Skip to main content

Shape Memory Alloys

  • Chapter
  • First Online:
Dynamics of Smart Systems and Structures

Abstract

This chapter presents a general overview of shape memory alloys (SMAs). A discussion about thermomechanical behaviors is carried out establishing the most important characteristics of these alloys. Applications of SMAs in different areas of human knowledge are explained. Thermomechanical characterization is discussed considering different experimental procedures. Afterward, a brief review of constitutive models is presented. A model with assumed transformation kinetics is explored showing some numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • R.A.A. Aguiar, M.A. Savi, P.M.C.L. Pacheco, Experimental investigation of vibration reduction using shape memory alloys. J. Intell. Mater. Syst. Struct. 24(2), 247–261 (2013)

    Article  Google Scholar 

  • F. Ahlhelm, R. Kaufmann, D. Ahlhelm, M.F. Ong, C. Roth, W. Reith, Carotid artery stenting using a novel self-expanding braided, nickel–titanium stent: feasibility and safety porcine trial. Cardiovasc. Intervent. Radiol. 32, 1019–1027 (2009)

    Article  Google Scholar 

  • V. Birman, Effect of SMA dampers on nonlinear vibrations of elastic structures, in SPIE Proceedings, Smart Structures and Materials 1997: Mathematics and Control in Smart Structures, vol. 3039, 1997, 9pp

    Google Scholar 

  • J.G. Boyd, D.C. Lagoudas, Thermodynamic constitutive model for the shape memory materials. Part I: the monolithic shape memory alloys. Int. J. Plast. 12(6), 805–842 (1996)

    Article  Google Scholar 

  • L.C. Brinson, One dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable. J. Intell. Mater. Syst. Struct. 4, 229–242 (1993)

    Article  Google Scholar 

  • B. Carpenter, J. Lyons, EO-1 technology validation report: lightweight flexible solar array experiment, Tech. report, NASA Goddard Space Flight Center, Greenbelt, 2001

    Google Scholar 

  • S.B. Choi, Y.M. Han, J.H. Kim, C.C. Cheong, Force tracking of a flexible gripper featuring shape memory alloys actuators. Mechatronics 11, 677–690 (2001)

    Article  Google Scholar 

  • A. Czechowicz, On the functional characteristics of pseudoelastic adaptive resetting of shape memory actuators in the field of automotive applications. J. Intell. Mater. Syst. Struct. 24(13), 1539–1545 (2013)

    Article  Google Scholar 

  • S. Dilibal, H. Dilibal, Ituhand Robot el ve Mayin Temizleme Alaninda Kullanilabilirligi, in Savunma Teknolojileri Kongresi, ODTÜ, Ankara, 24-25 Ekim, 2002

    Google Scholar 

  • T.W. Duerig, K.N. Melton, D. Stöckel, C.M. Wayman, Engineering Aspects of Shape Memory Alloys (Butterworth-Heinemann, London, 1990). 499p

    Google Scholar 

  • T.M. Duerig, A. Pelton, D. Stöckel, An overview of nitinol medical applications. Mater. Sci. Eng. A 273–275, 149–160 (1999)

    Google Scholar 

  • A.C. Eringen, Mechanics of Continua (Wiley, New York, 1967)

    Google Scholar 

  • M.E. Gurtin, E. Fried, L. Anand, The Mechanics and Thermodynamics of Continua (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  • D.J. Hartl, D.C. Lagoudas, Aerospace applications of shape memory alloys. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 221(4), 535–552 (2007)

    Article  Google Scholar 

  • D.E. Hodgson, J.W. Brown, Using Nitinol Alloys (Shape Memory Applications Inc., San Jose, 2000). 44 pp

    Google Scholar 

  • H.Y. Jun, O.K. Rediniotis, D.C. Lagoudas, Development of a fuel-powered shape memory alloy actuator system: II. Fabrication and testing. Smart Mater. Struct. 16, S95–S107 (2007)

    Article  Google Scholar 

  • J.N. Kudva, C.A. Matin, L.B. Scherer, A.P. Jardine, A.R. McGowan, R.C. Lake, G. Sendechyj, B. Sander, Overview of the DARPA/AFRL/NASA smart wing program. Smart Struct. Mater. 3674, 230–236 (1999)

    Google Scholar 

  • C.A.P.L. La Cava, E.P. Silva, L.G. Machado, P.M.C.L. Pacheco, M.A. Savi, Modeling of a shape memory preload device for bolted joints, in Proceedings of National Congress of Mechanical Engineering (CONEM 2000—ABCM), Brazil (in Portuguese), 2000

    Google Scholar 

  • D.C. Lagoudas, Shape Memory Alloys: Modeling and Engineering Applications (Springer, New York, 2008)

    Google Scholar 

  • C. Liang, C.A. Rogers, One-dimensional thermomechanical constitutive relations for shape memory materials. J. Intell. Mater. Syst. Struct. 1, 207–234 (1990)

    Article  Google Scholar 

  • L.G. Machado, M.A. Savi, Odontological applications of shape memory alloys. Rev. Bras. Odontol. 59(5), 302–306 (2002) (in Portuguese)

    Google Scholar 

  • L.G. Machado, M.A. Savi, Medical applications of shape memory alloys. Braz. J. Med. Biol. Res. 36(6), 683–691 (2003)

    Article  Google Scholar 

  • G.E. Mase, G.T. Mase, Continuum Mechanics for Engineers, 2nd edn. (CRC Press, Boca Raton, 1999)

