Estimating the Pareto Front of a Hard Bi-criterion Competitive Facility Location Problem

  • Algirdas LančinskasEmail author
  • Pascual Fernández
  • Blas Pelegrín
  • Julius Žilinskas
Part of the Springer Optimization and Its Applications book series (SOIA, volume 107)


We deal with the location problem for a franchise type expanding firm in competition with other firms in a geographical area. The firm aims at maximization of the market share captured by the new facilities and minimization of the lost market share of the old facilities caused by the entering of the new facilities in the market. The market share of each facility is estimated assuming that customers are served by the most attractive facility. A new tie breaking rule is introduced to serve the customers for which there are more than one facility with the maximum attraction, which leads to a hard nonlinear bi-objective optimization problem. A heuristic algorithm is proposed which obtains a good approximation of the Pareto front when the new facilities have to be selected from a finite set of candidates.


competitive facility location; firm expansion; multi-objective optimization 



This research has been supported by the Ministry of Economy and Competitiveness of Spain (MTM2015-70260-P), the Program to Support Research of the Seneca Foundation (The Agency of Science and Technology of the Region of Murcia, 19241/PI/14).


  1. 1.
    Aboolian, R., Berman, O., Krass, D.: Competitive facility location and design problem. Eur. J. Oper. Res. 182 (1), 40–62 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Berman, O., Krass, D.: Locating multiple competitive facilities: spatial interaction models with variable expenditures. Ann. Oper. Res. 111, 197–225 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chinchuluun, A., Pardalos, P.M.: A survey of recent developments in multiobjective optimization. Ann. Oper. Res. 154 (1), 29–50 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chinchuluun, A., Pardalos, P.M., Migdalas, A., Pitsoulis, L. (eds.): Pareto Optimality, Game Theory and Equilibria. Springer Optimization and Its Applications, vol. 17. Springer, New York (2008)Google Scholar
  5. 5.
    Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, New York, NJ (2007)zbMATHGoogle Scholar
  6. 6.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6, 182–197 (2002)CrossRefGoogle Scholar
  7. 7.
    Doerner, K.F., Gutjahr, W.J., Nolz, P.C.: Multi-criteria location planning for public facilities in tsunami-prone coastal areas. OR Spectrum 31 (3), 651–678 (2009). doi: 10.1007/s00291-008-0126-7. Google Scholar
  8. 8.
    Drezner, T., Drezner, Z.: Finding the optimal solution to the Huff based competitive location model. Comput. Manag. Sci. 1 (2), 193–208 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Farahani, R.Z., SteadieSeifi, M., Asgari, N.: Multiple criteria facility location problems: a survey. Appl. Math. Modell. 34 (7), 1689–1709 (2010). doi: 10.1016/j.apm.2009.10.005. Google Scholar
  10. 10.
    Farahani, R.Z., Rezapour, S., Drezner, T., Fallah, S.: Competitive supply chain network design: an overview of classifications, models, solution techniques and applications. Omega 45 (0), 92–118 (2014)CrossRefGoogle Scholar
  11. 11.
    Fernández, J., Pelegrín, B., Plastria, F., Tóth, B.: Planar location and design of a new facility with inner and outer competition: an interval lexicographical-like solution procedure. Netw. Spat. Econ. 7, 19–44 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Francis, R.L., Lowe, T.J., Tamir, A.: Demand point aggregation for location models. In: Drezner, Z., Hamacher, H. (eds.) Facility Location: Application and Theory, pp. 207–232. Springer, Berlin (2002)CrossRefGoogle Scholar
  13. 13.
    Friesz, T.L., Miller, T., Tobin, R.L.: Competitive networks facility location models: a survey. Pap. Reg. Sci. 65, 47–57 (1998)CrossRefGoogle Scholar
  14. 14.
    Ghosh, A., Craig, C.S.: FRANSYS: a franchise distribution system location model. J. Retail. 67 (4), 466–495 (1991)Google Scholar
  15. 15.
    Goel, T., Deb, K.: Hybrid methods for multi-objective evolutionary algorithms. In: Proceedings of the Fourth Asia-Pacific Conference on Simulated Evolution and Learning, pp. 188–192 (2002)Google Scholar
  16. 16.
    Hakimi, L.: Location with spatial interactions: competitive locations and games. In: Drezner, Z. (ed.) Facility Location: A Survey of Applications and Methods, pp. 367–386. Springer, Berlin (1995)Google Scholar
  17. 17.
    Huapu, L., Jifeng, W.: Study on the location of distribution centers: a bi-level multi-objective approach. In: Logistics, pp. 3038–3043. American Society of Civil Engineers (2009)Google Scholar
  18. 18.
    Huff, D.L.: Defining and estimating a trade area. J. Market. 28, 34–38 (1964)CrossRefGoogle Scholar
  19. 19.
    Knowles, J.D., Corne, D.W.: Approximating the nondominated front using the Pareto archived evolution strategy. Evol. Comput. 8 (2), 149–172 (2000)CrossRefGoogle Scholar
  20. 20.
    Lančinskas, A., Žilinskas, J.: Solution of multi-objective competitive facility location problems using parallel NSGA-II on large scale computing systems. In: Manninen, P., Oster, P. (eds.) Applied Parallel and Scientific Computing. Lecture Notes in Computer Science, vol. 7782, pp. 422–433. Springer, Berlin, Heidelberg (2013). doi: 10.1007/978-3-642-36803-5_31 CrossRefGoogle Scholar
  21. 21.
