Microfluidic Platforms for Quantitative Biology Studies in Model Organisms

  • Daniel A. Porto
  • Tel M. Rouse
  • Adriana San-MiguelEmail author
  • Hang LuEmail author


The use of lab-on-chip tools has been adopted in a wide variety of scientific fields. Hundreds of applications that speed up, miniaturize, or enable otherwise unfeasible assays have emerged in the last couple of decades [1, 2]. The microfluidic toolbox offers several advantages which make it a very attractive resource for biological studies: reduced sample volume, control of spatiotemporal chemical compositions, streamlined assays, precise and predictable fluid flow regimes, portability, and integration with sensors, actuators, controllers, and automation systems [1–3]. The main drive of the field has thus far focused on the development of microfluidic tools that replace conventional methods with proof-of-principle applications. However, widespread adoption of these technologies for fundamental research is still in progress. Microfluidics has nonetheless had a significant impact in fundamental biological studies with model organisms [4, 5]. In this article, we provide an overview of the current state of the field, the impacts of microfluidics in model organism research, and the outlook, challenges, and opportunities for the future.


Microfluidics Model organisms Quantitative biology Microscopy Phenotypes Genetics High-throughput High-content Screens 


  1. 1.
    Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373CrossRefPubMedGoogle Scholar
  2. 2.
    Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507:181–189CrossRefPubMedGoogle Scholar
  3. 3.
    Salieb-Beugelaar GB, Simone G, Arora A, Philippi A, Manz A (2010) Latest developments in microfluidic cell biology and analysis systems. Anal Chem 82:4848–4864CrossRefPubMedGoogle Scholar
  4. 4.
    Hwang H, Lu H (2013) Microfluidic tools for developmental studies of small model organisms—nematodes, fruit flies, and zebrafish. Biotechnol J 8:192–205CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    San-Miguel A, Lu H (2013) Microfluidics as a tool for C. elegans research. WormBook. doi:  10.1895/wormbook.1.162.1
  6. 6.
    Sia S, Whitesides G (2003) Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 24:3563–3576CrossRefPubMedGoogle Scholar
  7. 7.
    Squires TM, Quake SR (2005) Microfluidics: fluid physics at the nanoliter scale. Rev Mod Phys 77:977–1026CrossRefGoogle Scholar
  8. 8.
    Jeon NL, Dertinger SKW, Chiu DT, Choi IS, Stroock AD, Whitesides GM (2000) Generation of solution and surface gradients using microfluidic systems. Langmuir 16:8311–8316CrossRefGoogle Scholar
  9. 9.
    Dertinger SKW, Chiu DT, Jeon NL, Whitesides GM (2001) Generation of gradients having complex shapes using microfluidic networks. Anal Chem 73:1240–1246CrossRefGoogle Scholar
  10. 10.
    Irimia D (2010) Microfluidic technologies for temporal perturbations of chemotaxis. Annu Rev Biomed Eng 12:259–284CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Albrecht DR, Bargmann CI (2011) High-content behavioral analysis of Caenorhabditis elegans in precise spatiotemporal chemical environments. Nat Methods 8:599–605CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chingozha L, Zhan M, Zhu C, Lu H (2014) A generalizable, tunable microfluidic platform for delivering fast temporally varying chemical signals to probe single-cell response dynamics. Anal Chem 86:10138–10147CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Lu H, Koo LY, Wang WM, Lauffenburger DA, Griffith LG, Jensen KF (2004) Microfluidic shear devices for quantitative analysis of cell adhesion. Anal Chem 76:5257–5264CrossRefPubMedGoogle Scholar
  14. 14.
    Stroock AD, Dertinger SKW, Ajdari A, Mezić I, Stone HA, Whitesides GM (2002) Chaotic mixer for microchannels. Science 295:647–651CrossRefPubMedGoogle Scholar
  15. 15.
