Abstract
The sinusoidal parameter estimation problem is considered to fit a sum of damped sinusoids to a series of noisy observations. It is formulated as a nonlinear least-squares global optimization problem. A one-parametric case study is examined to determine an unknown frequency of a signal. Univariate Lipschitz-based deterministic methods are used for solving such problems within a limited computational budget. It is shown that the usage of local information in these methods (such as local tuning on the objective function behavior and/or evaluating the function first derivatives) can significantly accelerate the search for the problem solution with a required guarantee. Results of a numerical comparison with metaheuristic techniques frequently used in engineering design are also reported and commented on.
Keywords
- Nonlinear regression
- Least-squares fitting
- Lipschitz-based deterministic methods
- Metaheuristics
- Numerical comparison
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsReferences
Barkalov, K., Polovinkin, A., Meyerov, I., Sidorov, S., Zolotykh, N.: SVM regression parameters optimization using parallel global search algorithm. In: Parallel Computing Technologies. LNCS, vol. 7979, pp. 154–166. Springer, Heidelberg (2013)
Bloomfield, P.: Fourier Analysis of Time Series: An Introduction. Wiley, New York (2000)
Broomhead, D.S., King, G.P.: Extracting qualitative dynamics from experimental data. Phys. D Nonlinear Phenom. 20 (2–3), 217–236 (1986)
Calvin, J.M., Žilinskas, A.: One-dimensional global optimization for observations with noise. Comput. Math. Appl. 50 (1–2), 157–169 (2005)
Carnì, D.L., Fedele, G.: Multi-sine fitting algorithm enhancement for sinusoidal signal characterization. Comput. Stand. Interfaces 34 (6), 535–540 (2012)
Costanzo, S.: Synthesis of multi-step coplanar waveguide-to-microstrip transition. Prog. Electromagn. Res. 113, 111–126 (2011)
Elsner, J.B., Tsonis, A.A.: Singular Spectrum Analysis: A New Tool in Time Series Analysis. Springer, New York (1996)
Evtushenko, Y.G.: Numerical Optimization Techniques. Translations Series in Mathematics and Engineering. Springer, Berlin (1985)
Fedele, G., Ferrise, A.: A frequency-locked-loop filter for biased multi-sinusoidal estimation. IEEE Trans. Signal Process. 62 (5), 1125–1134 (2014)
Garnier, H., Wang, L. (eds.): Identification of Continuous-Time Models from Sampled Data. Springer, London (2008)
Gergel, V.P., Sergeyev, Y.D.: Sequential and parallel algorithms for global minimizing functions with Lipschitzian derivatives. Comput. Math. Appl. 37 (4–5), 163–179 (1999)
Gergel, V.P., Grishagin, V.A., Gergel, A.V.: Adaptive nested optimization scheme for multidimensional global search. J. Glob. Optim. (2015, to appear). doi 10.1007/s10898-015-0355-7
Gergel, V.P., Grishagin, V.A., Israfilov, R.A.: Local tuning in nested scheme of global optimization. Proc. Comput. Sci. 51, 865–874 (2015). (International Conference on Computational Science ICCS 2015 – Computational Science at the Gates of Nature)
Gillard, J.W.: Cadzow’s basic algorithm, alternating projections and singular spectrum analysis. Stat. Interface 3 (3), 335–343 (2010)
Gillard, J.W., Kvasov, D.E.: Lipschitz optimization methods for fitting a sum of damped sinusoids to a series of observations. Stat. Interface (2016, to appear)
Gillard, J.W., Zhigljavsky, A.: Analysis of structured low rank approximation as an optimisation problem. Informatica 22 (4), 489–505 (2011)
Gillard, J.W., Zhigljavsky, A.: Optimization challenges in the structured low rank approximation problem. J. Glob. Optim. 57 (3), 733–751 (2013)
Gillard, J.W., Zhigljavsky, A.: Stochastic algorithms for solving structured low-rank matrix approximation problems. Commun. Nonlinear Sci. Numer. Simul. 21, 70–88 (2015)
Golyandina, N., Nekrutkin, V., Zhigljavsky, A.: Analysis of Time Series Structure: SSA and Related Techniques. Chapman & Hall/CRC, Boca Raton (2001)
Grishagin, V.A., Strongin, R.G.: Optimization of multi-extremal functions subject to monotonically unimodal constraints. Eng. Cybern. 22 (5), 117–122 (1984)
Grishagin, V.A., Sergeyev, Y.D., Strongin, R.G.: Parallel characteristic algorithms for solving problems of global optimization. J. Glob. Optim. 10 (2), 185–206 (1997)
Holmström, K., Petersson, J.: A review of the parameter estimation problem of fitting positive exponential sums to empirical data. Appl. Math. Comput. 126 (1), 31–61 (2002)
Kvasov, D.E.: Diagonal numerical methods for solving Lipschitz global optimization problems. Boll. Unione Mat. Ital. I (Serie IX) (3), 857–871 (2008)
Kvasov, D.E., Mukhametzhanov, M.S.: One-dimensional global search: nature-inspired vs. Lipschitz methods. In: Proceedings of the ICNAAM2015 Conference, AIP Conference Proceedings. AIP Publishing LLC, New York (2015).
Kvasov, D.E., Sergeyev, Y.D.: Univariate geometric Lipschitz global optimization algorithms. Numer. Algebra Control Optim. 2 (1), 69–90 (2012)
Kvasov, D.E., Sergeyev, Y.D.: Lipschitz global optimization methods in control problems. Autom. Remote Control 74 (9), 1435–1448 (2013)
Kvasov, D.E., Sergeyev, Y.D.: Deterministic approaches for solving practical black-box global optimization problems. Adv. Eng. Softw. 80, 58–66 (2015)
Kvasov, D.E., Mukhametzhanov, M.S., Sergeyev, Y.D.: Solving univariate global optimization problems by nature-inspired and deterministic algorithms. Adv. Eng. Softw. (2015, submitted)
Lemmerling, P., Van Huffel, S.: Analysis of the structured total least squares problem for Hankel∕Toeplitz matrices. Numer. Algorithms 27 (1), 89–114 (2001)
Lera, D., Sergeyev, Y.D.: Acceleration of univariate global optimization algorithms working with Lipschitz functions and Lipschitz first derivatives. SIAM J. Optim. 23 (1), 508–529 (2013)
Li, Y., Liu, K., Razavilar, J.: A parameter estimation scheme for damped sinusoidal signals based on low-rank Hankel approximation. IEEE Trans. Signal Process. 45 (2), 481–486 (1997)
Liuzzi, G., Lucidi, S., Piccialli, V.: A partition-based global optimization algorithm. J. Glob. Optim. 48 (1), 113–128 (2010)
Markovsky, I.: Bibliography on total least squares and related methods. Stat. Interface 3 (3), 329–334 (2010)
Mockus, J.: Bayesian Approach to Global Optimization. Kluwer Academic, Dordrecht (1989)
Paulavičius, R., Žilinskas, J.: Simplicial Global Optimization. SpringerBriefs in Optimization. Springer, New York (2014)
Paulavičius, R., Žilinskas, J.: Simplicial Lipschitz optimization without the Lipschitz constant. J. Glob. Optim. 59 (1), 23–40 (2014)
Paulavičius, R., Sergeyev, Y.D., Kvasov, D.E., Žilinskas, J.: Globally-biased Disimpl algorithm for expensive global optimization. J. Glob. Optim. 59 (2–3), 545–567 (2014)
Pintér, J.D.: Global Optimization in Action. Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications. Kluwer Academic, Dordrecht (1996)
Pollock, D.: A Handbook of Time Series Analysis, Signal Processing, and Dynamics. Academic, London (1999)
Sergeyev, Y.D.: An information global optimization algorithm with local tuning. SIAM J. Optim. 5 (4), 858–870 (1995)
Sergeyev, Y.D.: A one-dimensional deterministic global minimization algorithm. Comput. Math. Math. Phys. 35 (5), 705–717 (1995)
Sergeyev, Y.D.: Global one-dimensional optimization using smooth auxiliary functions. Math. Program. 81 (1), 127–146 (1998)
Sergeyev, Y.D.: On convergence of “Divide the Best” global optimization algorithms. Optimization 44 (3), 303–325 (1998)
Sergeyev, Y.D.: Multidimensional global optimization using the first derivatives. Comput. Math. Math. Phys. 39 (5), 711–720 (1999)
Sergeyev, Y.D., Grishagin, V.A.: A parallel method for finding the global minimum of univariate functions. J. Optim. Theory Appl. 80 (3), 513–536 (1994)
Sergeyev, Y.D., Kvasov, D.E.: Diagonal Global Optimization Methods. FizMatLit, Moscow (2008) [in Russian]
Sergeyev, Y.D., Kvasov, D.E.: Lipschitz global optimization. In: Cochran, J.J. (ed.) Wiley Encyclopedia of Operations Research and Management Science, vol. 4, pp. 2812–2828. Wiley, New York (2011)
Sergeyev, Y.D., Khalaf, F.M.H., Kvasov, D.E.: Univariate algorithms for solving global optimization problems with multiextremal non-differentiable constraints. In: A. Törn, J. Žilinskas (eds.) Models and Algorithms for Global Optimization, pp. 123–140. Springer, Heidelberg (2007)
Sergeyev, Y.D., Strongin, R.G., Lera, D.: Introduction to Global Optimization Exploiting Space-Filling Curves. SpringerBriefs in Optimization. Springer, New York (2013)
Sergeyev, Y.D., Mukhametzhanov, M.S., Kvasov, D.E., Lera, D.: Derivative-free local tuning and local improvement techniques embedded in the univariate global optimization. J. Optim. Theory Appl. (2016, to appear)
Strekalovsky, A.S.: Elements of Nonconvex Optimization. Nauka, Novosibirsk (2003) [in Russian]
Strongin, R.G., Sergeyev, Y.D.: Global Optimization with Non-Convex Constraints: Sequential and Parallel Algorithms. Kluwer Academic, Dordrecht (2000). 3rd edn. by Springer, Berlin (2014)
Törn, A., Žilinskas, A.: Global Optimization. Lecture Notes in Computer Science, vol. 350. Springer, Berlin (1989)
Van Huffel, S., Vandewalle, J.: The Total Least Squares Problem: Computational Aspects and Analysis. SIAM, Philadelphia (1991)
Zhigljavsky, A., Žilinskas, A.: Stochastic Global Optimization. Springer, New York (2008)
Žilinskas, A.: Global Optimization. Axiomatics of Statistical Models, Algorithms, and Applications. Mokslas, Vilnius (1986) [in Russian]
Žilinskas, A.: On similarities between two models of global optimization: statistical models and radial basis functions. J. Glob. Optim. 48 (1), 173–182 (2010)
Žilinskas, A., Žilinskas, J.: Global optimization based on a statistical model and simplicial partitioning. Comput. Math. Appl. 44 (7), 957–967 (2002)
Žilinskas, A., Žilinskas, J.: Interval arithmetic based optimization in nonlinear regression. Informatica 21 (1), 149–158 (2010)
Žilinskas, A., Žilinskas, J.: A hybrid global optimization algorithm for non-linear least squares regression. J. Glob. Optim. 56 (2), 265–277 (2013)
Acknowledgements
This work was supported by the Russian Science Foundation, project number 15-11-30022 “Global optimization, supercomputing computations, and applications.”
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this chapter
Cite this chapter
Sergeyev, Y.D., Kvasov, D.E., Mukhametzhanov, M.S. (2016). On the Least-Squares Fitting of Data by Sinusoids. In: Pardalos, P., Zhigljavsky, A., Žilinskas, J. (eds) Advances in Stochastic and Deterministic Global Optimization. Springer Optimization and Its Applications, vol 107. Springer, Cham. https://doi.org/10.1007/978-3-319-29975-4_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-29975-4_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-29973-0
Online ISBN: 978-3-319-29975-4
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)