Skip to main content

Estimating the Pareto Front of a Hard Bi-criterion Competitive Facility Location Problem

  • 1107 Accesses

Part of the Springer Optimization and Its Applications book series (SOIA,volume 107)

Abstract

We deal with the location problem for a franchise type expanding firm in competition with other firms in a geographical area. The firm aims at maximization of the market share captured by the new facilities and minimization of the lost market share of the old facilities caused by the entering of the new facilities in the market. The market share of each facility is estimated assuming that customers are served by the most attractive facility. A new tie breaking rule is introduced to serve the customers for which there are more than one facility with the maximum attraction, which leads to a hard nonlinear bi-objective optimization problem. A heuristic algorithm is proposed which obtains a good approximation of the Pareto front when the new facilities have to be selected from a finite set of candidates.

Keywords

  • competitive facility location; firm expansion; multi-objective optimization

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-29975-4_14
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-29975-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   139.99
Price excludes VAT (USA)
Hardcover Book
USD   139.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Aboolian, R., Berman, O., Krass, D.: Competitive facility location and design problem. Eur. J. Oper. Res. 182 (1), 40–62 (2007)

    MathSciNet  CrossRef  MATH  Google Scholar 

  2. Berman, O., Krass, D.: Locating multiple competitive facilities: spatial interaction models with variable expenditures. Ann. Oper. Res. 111, 197–225 (2002)

    MathSciNet  CrossRef  MATH  Google Scholar 

  3. Chinchuluun, A., Pardalos, P.M.: A survey of recent developments in multiobjective optimization. Ann. Oper. Res. 154 (1), 29–50 (2007)

    MathSciNet  CrossRef  MATH  Google Scholar 

  4. Chinchuluun, A., Pardalos, P.M., Migdalas, A., Pitsoulis, L. (eds.): Pareto Optimality, Game Theory and Equilibria. Springer Optimization and Its Applications, vol. 17. Springer, New York (2008)

    Google Scholar 

  5. Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, New York, NJ (2007)

    MATH  Google Scholar 

  6. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)

    CrossRef  Google Scholar 

  7. Doerner, K.F., Gutjahr, W.J., Nolz, P.C.: Multi-criteria location planning for public facilities in tsunami-prone coastal areas. OR Spectrum 31 (3), 651–678 (2009). doi:10.1007/s00291-008-0126-7. http://dx.doi.org/10.1007/s00291-008-0126-7

    Google Scholar 

  8. Drezner, T., Drezner, Z.: Finding the optimal solution to the Huff based competitive location model. Comput. Manag. Sci. 1 (2), 193–208 (2004)

    MathSciNet  CrossRef  MATH  Google Scholar 

  9. Farahani, R.Z., SteadieSeifi, M., Asgari, N.: Multiple criteria facility location problems: a survey. Appl. Math. Modell. 34 (7), 1689–1709 (2010). doi:10.1016/j.apm.2009.10.005. http://www.sciencedirect.com/science/article/pii/S0307904X09003242

    Google Scholar 

  10. Farahani, R.Z., Rezapour, S., Drezner, T., Fallah, S.: Competitive supply chain network design: an overview of classifications, models, solution techniques and applications. Omega 45 (0), 92–118 (2014)

    CrossRef  Google Scholar 

  11. Fernández, J., Pelegrín, B., Plastria, F., Tóth, B.: Planar location and design of a new facility with inner and outer competition: an interval lexicographical-like solution procedure. Netw. Spat. Econ. 7, 19–44 (2007)

    MathSciNet  CrossRef  MATH  Google Scholar 

  12. Francis, R.L., Lowe, T.J., Tamir, A.: Demand point aggregation for location models. In: Drezner, Z., Hamacher, H. (eds.) Facility Location: Application and Theory, pp. 207–232. Springer, Berlin (2002)

    CrossRef  Google Scholar 

  13. Friesz, T.L., Miller, T., Tobin, R.L.: Competitive networks facility location models: a survey. Pap. Reg. Sci. 65, 47–57 (1998)