    Lančinskas, A., Ortigosa, P.M., Žilinskas, J.: Multi-objective single agent stochastic search in non-dominated sorting genetic algorithm. Nonlinear Anal.: Modell. Control 18 (3), 293–313 (2013)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Liao, S.H., Hsieh, C.L.: A capacitated inventory-location model: formulation, solution approach and preliminary computational results. In: Chien, B.C., Hong, T.P., Chen, S.M., Ali, M. (eds.) Next-Generation Applied Intelligence. Lecture Notes in Computer Science, vol. 5579, pp. 323–332. Springer, Berlin, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Medaglia, A.L., Villegas, J.G., Rodríguez-Coca, D.M.: Hybrid biobjective evolutionary algorithms for the design of a hospital waste management network. J. Heuristics 15 (2), 153–176 (2009)CrossRefzbMATHGoogle Scholar
  24. 24.
    Peeters, P.H., Plastria, F.: Discretization results for the Huff and Pareto-Huff competitive location models on networks. Top 6, 247–260 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Pelegrín, B., Fernández, P., García, M.D.: On tie breaking in competitive location under binary customer behavior, OMEGA-International Journal of Management Science 52, 156–167 (2015)CrossRefGoogle Scholar
  26. 26.
    Plastria, F.: Static competitive facility location: an overview of optimisation approaches. Eur. J. Oper. Res. 129 (3), 461–470 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Plastria, F.: Avoiding cannibalization and/or competitor reaction in planar single facility location. J. Oper. Res. Soc. Jpn. 48, 148–157 (2005)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Redondo, J.L., Fernández, J., Álvarez, J.D., Arrondoa, A.G., Ortigosa, P.M.: Approximating the Pareto-front of continuous bi-objective problems: application to a competitive facility location problem. In: Casillas, J., Martnez-Lpez, F.J., Corchado Rodrguez, J.M. (eds.) Management Intelligent Systems. Advances in Intelligent Systems and Computing, vol. 171, pp. 207–216. Springer, Berlin, Heidelberg (2012)Google Scholar
  29. 29.
    ReVelle, C.S., Eiselt, H.A., Daskin, M.S.: A bibliography for some fundamental problem categories in discrete location science. Eur. J. Oper. Res. 184 (3), 817–848 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Schaffer, J.D., Grefenstette, J.J.: Multi-objective learning via genetic algorithms. In: Proceedings of the 9th International Joint Conference on Artificial Intelligence – Volume 1, IJCAI’85, pp. 593–595. Morgan Kaufmann Publishers, San Francisco, CA (1985)Google Scholar
  31. 31.
    Serra, D., Colomé, R.: Consumer choice and optimal locations models: formulations and heuristics. Pap. Reg. Sci. 80 (4), 439–464 (2001)CrossRefGoogle Scholar
  32. 32.
    Serra, D., ReVelle, C.: Competitive location in discrete space. In: Drezner, Z. (ed.) Facility Location: A Survey of Applications and Methods, pp. 367–386. Springer, Berlin (1995)CrossRefGoogle Scholar
  33. 33.
    Srinivas, N., Deb, K.: Multiobjective optimization using Nondominated Sorting in Genetic Algorithms. Evol. Comput. 2, 221–248 (1994)CrossRefGoogle Scholar
  34. 34.
    Suárez-Vega, R., Santos-Penate, D.R., Dorta-Gonzalez, P.: Discretization and resolution of the (r | X p)-medianoid problem involving quality criteria. Top 12 (1), 111–133 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Suárez-Vega, R., Santos-Penate, D.R., Dorta-González, P.: The follower location problem with attraction thresholds. Pap. Reg. Sci. 86 (1), 123–137 (2007)CrossRefzbMATHGoogle Scholar
  36. 36.
    Villegas, J.G., Palacios, F., Medaglia, A.L.: Solution methods for the bi-objective (cost-coverage) unconstrained facility location problem with an illustrative example. Ann. Oper. Res. 147, 109–141 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Zhou, A., Jin, Y., Zhang, Q., Sendhoff, B., Tsang, E.: Combining model-based and genetics-based offspring generation for multi-objective optimization using a convergence criterion. In: Proceedings of the Congress on Evolutionary Computation (CEC), pp. 3234–3241. IEEE Press, New York (2006)Google Scholar
  38. 38.
    Zitzler, E., Thiele, L.: Multiobjective optimization using evolutionary algorithms – a comparative case study. In: Eiben, A., Bäck, T., Schoenauer, M., Schwefel, H.P. (eds.) Parallel Problem Solving from Nature — PPSN V. Lecture Notes in Computer Science, vol. 1498, pp. 292–301. Springer, Berlin, Heidelberg (1998)CrossRefGoogle Scholar
  39. 39.
    Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. Trans. Evol. Comput. 3 (4), 257–271 (1999)CrossRefGoogle Scholar
  40. 40.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength Pareto evolutionary algorithm for multiobjective optimization. In: Giannakoglou, K.C., Tsahalis, D.T., Périaux, J., Papailiou, K.D., Fogarty, T. (eds.) Evolutionary Methods for Design Optimization and Control with Applications to Industrial Problems, pp. 95–100 (2001)Google Scholar
  41. 41.
    Zopounidis, C., Pardalos, P.M. (eds.): Handbook of Multicriteria Analysis. Applied Optimization, vol. 103. Springer, Berlin, Heidelberg (2010)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Algirdas Lančinskas
    • 1
    Email author
  • Pascual Fernández
    • 2
  • Blas Pelegrín
    • 2
  • Julius Žilinskas
    • 1
  1. 1.Institute of Mathematics and InformaticsVilnius UniversityVilniusLithuania
  2. 2.Department of Statistics and Operations ResearchUniversity of MurciaMurciaSpain

Personalised recommendations