    Williams MS, Longmuir KJ, Yager P (2008) A practical guide to the staggered herringbone mixer. Lab Chip 8:1121–1129CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices. Annu Rev Fluid Mech 36:381–411CrossRefGoogle Scholar
  17. 17.
    Atencia J, Beebe DJ (2005) Controlled microfluidic interfaces. Nature 437:648–655CrossRefPubMedGoogle Scholar
  18. 18.
    Duffy DC, McDonald JC, Schueller OJA, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984CrossRefPubMedGoogle Scholar
  19. 19.
    McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu HK, Schueller OJA, Whitesides GM (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27–40CrossRefPubMedGoogle Scholar
  20. 20.
    Wang Y, Balowski J, Phillips C, Phillips R, Sims CE, Allbritton NL (2011) Benchtop micromolding of polystyrene by soft lithography. Lab Chip 11:3089–3097CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Chen Y, Duan H, Zhang L, Chen G (2008) Fabrication of PMMA CE microchips by infrared-assisted polymerization. Electrophoresis 29:4922–4927CrossRefPubMedGoogle Scholar
  22. 22.
    Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed 46:1318–1320CrossRefGoogle Scholar
  23. 23.
    Cate DM, Adkins JA, Mettakoonpitak J, Henry CS (2015) Recent developments in paper-based microfluidic devices. Anal Chem 87:19–41CrossRefPubMedGoogle Scholar
  24. 24.
    Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82:3–10CrossRefPubMedGoogle Scholar
  25. 25.
    Vyawahare S, Griffiths AD, Merten CA (2010) Miniaturization and parallelization of biological and chemical assays in microfluidic devices. Chem Biol 17:1052–1065CrossRefPubMedGoogle Scholar
  26. 26.
    Velve-Casquillas G, Le Berre M, Piel M, Tran PT (2010) Microfluidic tools for cell biological research. Nano Today 5:28–47CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    K-i K (2013) Cutting-edge microfabricated biomedical tools for human pluripotent stem cell research. J Lab Automat 18:469–481CrossRefGoogle Scholar
  28. 28.
    Thorsen T, Maerkl SJ, Quake SR (2002) Microfluidic large-scale integration. Science 298:580–584CrossRefPubMedGoogle Scholar
  29. 29.
    Cheong R, Wang CJ, Levchenko A (2009) Using a microfluidic device for high-content analysis of cell signaling. Sci Sig 2:pl2Google Scholar
  30. 30.
    Chung K, Lu H (2009) Automated high-throughput cell microsurgery on-chip. Lab Chip 9:2764–2766CrossRefPubMedGoogle Scholar
  31. 31.
    Crane MM, Chung K, Lu H (2009) Computer-enhanced high-throughput genetic screens of C. elegans in a microfluidic system. Lab Chip 9:38–40CrossRefPubMedGoogle Scholar
  32. 32.
    Stirman JN, Brauner M, Gottschalk A, Lu H (2010) High-throughput study of synaptic transmission at the neuromuscular junction enabled by optogenetics and microfluidics. J Neurosci Methods 191:90–93CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ottesen EA, Hong JW, Quake SR, Microfluidic LJR, Digital PCR (2006) Enables multigene analysis of individual environmental bacteria. Science 314:1464–1467CrossRefPubMedGoogle Scholar
  34. 34.
    Blazej RG, Kumaresan P, Mathies RA (2006) Microfabricated bioprocessor for integrated nanoliter-scale Sanger DNA sequencing. Proc Natl Acad Sci 103:7240–7245CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Streets AM, Zhang X, Cao C, Pang Y, Wu X, Xiong L, Yang L, Fu Y, Zhao L, Tang F, Huang Y (2014) Microfluidic single-cell whole-transcriptome sequencing. Proc Natl Acad Sci 111:7048–7053CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K, Goldman M, Tirosh I, Bialas AR, Kamitaki N, Martersteck EM, Trombetta JJ, Weitz DA, Sanes JR, Shalek AK, Regev A, McCarroll SA (2015) Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:1202–1214CrossRefPubMedGoogle Scholar
  37. 37.
