Advertisement

Recent Development of Platinum-Based Nanocatalysts for Oxygen Reduction Electrocatalysis

  • David Raciti
  • Zhen Liu
  • Miaofang Chi
  • Chao WangEmail author
Chapter
Part of the Nanostructure Science and Technology book series (NST)

Abstract

Recent development of electrochemical technologies for renewable energy conversion and storage has enlightened the importance of tailoring the structures of catalytic materials at the nanoscale. In particular, the design and synthesis of nanocatalysts for the oxygen reduction reaction (ORR) in proton exchange membrane fuel cells (PEMFCs) have attracted great attention and been extensively studied. Remarkable progress has been made in improving the catalytic activity and stability of ORR catalysts by controlling and tuning the particle size, shape, composition and surface structures, as well as building up sophisticated composite nanostructures in core/shell and nanoporous configurations. Here a brief review is provided for the recent development of Pt-based nanocatalysts for the ORR. Instead of providing a complete list of the great amount of work reported in this topic, our focus is placed on fundamental understanding of the structure-property relationships of platinum-based nanomaterials, in particular alloy nanoparticles, in the electrochemical environment. The discussion is guided by correlations between well-defined extended surfaces and practical high-surface-area catalysts. Conclusions are made on challenges that remain and potential implications on other catalytic systems.

Keywords

Oxygen Reduction Reaction Membrane Electrode Assembly Oxygen Reduction Reaction Activity Alloy Catalyst Composite Nanostructures 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors at JHU thank the start-up support from the Whiting School of Engineering, Johns Hopkins University and funding support from NSF/DMR.

References

  1. 1.
    Vielstich W, Lamm A, Gasteiger HA (2003) Handbook of fuel cells: fundamentals, technology, and applications. Wiley, HobokenGoogle Scholar
  2. 2.
    Richter B, Goldston D, Crabtree G, Glicksman L, Goldstein D, Greene D, Kammen D, Levine M, Lubell M, Savitz M, Sperling D, Schlachter F, Scofield J, Dawson J (2008) How America can look within to achieve energy security and reduce global warming. Rev Mod Phys 80(4):S1–S107. doi: 10.1103/RevModPhys.80.S1 CrossRefGoogle Scholar
  3. 3.
    Gasteiger HA, Kocha SS, Sompalli B, Wagner FT (2005) Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl Catal B Environ 56(1–2):9–35CrossRefGoogle Scholar
  4. 4.
    Kinoshita K (1990) Particle-size effects for oxygen reduction on highly dispersed platinum in acid electrolytes. J Electrochem Soc 137(3):845–848CrossRefGoogle Scholar
  5. 5.
    Valden M, Lai X, Goodman DW (1998) Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281(5383):1647–1650CrossRefGoogle Scholar
  6. 6.
    Arenz M, Mayrhofer KJJ, Stamenkovic V, Blizanac BB, Tomoyuki T, Ross PN, Markovic NM (2005) The effect of the particle size on the kinetics of CO electrooxidation on high surface area Pt catalysts. J Am Chem Soc 127(18):6819–6829CrossRefGoogle Scholar
  7. 7.
    Bezemer GL, Bitter JH, Kuipers HPCE, Oosterbeek H, Holewijn JE, Xu XD, Kapteijn F, van Dillen AJ, de Jong KP (2006) Cobalt particle size effects in the Fischer-Tropsch reaction studied with carbon nanofiber supported catalysts. J Am Chem Soc 128(12):3956–3964. doi: 10.1021/Ja058282w CrossRefGoogle Scholar
  8. 8.
    Hvolbaek B, Janssens TVW, Clausen BS, Falsig H, Christensen CH, Norskov JK (2007) Catalytic activity of Au nanoparticles. Nano Today 2(4):14–18. doi: 10.1016/S1748-0132(07)70113-5 CrossRefGoogle Scholar
  9. 9.
    Lei Y, Mehmood F, Lee S, Greeley J, Lee B, Seifert S, Winans RE, Elam JW, Meyer RJ, Redfern PC, Teschner D, Schlogl R, Pellin MJ, Curtiss LA, Vajda S (2010) Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science 328(5975):224–228. doi: 10.1126/science.1185200 CrossRefGoogle Scholar
  10. 10.