    CrossRef  Google Scholar 

  14. Ghosh, A., Craig, C.S.: FRANSYS: a franchise distribution system location model. J. Retail. 67 (4), 466–495 (1991)

    Google Scholar 

  15. Goel, T., Deb, K.: Hybrid methods for multi-objective evolutionary algorithms. In: Proceedings of the Fourth Asia-Pacific Conference on Simulated Evolution and Learning, pp. 188–192 (2002)

    Google Scholar 

  16. Hakimi, L.: Location with spatial interactions: competitive locations and games. In: Drezner, Z. (ed.) Facility Location: A Survey of Applications and Methods, pp. 367–386. Springer, Berlin (1995)

    Google Scholar 

  17. Huapu, L., Jifeng, W.: Study on the location of distribution centers: a bi-level multi-objective approach. In: Logistics, pp. 3038–3043. American Society of Civil Engineers (2009)

    Google Scholar 

  18. Huff, D.L.: Defining and estimating a trade area. J. Market. 28, 34–38 (1964)

    CrossRef  Google Scholar 

  19. Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the Pareto archived evolution strategy. Evol. Comput. 8 (2), 149–172 (2000)

    CrossRef  Google Scholar 

  20. Lančinskas, A., Žilinskas, J.: Solution of multi-objective competitive facility location problems using parallel NSGA-II on large scale computing systems. In: Manninen, P., Oster, P. (eds.) Applied Parallel and Scientific Computing. Lecture Notes in Computer Science, vol. 7782, pp. 422–433. Springer, Berlin, Heidelberg (2013). doi:10.1007/978-3-642-36803-5_31

    CrossRef  Google Scholar 

  21. Lančinskas, A., Ortigosa, P.M., Žilinskas, J.: Multi-objective single agent stochastic search in non-dominated sorting genetic algorithm. Nonlinear Anal.: Modell. Control 18 (3), 293–313 (2013)

    MathSciNet  MATH  Google Scholar 

  22. Liao, S.H., Hsieh, C.L.: A capacitated inventory-location model: formulation, solution approach and preliminary computational results. In: Chien, B.C., Hong, T.P., Chen, S.M., Ali, M. (eds.) Next-Generation Applied Intelligence. Lecture Notes in Computer Science, vol. 5579, pp. 323–332. Springer, Berlin, Heidelberg (2009)

    CrossRef  Google Scholar 

  23. Medaglia, A.L., Villegas, J.G., Rodríguez-Coca, D.M.: Hybrid biobjective evolutionary algorithms for the design of a hospital waste management network. J. Heuristics 15 (2), 153–176 (2009)

    CrossRef  MATH  Google Scholar 

  24. Peeters, P.H., Plastria, F.: Discretization results for the Huff and Pareto-Huff competitive location models on networks. Top 6, 247–260 (1998)

    MathSciNet  CrossRef  MATH  Google Scholar 

  25. Pelegrín, B., Fernández, P., García, M.D.: On tie breaking in competitive location under binary customer behavior, OMEGA-International Journal of Management Science 52, 156–167 (2015)

    CrossRef  Google Scholar 

  26. Plastria, F.: Static competitive facility location: an overview of optimisation approaches. Eur. J. Oper. Res. 129 (3), 461–470 (2001)

    MathSciNet  CrossRef  MATH  Google Scholar 

  27. Plastria, F.: Avoiding cannibalization and/or competitor reaction in planar single facility location. J. Oper. Res. Soc. Jpn. 48, 148–157 (2005)

    MathSciNet  MATH  Google Scholar 

  28. Redondo, J.L., Fernández, J., Álvarez, J.D., Arrondoa, A.G., Ortigosa, P.M.: Approximating the Pareto-front of continuous bi-objective problems: application to a competitive facility location problem. In: Casillas, J., Martnez-Lpez, F.J., Corchado Rodrguez, J.M. (eds.) Management Intelligent Systems. Advances in Intelligent Systems and Computing, vol. 171, pp. 207–216. Springer, Berlin, Heidelberg (2012)