    Freire SLS, Wheeler AR (2006) Proteome-on-a-chip: mirage, or on the horizon? Lab Chip 6:1415–1423CrossRefPubMedGoogle Scholar
  38. 38.
    Sia SK, Kricka LJ (2008) Microfluidics and point-of-care testing. Lab Chip 8:1982–1983CrossRefPubMedGoogle Scholar
  39. 39.
    Chung K, Rivet CA, Kemp ML, Lu H (2011) Imaging single-cell signaling dynamics with a deterministic high-density single-cell trap array. Anal Chem 83:7044–7052CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Zheng Y, Nguyen J, Wei Y, Sun Y (2013) Recent advances in microfluidic techniques for single-cell biophysical characterization. Lab Chip 13:2464–2483CrossRefPubMedGoogle Scholar
  41. 41.
    Kaletta T, Hengartner MO (2006) Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov 5:387–399CrossRefPubMedGoogle Scholar
  42. 42.
    Meeker ND, Trede NS (2008) Immunology and zebrafish: spawning new models of human disease. Dev Comp Immunol 32:745–757CrossRefPubMedGoogle Scholar
  43. 43.
    O’Kane C (2011) Drosophila as a model organism for the study of neuropsychiatric disorders. In: Hagan JJ (ed) Molecular and functional models in neuropsychiatry, 7th edn. Springer, Berlin, pp 37–60CrossRefGoogle Scholar
  44. 44.
    Pandey UB, Nichols CD (2011) Human disease models in drosophila melanogaster and the role of the fly in therapeutic drug discovery. Pharmacol Rev 63:411–436CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Leung MCK, Williams PL, Benedetto A, Au C, Helmcke KJ, Aschner M, Meyer JN (2008) Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol Sci 106:5–28CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77:71–94PubMedPubMedCentralGoogle Scholar
  47. 47.
    Ellis HM, Horvitz HR (1986) Genetic control of programmed cell death in the nematode C. elegans. Cell 44:817–829CrossRefPubMedGoogle Scholar
  48. 48.
    Sulston JE (1976) Post-embryonic development in the ventral cord of Caenorhabditis elegans. Phil Trans Roy Soc Lond B Biol Sci 275:287–297CrossRefGoogle Scholar
  49. 49.
    Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811CrossRefPubMedGoogle Scholar
  50. 50.
    Crane MM, Chung K, Stirman J, Lu H (2010) Microfluidics-enabled phenotyping, imaging, and screening of multicellular organisms. Lab Chip 10:1509–1517CrossRefPubMedGoogle Scholar
  51. 51.
    Krajniak J, Lu H (2010) Long-term high-resolution imaging and culture of C. elegans in chip-gel hybrid microfluidic device for developmental studies. Lab Chip 10:1862–1868CrossRefPubMedGoogle Scholar
  52. 52.
    Hulme SE, Shevkoplyas SS, McGuigan AP, Apfeld J, Fontana W, Whitesides GM (2010) Lifespan-on-a-chip: microfluidic chambers for performing lifelong observation of C. elegans. Lab Chip 10:589–597CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Hulme SE, Shevkoplyas SS, Apfeld J, Fontana W, Whitesides GM (2007) A microfabricated array of clamps for immobilizing and imaging C. elegans. Lab Chip 7:1515–1523CrossRefPubMedGoogle Scholar
  54. 54.
    Chung K, Crane MM, Lu H (2008) Automated on-chip rapid microscopy, phenotyping and sorting of C. elegans. Nat Methods 5:637–643CrossRefPubMedGoogle Scholar
  55. 55.
    Rohde CB, Zeng F, Gonzalez-Rubio R, Angel M, Yanik MF (2007) Microfluidic system for on-chip high-throughput whole-animal sorting and screening at subcellular resolution. Proc Natl Acad Sci U S A 104:13891–13895CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Chokshi TV, Ben-Yakar A, Chronis N (2009) CO2 and compressive immobilization of C. elegans on-chip. Lab Chip 9:151–157CrossRefPubMedGoogle Scholar
  57. 57.