    Google Scholar 

  • J. McCormick, D. Fugazza, F. Auricchio, R. DesRoches, Seismic vibration control of structures using superelastic shape memory alloy. J. Eng. Mater. Technol. 128(3), 294–301 (2006)

    Article  Google Scholar 

  • M. Mosley, C. Mavroidis, C. Pfeiffer, Design and dynamics of a shape memory alloy wire bundle, in Proceedings of the ANS, 8th Topical Meeting on Robotics and Remote Systems, Pittsburgh, April 1999

    Google Scholar 

  • T. Nagnuma, M. Kyo, T. Ueki, K. Takeda, J. Ishibashi, A new, automatic hydrothermal fluid sampler using a shape-memory alloy. J. Oceanogr. 54(3), 241–246 (1998)

    Article  Google Scholar 

  • M. Nakatani, H. Kajimoto, D. Sekiguchi, N. Kawakami, S. Tachi, 3D form display with shape memory alloy, in 13th International Conference on Artificial Reality and Telexistence, 2003

    Google Scholar 

  • E.R. Oberaigner, F.D. Fischer, K. Tanaka, On the optimal damping of a vibration shape memory alloy rod. Eng. Mater. Technol. ASME 124, 97–102 (2002)

    Article  Google Scholar 

  • A. Paiva, M.A. Savi, An overview of constitutive models for shape memory alloys. Math. Probl. Eng. 2006, 1–30 (2006). Article ID 56876

    Article  Google Scholar 

  • RAYCHEM—TYCO ELECTRONIC CORPORATION, www.raychem.com captured on 04/29/2001

  • O.K. Rediniotis, L.N. Wilson, D.C. Lagoudas, M.M. Khan, Development of a shape-memory-alloy actuated biomimetic hydrofoil. J. Intell. Mater. Syst. Struct. 13(1), 35–49 (2002)

    Article  Google Scholar 

  • D. Reynaerls, J. Peirs, H.V. Brussel, An implantable drug-deliver system based on shape memory alloy micro-actuation. Sens. Actuators A Phys. 61(1–3), 455–462 (1997)

    Article  Google Scholar 

  • C.A. Rogers, Intelligent materials, Scientific American, 1995, pp. 122–127

    Google Scholar 

  • K.K. Safak, G.G. Adams, Modeling and simulation of an artificial muscle and its application to biomimetic robot posture control. Robot. Auton. Syst. 41, 225–243 (2002)

    Article  Google Scholar 

  • M.A. Savi, A.S. De Paula, D. Lagoudas, Numerical investigation of an adaptive vibration absorber using shape memory alloys. J. Intell. Mater. Syst. Struct. 22(1), 67–80 (2011)

    Article  Google Scholar 

  • SINTEF, Shape memory alloys in oil well applications, http://iku.sintef.no/Borebronn/Brosjyrer/SMA/SMA.htm, 1999

  • E. Sitnikova, E. Pavlovskaia, M. Wiercigroch, M.A. Savi, Vibration reduction of the impact system by an SMA restrain: numerical studies. Int. J. Non Linear Mech. 45(9), 837–849 (2009)

    Article  Google Scholar 

  • K. Tanaka, S. Nagaki, Thermomechanical description of materials with internal variables in the process of phase transformation. Ing. Archiv. 51, 287–299 (1982)

    Article  Google Scholar 

  • B. Tiseo, A. Concilio, S. Ameduri, A. Gianvito, A shape memory alloys based tuneable dynamic vibration absorber for vibration tonal control. J. Theor. Appl. Mech. 48(1), 135–153 (2010)

    Google Scholar 

  • H. Tobushi, N. Iwanaga, K. Tanaka, T. Hori, T. Sawada, Deformation behavior of Ni-Ti shape memory alloy subjected to variable stress and temperature. Contin. Mech. Thermodyn. 3, 79–93 (1991)

    Article  Google Scholar 

  • A. Tuissi, P. Bassani, R. Casati, M. Bocciolone, A. Collina, M. Carnevale, B. Previtali, Application of SMA composites in the collectors of the railway pantograph for the Italian high-speed train. J. Mater. Eng. Perform. 18(5–6), 612–619 (2009)

    Article  Google Scholar 

  • R. Vaidyanathan, H.J. Chiel, R.D. Quinn, A hydrostatic robot for marine applications. Robot. Auton. Syst. 30, 103–113 (2000)

    Article  Google Scholar 

  • J. van Humbeeck, Non-medical applications of shape memory alloys. Mater. Sci. Eng. A 273–275, 134–148 (1999)

    Article  Google Scholar 

  • K. Williams, G. Chiu, R. Bernhard, Adaptive-passive absorbers using shape-memory alloys. J. Sound Vib. 249(5), 835–848 (2002)

    Article  Google Scholar 

  • K. Williams, G. Chiu, R. Bernhard, Dynamic modelling of a shape memory alloy adaptive tuned vibration absorber. J. Sound Vib. 280, 211–234 (2005)

    Article  Google Scholar 

  • X.D. Zhang, C.A. Rogers, C. Liang, Modeling of two-way shape memory effect. Smart Struct. Mater. ASME 24, 79–90 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo A. Savi Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Savi, M.A., Paiva, A., de Araujo, C.J., de Paula, A.S. (2016). Shape Memory Alloys. In: Lopes Junior, V., Steffen Jr., V., Savi, M. (eds) Dynamics of Smart Systems and Structures. Springer, Cham. https://doi.org/10.1007/978-3-319-29982-2_8

Download citation

Publish with us

Policies and ethics