    Google Scholar 

  29. ReVelle, C.S., Eiselt, H.A., Daskin, M.S.: A bibliography for some fundamental problem categories in discrete location science. Eur. J. Oper. Res. 184 (3), 817–848 (2008)

    MathSciNet  CrossRef  MATH  Google Scholar 

  30. Schaffer, J.D., Grefenstette, J.J.: Multi-objective learning via genetic algorithms. In: Proceedings of the 9th International Joint Conference on Artificial Intelligence – Volume 1, IJCAI’85, pp. 593–595. Morgan Kaufmann Publishers, San Francisco, CA (1985)

    Google Scholar 

  31. Serra, D., Colomé, R.: Consumer choice and optimal locations models: formulations and heuristics. Pap. Reg. Sci. 80 (4), 439–464 (2001)

    CrossRef  Google Scholar 

  32. Serra, D., ReVelle, C.: Competitive location in discrete space. In: Drezner, Z. (ed.) Facility Location: A Survey of Applications and Methods, pp. 367–386. Springer, Berlin (1995)

    CrossRef  Google Scholar 

  33. Srinivas, N., Deb, K.: Multiobjective optimization using Nondominated Sorting in Genetic Algorithms. Evol. Comput. 2, 221–248 (1994)

    CrossRef  Google Scholar 

  34. Suárez-Vega, R., Santos-Penate, D.R., Dorta-Gonzalez, P.: Discretization and resolution of the (r | X p )-medianoid problem involving quality criteria. Top 12 (1), 111–133 (2004)

    MathSciNet  CrossRef  MATH  Google Scholar 

  35. Suárez-Vega, R., Santos-Penate, D.R., Dorta-González, P.: The follower location problem with attraction thresholds. Pap. Reg. Sci. 86 (1), 123–137 (2007)

    CrossRef  MATH  Google Scholar 

  36. Villegas, J.G., Palacios, F., Medaglia, A.L.: Solution methods for the bi-objective (cost-coverage) unconstrained facility location problem with an illustrative example. Ann. Oper. Res. 147, 109–141 (2006)

    MathSciNet  CrossRef  MATH  Google Scholar 

  37. Zhou, A., Jin, Y., Zhang, Q., Sendhoff, B., Tsang, E.: Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion. In: Proceedings of the Congress on Evolutionary Computation (CEC), pp. 3234–3241. IEEE Press, New York (2006)

    Google Scholar 

  38. Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms – a comparative case study. In: Eiben, A., Bäck, T., Schoenauer, M., Schwefel, H.P. (eds.) Parallel Problem Solving from Nature — PPSN V. Lecture Notes in Computer Science, vol. 1498, pp. 292–301. Springer, Berlin, Heidelberg (1998)

    CrossRef  Google Scholar 

  39. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. Trans. Evol. Comput. 3 (4), 257–271 (1999)

    CrossRef  Google Scholar 

  40. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglou, K.C., Tsahalis, D.T., Périaux, J., Papailiou, K.D., Fogarty, T. (eds.) Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, pp. 95–100 (2001)

    Google Scholar 

  41. Zopounidis, C., Pardalos, P.M. (eds.): Handbook of Multicriteria Analysis. Applied Optimization, vol. 103. Springer, Berlin, Heidelberg (2010)

    Google Scholar 

Download references

Acknowledgements

This research has been supported by the Ministry of Economy and Competitiveness of Spain (MTM2015-70260-P), the Program to Support Research of the Seneca Foundation (The Agency of Science and Technology of the Region of Murcia, 19241/PI/14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Algirdas Lančinskas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lančinskas, A., Fernández, P., Pelegrín, B., Žilinskas, J. (2016). Estimating the Pareto Front of a Hard Bi-criterion Competitive Facility Location Problem. In: Pardalos, P., Zhigljavsky, A., Žilinskas, J. (eds) Advances in Stochastic and Deterministic Global Optimization. Springer Optimization and Its Applications, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-29975-4_14

Download citation