    Chronis N, Zimmer M, Bargmann CI (2007) Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans. Nat Methods 4:727–731CrossRefPubMedGoogle Scholar
  58. 58.
    Chokshi TV, Bazopoulou D, Chronis N (2010) An automated microfluidic platform for calcium imaging of chemosensory neurons in Caenorhabditis elegans. Lab Chip 10:2758–2763CrossRefPubMedGoogle Scholar
  59. 59.
    Allen PB, Sgro AE, Chao DL, Doepker BE, Edgar JS, Shen K, Chiu DT (2008) Single-synapse ablation and long-term imaging in live C. elegans. J Neurosci Methods 173:20–26CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Guo SX, Bourgeois F, Chokshi T, Durr NJ, Hilliard MA, Chronis N, Ben-Yakar A (2008) Femtosecond laser nanoaxotomy lab-on-a-chip for in vivo nerve regeneration studies. Nat Methods 5:531–533CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Zeng F, Rohde CB, Yanik MF (2008) Sub-cellular precision on-chip small-animal immobilization, multi-photon imaging and femtosecond-laser manipulation. Lab Chip 8:653–656CrossRefPubMedGoogle Scholar
  62. 62.
    Conlon I, Raff M (1999) Size control in animal development. Cell 96:235–244CrossRefPubMedGoogle Scholar
  63. 63.
    Lucchetta EM, Lee JH, Fu LA, Patel NH, Ismagilov RF (2005) Dynamics of Drosophila embryonic patterning network perturbed in space and time using microfluidics. Nature 434:1134–1138CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Lucchetta EM, Munson MS, Ismagilov RF (2006) Characterization of the local temperature in space and time around a developing Drosophila embryo in a microfluidic device. Lab Chip 6:185–190CrossRefPubMedGoogle Scholar
  65. 65.
    Chung K, Kim Y, Kanodia JS, Gong E, Shvartsman SY, Lu H (2011) A microfluidic array for large-scale ordering and orientation of embryos. Nat Methods 8:171–176CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Ghannad-Rezaie M, Wang X, Mishra B, Collins C, Chronis N (2012) Microfluidic chips for in vivo imaging of cellular responses to neural injury in Drosophila larvae. PLoS ONE 7:e29869CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Mishra B, Ghannad-Rezaie M, Li J, Wang X, Hao Y, Ye B, Chronis N, Collins CA. (2014) Using microfluidics chips for live imaging and study of injury responses in Drosophila larvae. J Vis Exp. doi:  10.3791/50998
  68. 68.
    Hill AJ, Teraoka H, Heideman W, Peterson RE (2005) Zebrafish as a model vertebrate for investigating chemical toxicity. Toxicol Sci 86:6–19CrossRefPubMedGoogle Scholar
  69. 69.
    Lieschke GJ, Currie PD (2007) Animal models of human disease: zebrafish swim into view. Nat Rev Genet 8:353–367CrossRefPubMedGoogle Scholar
  70. 70.
    Funfak A, Broesing A, Brand M, Koehler JM (2007) Micro fluid segment technique for screening and development studies on Danio rerio embryos. Lab Chip 7:1132–1138CrossRefPubMedGoogle Scholar
  71. 71.
    Raty S, Walters EM, Davis J, Zeringue H, Beebe DJ, Rodriguez-Zas SL, Wheeler MB (2004) Embryonic development in the mouse is enhanced via microchannel culture. Lab Chip 4:186–190CrossRefPubMedGoogle Scholar
  72. 72.
    Yang F, Chen Z, Pan J, Li X, Feng J, Yang H (2011) Microfluidic droplet encapsulation of highly motile single zoospores for phenotypic screening of an antioomycete chemical. Biomicrofluidics 5:044103–044111Google Scholar
  73. 73.
