Skip to main content

Mechanical and Electrical Principles for Separation of Rare Cells

  • 1860 Accesses

Abstract

Early detection of disease has long been a goal of many research projects and public health initiatives, as prevention from disease advancement is one of the most effective cures. Many diseases that are difficult to treat in late stage such as melanoma, pancreatic cancer, and highly metastatic tumors are treatable with a much better prognosis in early stage. One method of interest in early cancer detection has been the isolation of circulating tumor cells (CTCs) from the blood. By isolating CTCs, we can determine the presence of cancer from only a blood sample rather than requiring multiple screening modalities be performed on a patient. In addition, cancers without effective screening modalities, such as pancreatic cancer, may produce CTCs while the patient is asymptomatic, allowing for a much earlier start to treatment and improved prognosis [1]. In this chapter, we present several approaches that employ microfluidics to separate rare cells of interest. We start with a basic overview of fluid dynamics that includes scaling analysis and several solutions to the Navier-Stokes equations. We then introduce mechanical and electrical separation techniques along with an overview of their respective theories and several examples of each.

Keywords

  • Inertial microfluidics
  • Dielectrophoresis
  • DEP
  • Circulating tumor cells (CTCs)

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-30019-1_13
  • Chapter length: 42 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-30019-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 13.1
Fig. 13.2
Fig. 13.3
Fig. 13.4
Fig. 13.5
Fig. 13.6
Fig. 13.7
Fig. 13.8
Fig. 13.9
Fig. 13.10
Fig. 13.11

References

  1. Tjensvoll K, Nordgård O, Smaaland R (2014) Circulating tumor cells in pancreatic cancer patients: methods of detection and clinical implications. Int J Cancer 134:1–8. doi:10.1002/ijc.28134

    CrossRef  PubMed  Google Scholar 

  2. Alix-Panabieres C, Pantel K (2014) Challenges in circulating tumour cell research. Nat Rev Cancer 14:623–631

    CAS  CrossRef  PubMed  Google Scholar 

  3. Nagrath S, Sequist LV, Maheswaran S et al (2007) Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450:1235–1239. doi:10.1038/nature06385

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  4. Stott SL, Hsu C, Tsukrov DI et al (2010) Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc Natl Acad Sci U S A 107:18392–18397. doi:10.1073/pnas.1012539107

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  5. Wlodkowic D, Cooper JM (2010) Tumors on chips: oncology meets microfluidics. Curr Opin Chem Biol 14:556–567. doi:10.1016/j.cbpa.2010.08.016

    CAS  CrossRef  PubMed  Google Scholar 

  6. Shelby JP, White J, Ganesan K et al (2003) A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes. Proc Natl Acad Sci U S A 100:14618–14622. doi:10.1073/pnas.2433968100

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  7. Gascoyne P, Satayavivad J, Ruchirawat M (2004) Microfluidic approaches to malaria detection. Acta Trop 89:357–369. doi:10.1016/j.actatropica.2003.11.009

    CrossRef  PubMed  PubMed Central  Google Scholar 

  8. Hou HW, Bhagat AAS, Chong AGL et al (2010) Deformability based cell margination—a simple microfluidic design for malaria-infected erythrocyte separation. Lab Chip 10:2605–2613. doi:10.1039/c003873c

    CAS  CrossRef  PubMed  Google Scholar 

  9. Cheng X, Irimia D, Dixon M et al (2007) A microfluidic device for practical label-free CD4(+) T cell counting of HIV-infected subjects. Lab Chip 7:170–178. doi:10.1039/b612966h

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  10. Lee WG, Kim Y, Geun B et al (2010) Nano/microfluidics for diagnosis of infectious diseases in developing countries. Adv Drug Deliv Rev 62:449–457. doi:10.1016/j.addr.2009.11.016

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  11. Yang BD, Niu X, Liu Y et al (2008) Electrospun nanofibrous membranes: a novel solid substrate for microfluidic immunoassays for HIV. Adv Mater 20:4770–4775. doi:10.1002/adma.200801302

    CAS  CrossRef  Google Scholar 

  12. Baker CA, Duong CT, Grimley A, Roper MG (2009) Recent advances in microfluidic detection systems. Bioanalysis 1:967–975. doi:10.4155/bio.09.86

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  13. Chin CD, Laksanasopin T, Cheung YK et al (2011) Microfluidics-based diagnostics of infectious diseases in the developing world. Nat Med 17:1015–1019. doi:10.1038/nm.2408

    CAS  CrossRef  PubMed  Google Scholar 

  14. Yager P, Domingo GJ, Gerdes J (2008) Point-of-care diagnostics for global health. Annu Rev Biomed Eng 10:107–144. doi:10.1146/annurev.bioeng.10.061807.160524

