Non Rigid Registration of 3D Images to Laparoscopic Video for Image Guided Surgery

  • Max Allan
  • Ankur Kapoor
  • Philip Mewes
  • Peter MountneyEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9515)


Image guidance and the visualization of sub surface structures during laparoscopic procedures have the potential to change the current capabilities of surgery. Increased target localization accuracy and the identification of critical structures can reduce resection mar-gins, procedure time and tissue trauma while simplifying procedures and enabling new functional capabilities. Image guidance requires the registration of 3D images to the laparoscopic video. Tissue deformation and lack of cross modality landmarks make this challenging. Registration can be performed by aligning the 3D image to a surface reconstructed from stereo laparoscopic images. Current research is focused on creating more generic stereo reconstruction techniques and rigid registration methods. This paper proposes a novel stereo reconstruction approach which exploits prior knowledge of patient specific organ models and outlier robust non rigid registration. The approach is validated on phantom data and the practical application of the reconstruction is demonstrated on in vivo data.


Gaussian Mixture Model Iterative Close Point Tissue Deformation Rigid Registration Disparity Estimate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Su, L.-M., et al.: Augmented reality during robot-assisted laparoscopic partial nephrectomy: toward real-time 3D-CT to stereoscopic video registration. Urology 73(4), 896–900 (2009)CrossRefGoogle Scholar
  2. 2.
    Mirota, D.J., et al.: Vision-based navigation in image-guided interventions. Annu. Rev. Biomed. Eng. 13, 297–319 (2011)CrossRefGoogle Scholar
  3. 3.
    Maier-Hein, L., Schmidt, M., Franz, A.M., dos Santos, T.R., Seitel, A., Jähne, B., Fitzpatrick, J.M., Meinzer, H.P.: Accounting for anisotropic noise in fine registration of time-of-flight range data with high-resolution surface data. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 251–258. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Dumpuri, P., et al.: Model-updated image-guided liver surgery: preliminary results using intra-operative surface characterization. Prog. Biophys. Mol. Biol. 103(2–3), 197–207 (2010)CrossRefGoogle Scholar
  5. 5.
    Malti, A., Bartoli, A., Collins, T.: Template-based conformal shape-from-motion-and-shading for laparoscopy. In: Abolmaesumi, P., Joskowicz, L., Navab, N., Jannin, P. (eds.) IPCAI 2012. LNCS, vol. 7330, pp. 1–10. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Devernay, F., et al.: Towards endoscopic augmented reality for robotically assisted minimally invasive cardiac surgery. In: 2001 Proceedings of the International Workshop on Medical Imaging and Augmented Reality, pp. 16–20(2001)Google Scholar
  7. 7.
    Stoyanov, D., et al.: Real-time stereo reconstruction in robotically assisted minimally invasive surgery. MICCAI 13(Pt 1), 275–282 (2010)MathSciNetGoogle Scholar
  8. 8.
    Lau, W.W., Ramey, N.A., Corso, J.J., Thakor, N.V., Hager, G.D.: Stereo-based endoscopic tracking of cardiac surface deformation. In: Barillot, C., Haynor, D.R., Hellier, P. (eds.) MICCAI 2004. LNCS, vol. 3217, pp. 494–501. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Richa, R., Poignet, P., Liu, C.: Efficient 3D tracking for motion compensation in beating heart surgery. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part II. LNCS, vol. 5242, pp. 684–691. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    dos Santos, T.R., et al.: Minimally deformed correspondences between surfaces for intra-operative registration. In: Proceedings of SPIE, vol. 8314, p. 83141C (2012)Google Scholar
  11. 11.
    Myronenko, A., et al.: Point set registration: coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 32, 2262–2275 (2010)CrossRefGoogle Scholar
  12. 12.
    Prince, S.: Computer Vision: Models Learning and Inference. Cambridge University Press, New York (2012)CrossRefzbMATHGoogle Scholar
  13. 13.
    Pratt, P., Stoyanov, D., Visentini-Scarzanella, M., Yang, G.-Z.: Dynamic guidance for robotic surgery using image-constrained biomechanical models. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 77–85. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Max Allan
    • 1
  • Ankur Kapoor
    • 1
  • Philip Mewes
    • 2
  • Peter Mountney
    • 1
    Email author
  1. 1.Siemens Corporate ResearchPrincetonUSA
  2. 2.Siemens HealthcareForchheimGermany

Personalised recommendations