    Melin J, Lee A, Foygel K, Leong DE, Quake SR, Yao MWM (2009) In vitro embryo culture in defined, sub-microliter volumes. Dev Dyn 238:950–955CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Peerani R, Rao BM, Bauwens C, Yin T, Wood GA, Nagy A, Kumacheva E, Zandstra PW (2007) Niche-mediated control of human embryonic stem cell self-renewal and differentiation. EMBO J 26:4744–4755CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Lee LH, Peerani R, Ungrin M, Joshi C, Kumacheva E, Zandstra PW (2009) Micropatterning of human embryonic stem cells dissects the mesoderm and endoderm lineages. Stem Cell Res 2:155–162CrossRefPubMedGoogle Scholar
  76. 76.
    Hwang Y-S, Chung BG, Ortmann D, Hattori N, Moeller H-C, Khademhosseini A (2009) Microwell-mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11. Proc Natl Acad Sci U S A 106:16978–16983CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Karp JM, Yeh J, Eng G, Fukuda J, Blumling J, Suh K-Y, Cheng J, Mahdavi A, Borenstein J, Langer R, Khademhosseini A (2007) Controlling size, shape and homogeneity of embryoid bodies using poly(ethylene glycol) microwells. Lab Chip 7:786–794CrossRefPubMedGoogle Scholar
  78. 78.
    Fung W-T, Beyzavi A, Abgrall P, Nguyen N-T, Li H-Y (2009) Microfluidic platform for controlling the differentiation of embryoid bodies. Lab Chip 9:2591–2595CrossRefPubMedGoogle Scholar
  79. 79.
    Kim C, Lee KS, Bang JH, Kim YE, Kim M-C, Oh KW, Lee SH, Kang JY (2011) 3-Dimensional cell culture for on-chip differentiation of stem cells in embryoid body. Lab Chip 11:874–882CrossRefPubMedGoogle Scholar
  80. 80.
    Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32:760–772CrossRefPubMedGoogle Scholar
  81. 81.
    Chalasani SH, Chronis N, Tsunozaki M, Gray JM, Ramot D, Goodman MB, Bargmann CI (2007) Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans. Nature 450:63–70CrossRefPubMedGoogle Scholar
  82. 82.
    Gray JM, Karow DS, Lu H, Chang AJ, Chang JS, Ellis RE, Marletta MA, Bargmann CI (2004) Oxygen sensation and social feeding mediated by a C. elegans guanylate cyclase homologue. Nature 430:317–322CrossRefPubMedGoogle Scholar
  83. 83.
    Zhang Y, Lu H, Bargmann CI (2005) Pathogenic bacteria induce aversive olfactory learning in Caenorhabditis elegans. Nature 438:179–184CrossRefPubMedGoogle Scholar
  84. 84.
    Zimmer M, Gray JM, Pokala N, Chang AJ, Karow DS, Marletta MA, Hudson ML, Morton DB, Chronis N, Bargmann CI (2009) Neurons detect increases and decreases in oxygen levels using distinct guanylate cyclases. Neuron 61:865–879CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Larsch J, Ventimiglia D, Bargmann CI, Albrecht DR (2013) High-throughput imaging of neuronal activity in Caenorhabditis elegans. Proc Natl Acad Sci U S A 110:E4266–E4273CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Cornaglia M, Mouchiroud L, Marette A, Narasimhan S, Lehnert T, Jovaisaite V, Auwerx J, Gijs MAM (2015) An automated microfluidic platform for C. elegans embryo arraying, phenotyping, and long-term live imaging. Sci Rep 5:10192CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Kopito RB, Levine E (2014) Durable spatiotemporal surveillance of Caenorhabditis elegans response to environmental cues. Lab Chip 14:764–770CrossRefPubMedGoogle Scholar
  88. 88.
    Krajniak J, Hao Y, Mak HY, Lu H (2013) C.L.I.P.-continuous live imaging platform for direct observation of C. elegans physiological processes. Lab Chip 13:2963–2971CrossRefPubMedGoogle Scholar
  89. 89.