    CAS  CrossRef  PubMed  Google Scholar 

  15. Chung TD, Kim HC (2007) Recent advances in miniaturized microfluidic flow cytometry for clinical use. Electrophoresis 28:4511–4520. doi:10.1002/elps.200700620

    CAS  CrossRef  PubMed  Google Scholar 

  16. Dimov IK, Basabe-Desmonts L, Garcia-Cordero JL et al (2011) Stand-alone self-powered integrated microfluidic blood analysis system (SIMBAS). Lab Chip 11:845–850. doi:10.1039/c0lc00403k

    CAS  CrossRef  PubMed  Google Scholar 

  17. Gad-el-Hak M (2001) Flow physics. MEMS Handb. doi:10.1201/9781420050905.ch4

    CrossRef  Google Scholar 

  18. Bruus H (2008) Theoretical microfluidics. Physics (College Park Md) 18:363. doi:10.1111/j.1574-6968.2009.01808.x

    Google Scholar 

  19. Lei H, Fedosov DA, Caswell B, Karniadakis GE (2013) Blood flow in small tubes: quantifying the transition to the non-continuum regime. J Fluid Mech 722:214–239. doi:10.1017/jfm.2013.91

    CAS  CrossRef  Google Scholar 

  20. Ali Beskok GEK (1999) report: a model for flows in channels, pipes, and ducts at micro and nano scales. Microscale Thermophys Eng 3:43–77. doi:10.1080/108939599199864

    CrossRef  Google Scholar 

  21. Thompson P, Troian SM (1997) A general boundary condition for liquid flow at solid surfaces. Nature 389:360–362. doi:10.1038/38686

    CAS  CrossRef  Google Scholar 

  22. Ghosh A (2011) Mechanics over micro and nano scales. In: Chakraborty S (ed). Springer, New York, pp 61–94

    Google Scholar 

  23. Pianka ER, Vitt LJ (2003) Lizards: windows to the evolution of diversity. University of California Press, Berkeley, CA

    Google Scholar 

  24. Trimmer W, Stroud R (2001) Scaling of micromechanical devices. MEMS Handb. doi:10.1201/9781420050905.ch2

    Google Scholar 

  25. Munson B, Young D, Okiishi T, Huebsch W (2009) Fundamentals of fluid mechanics, 6th edn. John Wiley & Sons Inc., New York

    Google Scholar 

  26. Sia SK, Whitesides GM (2003) Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24:3563–3576. doi:10.1002/elps.200305584

    CAS  CrossRef  PubMed  Google Scholar 

  27. Kirby B (2010) Micro- and nanoscale fluid mechanics. Cambridge University Press, New York

    CrossRef  Google Scholar 

  28. Panton RL (2013) Flow at low Reynolds numbers. In: Incompressible flow. Wiley, New York, pp 607–649

    Google Scholar 

  29. Squires TM, Quake SRSR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977–1026

    CAS  CrossRef  Google Scholar 

  30. Asmolov ES (1999) The inertial lift on a spherical particle in a plane Poiseuille flow at large channel Reynolds number. J Fluid Mech 381:63–87. doi:10.1017/S0022112098003474

    CAS  CrossRef  Google Scholar 

  31. Di Carlo D (2009) Inertial microfluidics. Lab Chip 9:3038–3046. doi:10.1039/b912547g

    CrossRef  PubMed  Google Scholar 

  32. Dean WR (1928) Fluid motion in a curved channel. Proc R Soc A Math Phys Eng Sci 121:402–420. doi:10.1098/rspa.1928.0205

    CrossRef  Google Scholar 

  33. Berger SA, Talbot L, Yao LS (1983) Flow in curved pipes. Annu Rev Fluid Mech 15:461–512. doi:10.1146/annurev.fl.15.010183.002333

    CrossRef  Google Scholar 

  34. Bergman TL, Lavine AS, Incropera FP, Dewitt DP (2011) Fundamentals of heat and mass transfer, 7th edn. John Wiley & Sons, Inc., New York

    Google Scholar 

  35. Brody JP, Yager P (1997) Diffusion-based extraction in a microfabricated device. Sensors Actuators A Phys 58:13–18. doi:10.1016/S0924-4247(97)80219-1

    CAS  CrossRef  Google Scholar 

  36. Morgan H, Green NG (2003) Fluid dynamics. In: Pethig R (ed) AC electrokinetics: colloids nanoparticles. Institute of Physics Publishing, UK, pp 65–80

