  PubMed  PubMed Central  Google Scholar 

  62. Geislinger TM, Eggart B, Ller SB, Schmid L, Franke T (2012) Separation of blood cells using hydrodynamic lift. Appl Phys Lett 100:183701. doi:10.1063/1.4709614

    CrossRef  Google Scholar 

  63. Zheng SY, Liu JQ, Tai YC (2008) Streamline-based microfluidic devices for erythrocytes and leukocytes separation. J Microelectromech Syst 17:1029–1038. doi:10.1109/Jmems.2008.924274

    CAS  CrossRef  Google Scholar 

  64. Rosenbach AE et al (2011) Microfluidics for T-lymphocyte cell separation and inflammation monitoring in burn patients. Clin Transl Sci 4:63–68. doi:10.1111/j.1752-8062.2010.00255.x

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  65. Murthy SK, Sin A, Tompkins RG, Toner M (2004) Effect of flow and surface conditions on human lymphocyte isolation using microfluidic chambers. Langmuir 20:11649–11655. doi:10.1021/la048047b

    CAS  CrossRef  PubMed  Google Scholar 

  66. Calvano SE et al (2005) A network-based analysis of systemic inflammation in humans. Nature 437:1032–1037. doi:10.1038/nature03985

    CAS  CrossRef  PubMed  Google Scholar 

  67. Kotz KT et al (2010) Clinical microfluidics for neutrophil genomics and proteomics. Nat Med 16:1042–1047. doi:10.1038/nm.2205

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  68. Shalek AK et al (2014) Single-cell RNA-seq reveals dynamic paracrine control of cellular variation. Nature 510:363–369. doi:10.1038/nature13437

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Weile J, Knabbe C (2009) Current applications and future trends of molecular diagnostics in clinical bacteriology. Anal Bioanal Chem 394:731–742. doi:10.1007/s00216-009-2779-8

    CAS  CrossRef  PubMed  Google Scholar 

  70. Cooper RM et al (2014) A microdevice for rapid optical detection of magnetically captured rare blood pathogens. Lab Chip 14:182–188. doi:10.1039/c3lc50935d

    CAS  CrossRef  PubMed  Google Scholar 

  71. Hou HW, Bhattacharyya RP, Hung DT, Han J (2015) Direct detection and drug-resistance profiling of bacteremias using inertial microfluidics. Lab Chip 15:2297–2307. doi:10.1039/c5lc00311c

    CAS  CrossRef  PubMed  Google Scholar 

  72. Jing W et al (2013) Microfluidic device for efficient airborne bacteria capture and enrichment. Anal Chem 85:5255–5262. doi:10.1021/ac400590c

    CAS  CrossRef  PubMed  Google Scholar 

  73. Jing W et al (2014) Microfluidic platform for direct capture and analysis of airborne Mycobacterium tuberculosis. Anal Chem 86:5815–5821. doi:10.1021/ac500578h

    CAS  CrossRef  PubMed  Google Scholar 

  74. Munoz-Hernandez R et al (2014) Decreased level of cord blood circulating endothelial colony-forming cells in preeclampsia. Hypertension 64:165–171. doi:10.1161/HYPERTENSIONAHA.113.03058

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  75. Lin RZ, Hatch A, Antontsev VG, Murthy SK, Melero-Martin JM (2015) Microfluidic capture of endothelial colony-forming cells from human adult peripheral blood: phenotypic and functional validation in vivo. Tissue Eng Part C Methods 21:274–283. doi:10.1089/ten.TEC.2014.0323

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  76. Schirhagl R, Fuereder I, Hall EW, Medeiros BC, Zare RN (2011) Microfluidic purification and analysis of hematopoietic stem cells from bone marrow. Lab Chip 11:3130–3135. doi:10.1039/c1lc20353c

    CAS  CrossRef  PubMed  Google Scholar 

  77. Huang Y, Agrawal B, Sun D, Kuo JS, Williams JC (2011) Microfluidics-based devices: New tools for studying cancer and cancer stem cell migration. Biomicrofluidics 5:13412. doi:10.1063/1.3555195

    CrossRef  PubMed  Google Scholar 

  78. Vedula SR et al (2012) Emerging modes of collective cell migration induced by geometrical constraints. Proc Natl Acad Sci U S A 109:12974–12979. doi:10.1073/pnas.1119313109

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  79. Wong IY et al (2014) Collective and individual migration following the epithelial-mesenchymal transition. Nat Mater 13:1063–1071. doi:10.1038/nmat4062

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  80. Keenan TM, Folch A (2008) Biomolecular gradients in cell culture systems. Lab Chip 8:34–57. doi:10.1039/b711887b

    CAS  CrossRef  PubMed  Google Scholar 

  81. Irimia D (2010) Microfluidic technologies for temporal perturbations of chemotaxis. Annu Rev Biomed Eng 12:259–284. doi:10.1146/annurev-bioeng-070909-105241

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  82. Chattopadhyay PK, Gierahn TM, Roederer M, Love JC (2014) Single-cell technologies for monitoring immune systems. Nat Immunol 15:128–135. doi:10.1038/ni.2796

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  83. Agrawal N, Toner M, Irimia D (2008) Neutrophil migration assay from a drop of blood. Lab Chip 8:2054–2061. doi:10.1039/b813588f

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  84. Jones CN et al (2014) Spontaneous neutrophil migration patterns during sepsis after major burns. PLoS One 9:e114509. doi:10.1371/journal.pone.0114509

    CrossRef  PubMed  PubMed Central  Google Scholar 

  85. Kurihara T et al (2013) Resolvin D2 restores neutrophil directionality and improves survival after burns. FASEB J 27:2270–2281. doi:10.1096/fj.12-219519

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  86. Jones CN et al (2012) Microfluidic chambers for monitoring leukocyte trafficking and humanized nano-proresolving medicines interactions. Proc Natl Acad Sci U S A 109:20560–20565. doi:10.1073/pnas.1210269109

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  87. Jones CN et al (2016) Human neutrophils are primed by chemoattractant gradients for blocking the growth of Aspergillus fumigatus. J Infect Dis 213:465. doi:10.1093/infdis/jiv419

    CrossRef  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Mark Lenzi for his assistance with figure editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caroline N. Jones Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Jones, C.N., Martel-Foley, J.M. (2016). Microfluidics for High-Throughput Cellular Isolation and Analysis in Biomedicine. In: Lu, C., Verbridge, S. (eds) Microfluidic Methods for Molecular Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-30019-1_14

Download citation