    Chung K, Zhan M, Srinivasan J, Sternberg PW, Gong E, Schroeder FC, Lu H (2011) Microfluidic chamber arrays for whole-organism behavior-based chemical screening. Lab Chip 11:3689–3697CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Zhao X, Xu F, Tang L, Du W, Feng X, Liu B-F (2013) Microfluidic chip-based C. elegans microinjection system for investigating cell–cell communication in vivo. Biosens Bioelectron 50:28–34CrossRefPubMedGoogle Scholar
  91. 91.
    Deisseroth K (2011) Optogenetics. Nat Methods 8:26–29CrossRefPubMedGoogle Scholar
  92. 92.
    Lichtman JW, Conchello J-A (2005) Fluorescence microscopy. Nat Methods 2:910–919CrossRefPubMedGoogle Scholar
  93. 93.
    Cáceres IDC, Valmas N, Hilliard MA, Lu H (2012) Laterally orienting C. elegans using geometry at microscale for high-throughput visual screens in neurodegeneration and neuronal development studies. PLoS ONE 7:e35037Google Scholar
  94. 94.
    Kerr R, Lev-Ram V, Baird G, Vincent P, Tsien RY, Schafer WR (2000) Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans. Neuron 26:583–594CrossRefPubMedGoogle Scholar
  95. 95.
    Suzuki H, Kerr R, Bianchi L, Frokjaer-Jensen C, Slone D, Xue J, Gerstbrein B, Driscoll M, Schafer WR (2003) In vivo imaging of C. elegans mechanosensory neurons demonstrates a specific role for the MEC-4 channel in the process of gentle touch sensation. Neuron 39:1005–1017CrossRefPubMedGoogle Scholar
  96. 96.
    Hilliard MA, Apicella AJ, Kerr R, Suzuki H, Bazzicalupo P, Schafer WR (2005) In vivo imaging of C. elegans ASH neurons: cellular response and adaptation to chemical repellents. EMBO J 24:63–72CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Luo L, Wen Q, Ren J, Hendricks M, Gershow M, Qin Y, Greenwood J, Soucy ER, Klein M, Smith-Parker HK, Calvo AC, Colon-Ramos DA, Samuel ADT, Zhang Y (2014) Dynamic encoding of perception, memory, and movement in a C. elegans chemotaxis circuit. Neuron 82:1115–1128CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Lee H, Crane MM, Zhang Y, Lu H (2013) Quantitative screening of genes regulating tryptophan hydroxylase transcription in Caenorhabditis elegans using microfluidics and an adaptive algorithm. Integr Biol 5:372–380. doi: 10.1039/C2IB20078C CrossRefGoogle Scholar
  99. 99.
    Hu C, Dillon J, Kearn J, Murray C, O’Connor V, Holden-Dye L, Morgan H (2013) NeuroChip: a microfluidic electrophysiological device for genetic and chemical biology screening of Caenorhabditis elegans adult and larvae. PLoS One 8, e64297CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Chung K, Crane M, Lu H (2009) Automated on-chip imaging and sorting of C. elegans. Protocol exchangeGoogle Scholar
  101. 101.
    Stephens GJ, Johnson-Kerner B, Bialek W, Ryu WS (2008) Dimensionality and dynamics in the behavior of C. elegans. PLoS Comput Biol 4, e1000028CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Melin J, Quake SR (2007) Microfluidic large-scale integration: the evolution of design rules for biological automation. Annu Rev Biophys Biomol Struct 36:213–231CrossRefPubMedGoogle Scholar
  103. 103.
    King KR, Wang S, Irimia D, Jayaraman A, Toner M, Yarmush ML (2007) A high-throughput microfluidic real-time gene expression living cell array. Lab Chip 7:77–85CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Interdisciplinary Program of BioengineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.School of Chemical and Biomolecular EngineeringGeorgia Institute of TechnologyAtlantaUSA
  3. 3.Department of Chemical and Biomolecular EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations