Skip to main content

On the Least-Squares Fitting of Data by Sinusoids

Part of the Springer Optimization and Its Applications book series (SOIA,volume 107)

Abstract

The sinusoidal parameter estimation problem is considered to fit a sum of damped sinusoids to a series of noisy observations. It is formulated as a nonlinear least-squares global optimization problem. A one-parametric case study is examined to determine an unknown frequency of a signal. Univariate Lipschitz-based deterministic methods are used for solving such problems within a limited computational budget. It is shown that the usage of local information in these methods (such as local tuning on the objective function behavior and/or evaluating the function first derivatives) can significantly accelerate the search for the problem solution with a required guarantee. Results of a numerical comparison with metaheuristic techniques frequently used in engineering design are also reported and commented on.

Keywords

  • Nonlinear regression
  • Least-squares fitting
  • Lipschitz-based deterministic methods
  • Metaheuristics
  • Numerical comparison

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Barkalov, K., Polovinkin, A., Meyerov, I., Sidorov, S., Zolotykh, N.: SVM regression parameters optimization using parallel global search algorithm. In: Parallel Computing Technologies. LNCS, vol. 7979, pp. 154–166. Springer, Heidelberg (2013)

    Google Scholar 

  2. Bloomfield, P.: Fourier Analysis of Time Series: An Introduction. Wiley, New York (2000)

    CrossRef  MATH  Google Scholar 

  3. Broomhead, D.S., King, G.P.: Extracting qualitative dynamics from experimental data. Phys. D Nonlinear Phenom. 20 (2–3), 217–236 (1986)

    CrossRef  MathSciNet  MATH  Google Scholar 

  4. Calvin, J.M., Žilinskas, A.: One-dimensional global optimization for observations with noise. Comput. Math. Appl. 50 (1–2), 157–169 (2005)

    CrossRef  MathSciNet  MATH  Google Scholar 

  5. Carnì, D.L., Fedele, G.: Multi-sine fitting algorithm enhancement for sinusoidal signal characterization. Comput. Stand. Interfaces 34 (6), 535–540 (2012)

    CrossRef  Google Scholar 

  6. Costanzo, S.: Synthesis of multi-step coplanar waveguide-to-microstrip transition. Prog. Electromagn. Res. 113, 111–126 (2011)

    CrossRef  Google Scholar 

  7. Elsner, J.B., Tsonis, A.A.: Singular Spectrum Analysis: A New Tool in Time Series Analysis. Springer, New York (1996)

    CrossRef  MATH  Google Scholar 

  8. Evtushenko, Y.G.: Numerical Optimization Techniques. Translations Series in Mathematics and Engineering. Springer, Berlin (1985)

    CrossRef  Google Scholar 

  9. Fedele, G., Ferrise, A.: A frequency-locked-loop filter for biased multi-sinusoidal estimation. IEEE Trans. Signal Process. 62 (5), 1125–1134 (2014)

    CrossRef  MathSciNet  Google Scholar 

  10. Garnier, H., Wang, L. (eds.): Identification of Continuous-Time Models from Sampled Data. Springer, London (2008)

    Google Scholar 

  11. Gergel, V.P., Sergeyev, Y.D.: Sequential and parallel algorithms for global minimizing functions with Lipschitzian derivatives. Comput. Math. Appl. 37 (4–5), 163–179 (1999)

    CrossRef  MathSciNet  MATH  Google Scholar 

  12. Gergel, V.P., Grishagin, V.A., Gergel, A.V.: Adaptive nested optimization scheme for multidimensional global search. J. Glob. Optim. (2015, to appear). doi 10.1007/s10898-015-0355-7

  13. Gergel, V.P., Grishagin, V.A., Israfilov, R.A.: Local tuning in nested scheme of global optimization. Proc. Comput. Sci. 51, 865–874 (2015). (International Conference on Computational Science ICCS 2015 – Computational Science at the Gates of Nature)

    Google Scholar 

  14. Gillard, J.W.: Cadzow’s basic algorithm, alternating projections and singular spectrum analysis. Stat. Interface 3 (3), 335–343 (2010)

    CrossRef  MathSciNet  MATH  Google Scholar 

  15. Gillard, J.W., Kvasov, D.E.: Lipschitz optimization methods for fitting a sum of damped sinusoids to a series of observations. Stat. Interface (2016, to appear)

    Google Scholar 

  16. Gillard, J.W., Zhigljavsky, A.: Analysis of structured low rank approximation as an optimisation problem. Informatica 22 (4), 489–505 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Gillard, J.W., Zhigljavsky, A.: Optimization challenges in the structured low rank approximation problem. J. Glob. Optim. 57 (3), 733–751 (2013)

    CrossRef  MathSciNet  MATH  Google Scholar 

  18. Gillard, J.W., Zhigljavsky, A.: Stochastic algorithms for solving structured low-rank matrix approximation problems. Commun. Nonlinear Sci. Numer. Simul. 21, 70–88 (2015)