    Google Scholar 

  37. Lei U, Yang CY, Wu KC (2006) Viscous torque on a sphere under arbitrary rotation. Appl Phys Lett 89:20–23. doi:10.1063/1.2372704

    Google Scholar 

  38. Panton RL (2013) Ideal Flows in a plane. In: Incompressible flow. Wiley, New York, pp 438–501

    Google Scholar 

  39. Zeng L, Balachandar S, Fischer P (2005) Wall-induced forces on a rigid sphere at finite Reynolds number. J Fluid Mech 536:1–25. doi:10.1017/S0022112005004738

    CrossRef  Google Scholar 

  40. Rubinow SI, Keller JB (1961) The transverse force on a spinning sphere moving in a viscous fluid. J Fluid Mech 11:447. doi:10.1017/S0022112061000640

    CrossRef  Google Scholar 

  41. Segré G, Silberberg A (1961) Radial particle displacements in Poiseuille flow of suspensions. Nature 189:209–210. doi:10.1038/189209a0

    CrossRef  Google Scholar 

  42. Chun B, Ladd AJC (2006) Inertial migration of neutrally buoyant particles in a square duct: an investigation of multiple equilibrium positions. Phys Fluids 18:3–6. doi:10.1063/1.2176587

    CrossRef  Google Scholar 

  43. Ho BP, Leal LG (1976) Migration of rigid spheres in a two-dimensional unidirectional shear flow of a second-order fluid. J Fluid Mech 76:783. doi:10.1017/S002211207600089X

    CrossRef  Google Scholar 

  44. Cox RG, Brenner H (1968) The lateral migration of solid particles in Poiseuille flow—I: Theory. Chem Eng Sci 23:147–173. doi:10.1016/0301-9322(77)90001-5

    CrossRef  Google Scholar 

  45. Matas J-P, Morris JF, Guazzelli É (2004) Inertial migration of rigid spherical particles in Poiseuille flow. J Fluid Mech 515:171–195. doi:10.1017/S0022112004000254

    CrossRef  Google Scholar 

  46. Schonberg JA, Hinch EJ (1989) Inertial migration of a sphere in Poiseuille flow. J Fluid Mech 203:517–524

    CAS  CrossRef  Google Scholar 

  47. Di Carlo D, Edd JF, Humphry KJ et al (2009) Particle segregation and dynamics in confined flows. Phys Rev Lett 102:1–4. doi:10.1103/PhysRevLett.102.094503

    Google Scholar 

  48. Di Carlo D, Irimia D, Tompkins RG, Toner M (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci U S A 104:18892–18897. doi:10.1073/pnas.0704958104

    CrossRef  PubMed  PubMed Central  Google Scholar 

  49. Zhou J, Giridhar PV, Kasper S, Papautsky I (2013) Modulation of aspect ratio for complete separation in an inertial microfluidic channel. Lab Chip 13:1919–1929. doi:10.1039/c3lc50101a

    CAS  CrossRef  PubMed  Google Scholar 

  50. Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2008) Enhanced particle filtration in straight microchannels using shear-modulated inertial migration. Phys Fluids 20:101702. doi:10.1063/1.2998844

    CrossRef  Google Scholar 

  51. Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2009) Inertial microfluidics for continuous particle filtration and extraction. Microfluid Nanofluid 7:217–226. doi:10.1007/s10404-008-0377-2

    CAS  CrossRef  Google Scholar 

  52. Hur SC, Brinckerhoff TZ, Walthers CM et al (2012) Label-free enrichment of adrenal cortical progenitor cells using inertial microfluidics. PLoS One 7:e46550. doi:10.1371/journal.pone.0046550

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  53. Wang X, Zandi M, Ho C-C et al (2015) Single stream inertial focusing in a straight microchannel. Lab Chip 15:1812–1821. doi:10.1039/C4LC01462F

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  54. Zhou J, Kasper S, Papautsky I (2013) Enhanced size-dependent trapping of particles using microvortices. Microfluid Nanofluid 15:611–623. doi:10.1007/s10404-013-1176-y

    CrossRef  Google Scholar 

  55. Hur SC, Mach AJ, Di Carlo D (2011) High-throughput size-based rare cell enrichment using microscale vortices. Biomicrofluidics 5:1–10. doi:10.1063/1.3576780

    CrossRef  Google Scholar 

  56. Sollier E, Go DE, Che J et al (2014) Size-selective collection of circulating tumor cells using Vortex technology. Lab Chip 14:63–77. doi:10.1039/c3lc50689d

    CAS  CrossRef  PubMed  Google Scholar 

  57. Che J, Mach AJ, Go DE et al (2013) Microfluidic purification and concentration of malignant pleural effusions for improved molecular and cytomorphological diagnostics. PLoS One 8:e78194. doi:10.1371/journal.pone.0078194

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  58. Wang X, Zhou J, Papautsky I (2013) Vortex-aided inertial microfluidic device for continuous particle separation with high size-selectivity, efficiency, and purity. Biomicrofluidics 7:22–25. doi:10.1063/1.4818906

    Google Scholar 

  59. Wang X, Papautsky I (2015) Size-based microfluidic multimodal microparticle sorter. Lab Chip 15:1350–1359. doi:10.1039/c4lc00803k

    CAS  CrossRef  PubMed  Google Scholar 

  60. Gossett DR, Di Carlo D (2009) Particle focusing mechanisms in curving confined flows. Anal Chem 81:8459–8465. doi:10.1021/ac901306y

    CAS  CrossRef  PubMed  Google Scholar 

  61. Matas JP, Morris JF, Guazzelli E (2004) Lateral forces on a sphere. Oil Gas Sci Technol Rev IFP 59:59–70

    CrossRef  Google Scholar 

  62. Lee MG, Shin JH, Bae CY et al (2013) Label-free cancer cell separation from human whole blood using inertial micro fluidics at low shear stress. Anal Chem 85(13):6213–6218

    CAS  CrossRef  PubMed  Google Scholar 

  63. Lee MG, Choi S, Park J-K (2009) Three-dimensional hydrodynamic focusing with a single sheath flow in a single-layer microfluidic device. Lab Chip 9:3155–3160. doi:10.1039/b910712f

    CAS  CrossRef  PubMed  Google Scholar 

  64. Zhang J, Li M, Li WH, Alici G (2013) Inertial focusing in a straight channel with asymmetrical expansion–contraction cavity arrays using two secondary flows. J Micromech Microeng 23:085023. doi:10.1088/0960-1317/23/8/085023

    CrossRef  Google Scholar 

  65. Hou HW, Warkiani ME, Khoo BL et al (2013) Isolation and retrieval of circulating tumor cells using centrifugal forces. Sci Rep 3:1259. doi:10.1038/srep01259

    PubMed  PubMed Central  Google Scholar 

  66. Nivedita N, Papautsky I (2013) Continuous separation of blood cells in spiral microfluidic devices. Biomicrofluidics 7:1–14. doi:10.1063/1.4819275

    CrossRef  Google Scholar 

  67. Sun J, Liu C, Li M et al (2013) Size-based hydrodynamic rare tumor cell separation in curved microfluidic channels. Biomicrofluidics 7:1–11. doi:10.1063/1.4774311

    CrossRef  Google Scholar 

  68. Xiang N, Yi H, Chen K et al (2013) High-throughput inertial particle focusing in a curved microchannel: insights into the flow-rate regulation mechanism and process model. Biomicrofluidics 7:1–10. doi:10.1063/1.4818445

    Google Scholar 

  69. Tallapragada P, Hasabnis N, Katuri K et al (2015) Scale invariant hydrodynamic focusing and sorting of inertial particles by size in spiral micro channels. J Micromech Microeng 25:084013. doi:10.1088/0960-1317/25/8/084013

    CrossRef  Google Scholar 

  70. Xiang N, Chen K, Dai Q et al (2015) Inertia-induced focusing dynamics of microparticles throughout a curved microfluidic channel. Microfluid Nanofluid 18:29–39. doi:10.1007/s10404-014-1395-x

    CrossRef  Google Scholar 

  71. Reece AE, Kaastrup K, Sikes HD, Oakey J (2015) Staged inertial microfluidic focusing for complex fluid enrichment. RSC Adv 5:53857–53864. doi:10.1039/C5RA10634F

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  72. Pethig R (2013) Dielectrophoresis: an assessment of its potential to aid the research and practice of drug discovery and delivery. Adv Drug Deliv Rev 65:1589–1599. doi:10.1016/j.addr.2013.09.003

    CAS  CrossRef  PubMed  Google Scholar 

  73. Pethig R (2010) Review article-dielectrophoresis: status of the theory, technology, and applications. Biomicrofluidics 4:1–35. doi:10.1063/1.3456626

    Google Scholar 

  74. Martinez-Duarte R, Camacho-Alanis F, Renaud P, Ros A (2013) Dielectrophoresis of lambda-DNA using 3D carbon electrodes. Electrophoresis 34:1113–1122. doi:10.1002/elps.201200447