    Shao MH, Peles A, Shoemaker K (2011) Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity. Nano Lett 11(9):3714–3719. doi: 10.1021/Nl2017459 CrossRefGoogle Scholar
  11. 11.
    Yano H, Inukai J, Uchida H, Watanabe M, Babu PK, Kobayashi T, Chung JH, Oldfield E, Wieckowski A (2006) Particle-size effect of nanoscale platinum catalysts in oxygen reduction reaction: an electrochemical and Pt-195 EC-NMR study. PCCP 8(42):4932–4939. doi: 10.1039/B610573d CrossRefGoogle Scholar
  12. 12.
    Yamamoto K, Imaoka T, Chun WJ, Enoki O, Katoh H, Takenaga M, Sonoi A (2009) Size-specific catalytic activity of platinum clusters enhances oxygen reduction reactions. Nat Chem 1(5):397–402. doi: 10.1038/Nchem.288 CrossRefGoogle Scholar
  13. 13.
    Nesselberger M, Ashton S, Meier JC, Katsounaros I, Mayrhofer KJJ, Arenz M (2011) The particle size effect on the oxygen reduction reaction activity of pt catalysts: influence of electrolyte and relation to single crystal models. J Am Chem Soc 133(43):17428–17433. doi: 10.1021/Ja207016u CrossRefGoogle Scholar
  14. 14.
    Sheng WC, Chen S, Vescovo E, Shao-Horn Y (2012) Size influence on the oxygen reduction reaction activity and instability of supported Pt nanoparticles. J Electrochem Soc 159(2):B96–B103. doi: 10.1149/2.009202jes CrossRefGoogle Scholar
  15. 15.
    Shao-Horn Y, Sheng WC, Chen S, Ferreira PJ, Holby EF, Morgan D (2007) Instability of supported platinum nanoparticles in low-temperature fuel cells. Top Catal 46(3–4):285–305. doi: 10.1007/s11244-007-9000-0 CrossRefGoogle Scholar
  16. 16.
    Tang L, Han B, Persson K, Friesen C, He T, Sieradzki K, Ceder G (2010) Electrochemical stability of nanometer-scale Pt particles in acidic environments. J Am Chem Soc 132(2):596–600CrossRefGoogle Scholar
  17. 17.
    Markovic NM, Ross PN (2002) Surface science studies of model fuel cell electrocatalysts. Surf Sci Rep 45(4–6):121–229Google Scholar
  18. 18.
    Stamenkovic VR, Fowler B, Mun BS, Wang GF, Ross PN, Lucas CA, Markovic NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315(5811):493–497CrossRefGoogle Scholar
  19. 19.
    Wang C, Daimon H, Onodera T, Koda T, Sun SH (2008) A general approach to the size- and shape-controlled synthesis of platinum nanoparticles and their catalytic reduction of oxygen. Angew Chem Int Ed 47(19):3588–3591. doi: 10.1002/anie.200800073 CrossRefGoogle Scholar
  20. 20.
    Chen JY, Lim B, Lee EP, Xia YN (2009) Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 4(1):81–95. doi: 10.1016/j.nantod.2008.09.002 CrossRefGoogle Scholar
  21. 21.
    Sanchez-Sanchez CM, Solla-Gullon J, Vidal-Iglesias FJ, Aldaz A, Montiel V, Herrero E (2010) Imaging structure sensitive catalysis on different shape-controlled platinum nanoparticles. J Am Chem Soc 132(16):5622–5624. doi: 10.1021/Ja100922h CrossRefGoogle Scholar
  22. 22.
    Ahmadi TS, Wang ZL, Green TC, Henglein A, ElSayed MA (1996) Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272(5270):1924–1926CrossRefGoogle Scholar
  23. 23.
    Song H, Kim F, Connor S, Somorjai GA, Yang PD (2005) Pt nanocrystals: shape control and Langmuir-Blodgett monolayer formation. J Phys Chem B 109(1):188–193. doi: 10.1021/Jp0464775 CrossRefGoogle Scholar
  24. 24.
    Ren JT, Tilley RD (2007) Preparation, self-assembly, and mechanistic study of highly monodispersed nanocubes. J Am Chem Soc 129(11):3287–3291. doi: 10.1021/Ja067636w CrossRefGoogle Scholar
  25. 25.
