Advertisement

A Particular Class of Non-Fredholm Operators L and Their Generalized Witten Index

  • Fritz Gesztesy
  • Marcus Waurick
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 2157)

Abstract

In our final chapter we provide a glimpse at future directions that aim at weakening the Fredholm hypothesis on L. By introducing a generalized (resolvent regularized) Witten index, we derive the analog of the Callias index formula for a particular class of non-Fredholm operators L.

References

  1. 12.
    D. Bollé, F. Gesztesy, H. Grosse, W. Schweiger, B. Simon, Witten index, axial anomaly, and Krein’s spectral shift function in supersymmetric quantum mechanics. J. Math. Phys. 28, 1512–1525 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 13.
    N.V. Borisov, W. Müller, R. Schrader, Relative index theorems and supersymmetric scattering theory. Commun. Math. Phys. 114, 475–513 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 19.
    V. Bruneau, Propriétés asymptotiques du spectre continu d’opérateurs de Dirac, Ph.D. Thesis, University of Nantes, 1995Google Scholar
  4. 22.
    C. Callias, Axial anomalies and index theorems on open spaces. Commun. Math. Phys. 62, 213–234 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 23.
    A. Carey, F. Gesztesy, D. Potapov, F. Sukochev, Y. Tomilov, A Jost–Pais -type reduction of Fredholm determinants and some applications. Integr. Equ. Oper. Theory 79, 389–447 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 24.
    A. Carey, F. Gesztesy, D. Potapov, F. Sukochev, Y. Tomilov, On the Witten index in terms of spectral shift functions. J. Analyse Math. (to appear). http://arxiv.org/abs/1404.0740arXiv:1404.0740
  7. 27.
    R.W. Carey, J.D. Pincus, Index theory for operator ranges and geometric measure theory, in Geometric Measure Theory and the Calculus of Variations, ed. by W.K. Allard, F.J. Almgren. Proc. of Symposia in Pure Math., Vol. 44, 1986, pp. 149–161Google Scholar
  8. 52.
    F. Gesztesy, Y. Latushkin, K.A. Makarov, F. Sukochev, Y. Tomilov, The index formula and the spectral shift function for relatively trace class perturbations. Adv. Math. 227, 319–420 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 53.
    F. Gesztesy, B. Simon, Topological invariance of the Witten index. J. Funct. Anal. 79, 91–102 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 79.
    W. Müller, Manifolds with Cusps of Rank One. Spectral Theory and L 2 -Index Theorem. Lecture Notes in Math., Vol. 1244 (Springer, Berlin, 1987)Google Scholar
  11. 80.
    W. Müller, in L 2 -index and resonances, in Geometry and Analysis on Manifolds, ed. by T. Sunada. Lecture Notes in Math., Vol. 1339 (Springer, Berlin, 1988), pp. 203–221Google Scholar
  12. 84.
    R. Picard, S. Trostorff, M. Waurick, On evolutionary equations with material laws containing fractional integrals. Math. Meth. Appl. Sci. 101, 47–65 (2014). DOI: 10.1002/mma.3286MathSciNetzbMATHGoogle Scholar
  13. 105.
    D.R. Yafaev, Mathematical Scattering Theory. General Theory (Amer. Math. Soc., Providence, 1992)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Fritz Gesztesy
    • 1
  • Marcus Waurick
    • 2
  1. 1.Dept of MathematicsUniversity of MissouriColumbiaUSA
  2. 2.Institut für AnalysisTU DresdenDresdenGermany

Personalised recommendations