    CAS  CrossRef  PubMed  Google Scholar 

  75. Moncada-Hernandez H, Nagler E, Minerick AR (2014) Theoretical and experimental examination of particle-particle interaction effects on induced dipole moments and dielectrophoretic responses of multiple particle chains. Electrophoresis 35:1803–1813. doi:10.1002/elps.201300636

    CAS  CrossRef  PubMed  Google Scholar 

  76. Gascoyne PRC, Vykoukal J (2002) Particle separation by dielectrophoresis. Electrophoresis 23:1973–1983. doi:10.1002/1522-2683(200207)23:13<1973::AID-ELPS1973>3.0.CO;2-1

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  77. Salmanzadeh A, Romero L, Shafiee H et al (2012) Isolation of prostate tumor initiating cells (TICs) through their dielectrophoretic signature. Lab Chip 12:182–189. doi:10.1039/c1lc20701f

    CAS  CrossRef  PubMed  Google Scholar 

  78. Wang X, Becker FF, Gascoyne PRC (2002) Membrane dielectric changes indicate induced apoptosis in HL-60 cells more sensitively than surface phosphatidylserine expression or DNA fragmentation. Biochim Biophys Acta 1564:412–420

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  79. Abdallah BG, Chao T-C, Kupitz C et al (2013) Dielectrophoretic sorting of membrane protein nanocrystals. ACS Nano 7:9129–9137. doi:10.1021/nn403760q

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  80. Jones PV, Staton SJR, Hayes MA (2011) Blood cell capture in a sawtooth dielectrophoretic microchannel. Anal Bioanal Chem 401:2103–2111. doi:10.1007/s00216-011-5284-9

    CAS  CrossRef  PubMed  Google Scholar 

  81. Shafiee H, Sano MB, Henslee EA et al (2010) Selective isolation of live/dead cells using contactless dielectrophoresis (cDEP). Lab Chip 10:438–445. doi:10.1039/b920590j

    CAS  CrossRef  PubMed  Google Scholar 

  82. Pethig R, Kell DB (1987) The passive electrical properties of biological systems: their significance in physiology, biophysics and biotechnology. Phys Med Biol 32:933–970. doi:10.1088/0031-9155/32/8/001

    CAS  CrossRef  PubMed  Google Scholar 

  83. Cemažar J, Kotnik T (2012) Dielectrophoretic field-flow fractionation of electroporated cells. Electrophoresis 33:2867–2874. doi:10.1002/elps.201200265

    CrossRef  PubMed  Google Scholar 

  84. Chan KL, Gascoyne PR, Becker FF, Pethig R (1997) Electrorotation of liposomes: verification of dielectric multi-shell model for cells. Biochim Biophys Acta 1349:182–196

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

  85. Nejad HR, Chowdhury OZ, Buat MD, Hoorfar M (2013) Characterization of the geometry of negative dielectrophoresis traps for particle immobilization in digital microfluidic platforms. Lab Chip 13:1823–1830. doi:10.1039/c3lc41292j

    CAS  CrossRef  PubMed  Google Scholar 

  86. Puttaswamy SV, Sivashankar S, Chen R-J et al (2010) Enhanced cell viability and cell adhesion using low conductivity medium for negative dielectrophoretic cell patterning. Biotechnol J 5:1005–1015. doi:10.1002/biot.201000194

    CAS  CrossRef  PubMed  Google Scholar 

  87. Leonard KM, Minerick AR (2011) Explorations of ABO-Rh antigen expressions on erythrocyte dielectrophoresis: changes in cross-over frequency. Electrophoresis 32:2512–2522. doi:10.1002/elps.201100077

    CAS  CrossRef  PubMed  Google Scholar 

  88. Sano MB, Salmanzadeh A, Davalos RV (2012) Multilayer contactless dielectrophoresis: theoretical considerations. Electrophoresis 33:1938–1946. doi:10.1002/elps.201100677

    CAS  CrossRef  PubMed  Google Scholar 

  89. Jones TB (1995) Electromechanics of particles. Cambridge University Press, Cambridge

    CrossRef  Google Scholar 

  90. Camacho-Alanis F, Gan L, Ros A (2012) Transitioning streaming to trapping in DC insulator-based dielectrophoresis for biomolecules. Sens Actuators B Chem 173:668–675. doi:10.1016/j.snb.2012.07.080

    CAS  CrossRef  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa M. Wasson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Wasson, E.M., Douglas, T.A., Davalos, R.V. (2016). Mechanical and Electrical Principles for Separation of Rare Cells. In: Lu, C., Verbridge, S. (eds) Microfluidic Methods for Molecular Biology. Springer, Cham. https://doi.org/10.1007/978-3-319-30019-1_13

Download citation