    Wang C, Daimon H, Lee Y, Kim J, Sun S (2007) Synthesis of monodisperse Pt nanocubes and their enhanced catalysis for oxygen reduction. J Am Chem Soc 129(22):6974–6975CrossRefGoogle Scholar
  26. 26.
    Sun SH, Jaouen F, Dodelet JP (2008) Controlled growth of Pt nanowires on carbon nanospheres and their enhanced performance as electrocatalysts in PEM fuel cells. Adv Mater 20(20):3900–3904. doi: 10.1002/adma.200800491 CrossRefGoogle Scholar
  27. 27.
    Alia SM, Zhang G, Kisailus D, Li DS, Gu S, Jensen K, Yan YS (2010) Porous platinum nanotubes for oxygen reduction and methanol oxidation reactions. Adv Funct Mater 20(21):3742–3746. doi: 10.1002/adfm.201001035 CrossRefGoogle Scholar
  28. 28.
    Wang JX, Ma C, Choi YM, Su D, Zhu YM, Liu P, Si R, Vukmirovic MB, Zhang Y, Adzic RR (2011) Kirkendall effect and lattice contraction in nanocatalysts: a new strategy to enhance sustainable activity. J Am Chem Soc 133(34):13551–13557. doi: 10.1021/Ja204518x CrossRefGoogle Scholar
  29. 29.
    Kibsgaard J, Gorlin Y, Chen ZB, Jaramillo TF (2012) Meso-Structured Platinum Thin Films: Active and Stable Electrocatalysts for the Oxygen Reduction Reaction. J Am Chem Soc 134 (18):7758-7765. doi:Doi  10.1021/Ja2120162
  30. 30.
    Toda T, Igarashi H, Uchida H, Watanabe M (1999) Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J Electrochem Soc 146(10):3750–3756CrossRefGoogle Scholar
  31. 31.
    Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rossmeisl J, Greeley J, Norskov JK (2006) Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew Chem Int Ed 45(18):2897–2901CrossRefGoogle Scholar
  32. 32.
    Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang GF, Ross PN, Markovic NM (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat Mater 6(3):241–247CrossRefGoogle Scholar
  33. 33.
    Greeley J, Stephens IEL, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, Rossmeisl J, Chorkendorff I, Norskov JK (2009) Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat Chem 1(7):552–556. doi: 10.1038/Nchem.367 CrossRefGoogle Scholar
  34. 34.
    Peng ZM, Yang H (2009) Designer platinum nanoparticles: control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 4(2):143–164. doi: 10.1016/j.nantod.2008.10.010 CrossRefGoogle Scholar
  35. 35.
    Wang C, Markovic NM, Stamenkovic VR (2012) Advanced platinum alloy electrocatalysts for the oxygen reduction reaction. ACS Catal 2(5):891–898CrossRefGoogle Scholar
  36. 36.
    Mayrhofer KJJ, Hartl K, Juhart V, Arenz M (2009) Degradation of carbon-supported Pt bimetallic nanoparticles by surface segregation. J Am Chem Soc 131(45):16348–16349CrossRefGoogle Scholar
  37. 37.
    Ponec V, Bond GC (1995) Catalysis by metals and alloys, vol 95, Studies in surface science and catalysis. Elsevier, AmsterdamGoogle Scholar
  38. 38.
    Ertl G, Knözinger H, Weitkamp J (1997) Handbook of heterogeneous catalysis. Weinheim, VCHCrossRefGoogle Scholar
  39. 39.
    Murray CB, Kagan CR, Bawendi MG (2000) Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu Rev Mater Sci 30:545–610CrossRefGoogle Scholar
  40. 40.
    Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104(9):3893–3946CrossRefGoogle Scholar
  41. 41.
    Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108(3):845–910CrossRefGoogle Scholar
  42. 42.
    Sun SH, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287(5460):1989–1992CrossRefGoogle Scholar
  43. 43.
    Shevchenko EV, Talapin DV, Rogach AL, Kornowski A, Haase M, Weller H (2002) Colloidal synthesis and self-assembly of COPt3 nanocrystals. J Am Chem Soc 124(38):11480–11485CrossRefGoogle Scholar
  44. 44.