    CrossRef  MathSciNet  MATH  Google Scholar 

  19. Golyandina, N., Nekrutkin, V., Zhigljavsky, A.: Analysis of Time Series Structure: SSA and Related Techniques. Chapman & Hall/CRC, Boca Raton (2001)

    CrossRef  MATH  Google Scholar 

  20. Grishagin, V.A., Strongin, R.G.: Optimization of multi-extremal functions subject to monotonically unimodal constraints. Eng. Cybern. 22 (5), 117–122 (1984)

    MathSciNet  MATH  Google Scholar 

  21. Grishagin, V.A., Sergeyev, Y.D., Strongin, R.G.: Parallel characteristic algorithms for solving problems of global optimization. J. Glob. Optim. 10 (2), 185–206 (1997)

    CrossRef  MathSciNet  MATH  Google Scholar 

  22. Holmström, K., Petersson, J.: A review of the parameter estimation problem of fitting positive exponential sums to empirical data. Appl. Math. Comput. 126 (1), 31–61 (2002)

    MathSciNet  MATH  Google Scholar 

  23. Kvasov, D.E.: Diagonal numerical methods for solving Lipschitz global optimization problems. Boll. Unione Mat. Ital. I (Serie IX) (3), 857–871 (2008)

    Google Scholar 

  24. Kvasov, D.E., Mukhametzhanov, M.S.: One-dimensional global search: nature-inspired vs. Lipschitz methods. In: Proceedings of the ICNAAM2015 Conference, AIP Conference Proceedings. AIP Publishing LLC, New York (2015).

    Google Scholar 

  25. Kvasov, D.E., Sergeyev, Y.D.: Univariate geometric Lipschitz global optimization algorithms. Numer. Algebra Control Optim. 2 (1), 69–90 (2012)

    CrossRef  MathSciNet  MATH  Google Scholar 

  26. Kvasov, D.E., Sergeyev, Y.D.: Lipschitz global optimization methods in control problems. Autom. Remote Control 74 (9), 1435–1448 (2013)

    CrossRef  MathSciNet  MATH  Google Scholar 

  27. Kvasov, D.E., Sergeyev, Y.D.: Deterministic approaches for solving practical black-box global optimization problems. Adv. Eng. Softw. 80, 58–66 (2015)

    CrossRef  Google Scholar 

  28. Kvasov, D.E., Mukhametzhanov, M.S., Sergeyev, Y.D.: Solving univariate global optimization problems by nature-inspired and deterministic algorithms. Adv. Eng. Softw. (2015, submitted)

    Google Scholar 

  29. Lemmerling, P., Van Huffel, S.: Analysis of the structured total least squares problem for Hankel∕Toeplitz matrices. Numer. Algorithms 27 (1), 89–114 (2001)

    CrossRef  MathSciNet  MATH  Google Scholar 

  30. Lera, D., Sergeyev, Y.D.: Acceleration of univariate global optimization algorithms working with Lipschitz functions and Lipschitz first derivatives. SIAM J. Optim. 23 (1), 508–529 (2013)

    CrossRef  MathSciNet  MATH  Google Scholar 

  31. Li, Y., Liu, K., Razavilar, J.: A parameter estimation scheme for damped sinusoidal signals based on low-rank Hankel approximation. IEEE Trans. Signal Process. 45 (2), 481–486 (1997)

    CrossRef  Google Scholar 

  32. Liuzzi, G., Lucidi, S., Piccialli, V.: A partition-based global optimization algorithm. J. Glob. Optim. 48 (1), 113–128 (2010)

    CrossRef  MathSciNet  MATH  Google Scholar 

  33. Markovsky, I.: Bibliography on total least squares and related methods. Stat. Interface 3 (3), 329–334 (2010)

    CrossRef  MathSciNet  MATH  Google Scholar 

  34. Mockus, J.: Bayesian Approach to Global Optimization. Kluwer Academic, Dordrecht (1989)

    CrossRef  MATH  Google Scholar 

  35. Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. SpringerBriefs in Optimization. Springer, New York (2014)

    CrossRef  MATH  Google Scholar 

  36. Paulavičius, R., Žilinskas, J.: Simplicial Lipschitz optimization without the Lipschitz constant. J. Glob. Optim. 59 (1), 23–40 (2014)

    CrossRef  MathSciNet  MATH  Google Scholar 

  37. Paulavičius, R., Sergeyev, Y.D., Kvasov, D.E., Žilinskas, J.: Globally-biased Disimpl algorithm for expensive global optimization. J. Glob. Optim. 59 (2–3), 545–567 (2014)

    CrossRef  MathSciNet  MATH  Google Scholar 

  38. Pintér, J.D.: Global Optimization in Action. Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications. Kluwer Academic, Dordrecht (1996)

    CrossRef  MATH  Google Scholar 

  39. Pollock, D.: A Handbook of Time Series Analysis, Signal Processing, and Dynamics. Academic, London (1999)

    MATH  Google Scholar 

  40. Sergeyev, Y.D.: An information global optimization algorithm with local tuning. SIAM J. Optim. 5 (4), 858–870 (1995)

    CrossRef  MathSciNet  MATH  Google Scholar 

  41. Sergeyev, Y.D.: A one-dimensional deterministic global minimization algorithm. Comput. Math. Math. Phys. 35 (5), 705–717 (1995)

    MathSciNet  Google Scholar 

  42. Sergeyev, Y.D.: Global one-dimensional optimization using smooth auxiliary functions. Math. Program. 81 (1), 127–146 (1998)

    CrossRef  MathSciNet  MATH  Google Scholar 

  43. Sergeyev, Y.D.: On convergence of “Divide the Best” global optimization algorithms. Optimization 44 (3), 303–325 (1998)

    CrossRef  MathSciNet  MATH  Google Scholar 

  44. Sergeyev, Y.D.: Multidimensional global optimization using the first derivatives. Comput. Math. Math. Phys. 39 (5), 711–720 (1999)

    MathSciNet  MATH  Google Scholar 

  45. Sergeyev, Y.D., Grishagin, V.A.: A parallel method for finding the global minimum of univariate functions. J. Optim. Theory Appl. 80 (3), 513–536 (1994)

    CrossRef  MathSciNet  MATH  Google Scholar 

  46. Sergeyev, Y.D., Kvasov, D.E.: Diagonal Global Optimization Methods. FizMatLit, Moscow (2008) [in Russian]

    MATH  Google Scholar 

  47. Sergeyev, Y.D., Kvasov, D.E.: Lipschitz global optimization. In: Cochran, J.J. (ed.) Wiley Encyclopedia of Operations Research and Management Science, vol. 4, pp. 2812–2828. Wiley, New York (2011)

    Google Scholar 

  48. Sergeyev, Y.D., Khalaf, F.M.H., Kvasov, D.E.: Univariate algorithms for solving global optimization problems with multiextremal non-differentiable constraints. In: A. Törn, J. Žilinskas (eds.) Models and Algorithms for Global Optimization, pp. 123–140. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

  49. Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-Filling Curves. SpringerBriefs in Optimization. Springer, New York (2013)

    CrossRef  MATH  Google Scholar 

  50. Sergeyev, Y.D., Mukhametzhanov, M.S., Kvasov, D.E., Lera, D.: Derivative-free local tuning and local improvement techniques embedded in the univariate global optimization. J. Optim. Theory Appl. (2016, to appear)

    Google Scholar 

  51. Strekalovsky, A.S.: Elements of Nonconvex Optimization. Nauka, Novosibirsk (2003) [in Russian]

    Google Scholar 

  52. Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-Convex Constraints: Sequential and Parallel Algorithms. Kluwer Academic, Dordrecht (2000). 3rd edn. by Springer, Berlin (2014)

    Google Scholar 

  53. Törn, A., Žilinskas, A.: Global Optimization. Lecture Notes in Computer Science, vol. 350. Springer, Berlin (1989)

    Google Scholar 

  54. Van Huffel, S., Vandewalle, J.: The Total Least Squares Problem: Computational Aspects and Analysis. SIAM, Philadelphia (1991)

    CrossRef  MATH  Google Scholar 

  55. Zhigljavsky, A., Žilinskas, A.: Stochastic Global Optimization. Springer, New York (2008)

    MATH  Google Scholar 

  56. Žilinskas, A.: Global Optimization. Axiomatics of Statistical Models, Algorithms, and Applications. Mokslas, Vilnius (1986) [in Russian]

    MATH  Google Scholar 

  57. Žilinskas, A.: On similarities between two models of global optimization: statistical models and radial basis functions. J. Glob. Optim. 48 (1), 173–182 (2010)

    CrossRef  MathSciNet  MATH  Google Scholar 

  58. Žilinskas, A., Žilinskas, J.: Global optimization based on a statistical model and simplicial partitioning. Comput. Math. Appl. 44 (7), 957–967 (2002)

    CrossRef  MathSciNet  MATH  Google Scholar 

  59. Žilinskas, A., Žilinskas, J.: Interval arithmetic based optimization in nonlinear regression. Informatica 21 (1), 149–158 (2010)

    MathSciNet  MATH  Google Scholar 

  60. Žilinskas, A., Žilinskas, J.: A hybrid global optimization algorithm for non-linear least squares regression. J. Glob. Optim. 56 (2), 265–277 (2013)

    CrossRef  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation, project number 15-11-30022 “Global optimization, supercomputing computations, and applications.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaroslav D. Sergeyev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sergeyev, Y.D., Kvasov, D.E., Mukhametzhanov, M.S. (2016). On the Least-Squares Fitting of Data by Sinusoids. In: Pardalos, P., Zhigljavsky, A., Žilinskas, J. (eds) Advances in Stochastic and Deterministic Global Optimization. Springer Optimization and Its Applications, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-29975-4_11

Download citation