    Wang C, Chi MF, Li DG, van der Vliet D, Wang GF, Lin QY, Mitchell JF, More KL, Markovic NM, Stamenkovic VR (2011) Synthesis of homogeneous Pt-bimetallic nanoparticles as highly efficient electrocatalysts. ACS Catal 1(10):1355–1359. doi: 10.1021/Cs200328z CrossRefGoogle Scholar
  45. 45.
    Wang C, van der Vilet D, Chang KC, You HD, Strmcnik D, Schlueter JA, Markovic NM, Stamenkovic VR (2009) Monodisperse Pt(3)Co nanoparticles as a catalyst for the oxygen reduction reaction: size-dependent activity. J Phys Chem C 113(45):19365–19368CrossRefGoogle Scholar
  46. 46.
    Ahrenstorf K, Albrecht O, Heller H, Kornowski A, Gorlitz D, Weller H (2007) Colloidal synthesis of Ni(x)Pt(1-x) nanoparticles with tuneable composition and size. Small 3(2):271–274CrossRefGoogle Scholar
  47. 47.
    Ahrenstorf K, Heller H, Kornowski A, Broekaert JAC, Weller H (2008) Nucleation and growth mechanism of Ni(x)Pt(1-x) nanoparticles. Adv Funct Mater 18(23):3850–3856CrossRefGoogle Scholar
  48. 48.
    Wang C, Chi MF, Wang GF, van der Vliet D, Li DG, More K, Wang HH, Schlueter JA, Markovic NM, Stamenkovic VR (2011) Correlation between surface chemistry and electrocatalytic properties of monodisperse Pt(x)Ni(1-x) nanoparticles. Adv Funct Mater 21(1):147–152CrossRefGoogle Scholar
  49. 49.
    Liu ZF, Shamsuzzoha M, Ada ET, Reichert WM, Nikles DE (2007) Synthesis and activation of Pt nanoparticles with controlled size for fuel cell electrocatalysts. J Power Sources 164(2):472–480CrossRefGoogle Scholar
  50. 50.
    Liu ZF, Ada ET, Shamsuzzoha M, Thompson GB, Nikles DE (2006) Synthesis and activation of PtRu alloyed nanoparticles with controlled size and composition. Chem Mater 18(20):4946–4951CrossRefGoogle Scholar
  51. 51.
    Lee YH, Lee G, Shim JH, Hwang S, Kwak J, Lee K, Song H, Park JT (2006) Monodisperse PtRu nanoalloy on carbon as a high-performance DMFC catalyst. Chem Mater 18(18):4209–4211CrossRefGoogle Scholar
  52. 52.
    Chen W, Kim JM, Sun SH, Chen SW (2008) Electrocatalytic reduction of oxygen by FePt alloy nanoparticles. J Phys Chem C 112(10):3891–3898. doi: 10.1021/Jp7110204 CrossRefGoogle Scholar
  53. 53.
    Mayrhofer KJJ, Blizanac BB, Arenz M, Stamenkovic VR, Ross PN, Markovic NM (2005) The impact of geometric and surface electronic properties of Pt-catalysts on the particle size effect in electocatalysis. J Phys Chem B 109(30):14433–14440CrossRefGoogle Scholar
  54. 54.
    Zhang J, Yang HZ, Fang JY, Zou SZ (2010) Synthesis and oxygen reduction activity of shape-controlled Pt(3)Ni nanopolyhedra. Nano Lett 10(2):638–644CrossRefGoogle Scholar
  55. 55.
    Wu JB, Gross A, Yang H (2011) Shape and composition-controlled platinum alloy nanocrystals using carbon monoxide as reducing agent. Nano Lett 11(2):798–802CrossRefGoogle Scholar
  56. 56.
    Choi SI, Xie SF, Shao MH, Odell JH, Lu N, Peng HC, Protsailo L, Guerrero S, Park JH, Xia XH, Wang JG, Kim MJ, Xia YN (2013) Synthesis and characterization of 9 nm Pt-Ni octahedra with a record high activity of 3.3 A/mg(Pt) for the oxygen reduction reaction. Nano Lett 13(7):3420–3425CrossRefGoogle Scholar
  57. 57.
    Wu JB, Qi L, You HJ, Gross A, Li J, Yang H (2012) Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities. J Am Chem Soc 134(29):11880–11883. doi: 10.1021/Ja303950v CrossRefGoogle Scholar
  58. 58.
    Wang C, Wang GF, van der Vliet D, Chang KC, Markovic NM, Stamenkovic VR (2010) Monodisperse Pt3Co nanoparticles as electrocatalyst: the effects of particle size and pretreatment on electrocatalytic reduction of oxygen. PCCP 12(26):6933–6939CrossRefGoogle Scholar
  59. 59.
    Li DG, Wang C, Tripkovic D, Sun SH, Markovic NM, Stamenkovic VR (2012) Surfactant removal for colloidal nanoparticles from solution synthesis: the effect on catalytic performance. ACS Catal 2(7):1358–1362CrossRefGoogle Scholar
  60. 60.
    Zhang J, Yang HZ, Fang JY, Zou SZ (2010) Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra. Nano Lett 10(2):638–644. doi: 10.1021/Nl903717z CrossRefGoogle Scholar
  61. 61.
    Stamenkovic VR, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM (2006) Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J Am Chem Soc 128(27):8813–8819CrossRefGoogle Scholar
  62. 62.
    Watanabe M, Tsurumi K, Mizukami T, Nakamura T, Stonehart P (1994) Activity and stability of ordered and disordered Co-Pt alloys for phosphoric-acid fuel-cells. J Electrochem Soc 141(10):2659–2668CrossRefGoogle Scholar
  63. 63.
    Ball S, Hudson S, Theobald B, Thompsett D (2006) Enhanced stability of PtCo catalysts for PEMFC. ECS Trans 1(8):141–152CrossRefGoogle Scholar
  64. 64.
    Ball S, Hudson S, Theobald B, Thompsett D (2007) PtCo, a durable catalyst for automotive proton electrolyte membrane fuel cells? ECS Trans 11(1):1267–1278CrossRefGoogle Scholar
  65. 65.
    Mani P, Srivastava R, Strasser P (2008) Dealloyed Pt-Cu core-shell nanoparticle electrocatalysts for use in PEM fuel cell cathodes. J Phys Chem C 112(7):2770–2778CrossRefGoogle Scholar
  66. 66.
    Chen S, Ferreira PJ, Sheng WC, Yabuuchi N, Allard LF, Shao-Horn Y (2008) Enhanced activity for oxygen reduction reaction on “Pt(3)CO” nanoparticles: direct evidence of percolated and sandwich-segregation structures. J Am Chem Soc 130(42):13818–13819CrossRefGoogle Scholar
  67. 67.
    Chen S, Sheng WC, Yabuuchi N, Ferreira PJ, Allard LF, Shao-Horn Y (2009) Origin of oxygen reduction reaction activity on “Pt(3)Co” nanoparticles: atomically resolved chemical compositions and structures. J Phys Chem C 113(3):1109–1125CrossRefGoogle Scholar
  68. 68.
    Chen S, Gasteiger HA, Hayakawa K, Tada T, Shao-Horn Y (2010) Platinum-alloy cathode catalyst degradation in proton exchange membrane fuel cells: nanometer-scale compositional and morphological changes. J Electrochem Soc 157(1):A82–A97CrossRefGoogle Scholar
  69. 69.
    Gan L, Heggen M, Rudi S, Strasser P (2012) Core-shell compositional fine structures of dealloyed PtxNi1-x nanoparticles and their impact on oxygen reduction catalysis. Nano Lett 12(10):5423–5430. doi: 10.1021/Nl302995z CrossRefGoogle Scholar
  70. 70.
    Snyder J, McCue I, Livi K, Erlebacher J (2012) Structure/processing/properties relationships in nanoporous nanoparticles as applied to catalysis of the cathodic oxygen reduction reaction. J Am Chem Soc 134(20):8633–8645. doi: 10.1021/Ja3019498 CrossRefGoogle Scholar
  71. 71.
    Strasser P, Koh S, Anniyev T, Greeley J, More K, Yu CF, Liu ZC, Kaya S, Nordlund D, Ogasawara H, Toney MF, Nilsson A (2010) Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts. Nat Chem 2(6):454–460. doi: 10.1038/Nchem.623 CrossRefGoogle Scholar
  72. 72.
    Koh S, Strasser P (2007) Electrocatalysis on bimetallic surfaces: modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying. J Am Chem Soc 129(42):12624–12625CrossRefGoogle Scholar
  73. 73.
    Strasser P, Koha S, Greeley J (2008) Voltammetric surface dealloying of Pt bimetallic nanoparticles: an experimental and DFT computational analysis. PCCP 10(25):3670–3683. doi: 10.1039/B803717e CrossRefGoogle Scholar
  74. 74.
    Cui CH, Gan L, Heggen M, Rudi S, Strasser P (2013) Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat Mater 12(8):765–771CrossRefGoogle Scholar
  75. 75.
    Ferreira PJ, La O’ GJ, Shao-Horn Y, Morgan D, Makharia R, Kocha S, Gasteiger HA (2005) Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells—a mechanistic investigation. J Electrochem Soc 152(11):A2256–A2271CrossRefGoogle Scholar
  76. 76.
    Wang C, Chi MF, Li DG, Strmcnik D, van der Vliett D, Wang GF, Komanicky V, Chang KC, Paulikas AP, Tripkovic D, Pearson J, More KL, Markovic NM, Stamenkovic VR (2011) Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces. J Am Chem Soc 133(36):14396–14403CrossRefGoogle Scholar
  77. 77.
    Wang C, van der Vliet D, More KL, Zaluzec NJ, Peng S, Sun SH, Daimon H, Wang GF, Greeley J, Pearson J, Paulikas AP, Karapetrov G, Strmcnik D, Markovic NM, Stamenkovic VR (2011) Multimetallic Au/FePt(3) nanoparticles as highly durable electrocatalyst. Nano Lett 11(3):919–926CrossRefGoogle Scholar
  78. 78.
    Wagner FT, Gasteiger HA, Makharia R, Neyerlin KC, Thompson EL, Yan SG (2006) ECS Trans 3(1):19CrossRefGoogle Scholar
  79. 79.
    Yu P, Pemberton M, Plasse P (2005) PtCo/C cathode catalyst for improved durability in PEMFCs. J Power Sources 144(1):11–20CrossRefGoogle Scholar
  80. 80.
    Neyerlin KC, Srivastava R, Yu CF, Strasser P (2009) Electrochemical activity and stability of dealloyed Pt-Cu and Pt-Cu-Co electrocatalysts for the oxygen reduction reaction (ORR). J Power Sources 186(2):261–267. doi: 10.1016/j.jpowsour.2008.10.062 CrossRefGoogle Scholar
  81. 81.
    Hwang BJ, Kumar SMS, Chen CH, Monalisa CMY, Liu DG, Lee JF (2007) An investigation of structure-catalytic activity relationship for Pt-Co/C bimetallic nanoparticles toward the oxygen reduction reaction. J Phys Chem C 111(42):15267–15276CrossRefGoogle Scholar
  82. 82.
    Yano H, Kataoka M, Yamashita H, Uchida H, Watanabe M (2007) Oxygen reduction activity of carbon-supported Pt-M (M = V, Ni, Cr, Co, and Fe) alloys prepared by nanocapsule method. Langmuir 23(11):6438–6445CrossRefGoogle Scholar
  83. 83.
    Malheiro AR, Perez J, Santiago EI, Villullas HM (2010) The extent on the nanoscale of Pt-skin effects on oxygen reduction and its influence on fuel cell power. J Phys Chem C 114(47):20267–20271CrossRefGoogle Scholar
  84. 84.
    Ingram DB, Christopher P, Bauer JL, Linic S (2011) Predictive model for the design of plasmonic metal/semiconductor composite photocatalysts. ACS Catal 1(10):1441–1447CrossRefGoogle Scholar
  85. 85.
    Mu RT, Fu QA, Xu H, Zhang HI, Huang YY, Jiang Z, Zhang SO, Tan DL, Bao XH (2011) Synergetic effect of surface and subsurface Ni species at Pt-Ni bimetallic catalysts for CO oxidation. J Am Chem Soc 133(6):1978–1986CrossRefGoogle Scholar
  86. 86.
    Wang JX, Inada H, Wu LJ, Zhu YM, Choi YM, Liu P, Zhou WP, Adzic RR (2009) Oxygen reduction on well-defined core-shell nanocatalysts: particle size, facet, and Pt shell thickness effects. J Am Chem Soc 131(47):17298–17302. doi: 10.1021/Ja9067645 CrossRefGoogle Scholar
  87. 87.
    Mazumder V, Chi MF, More KL, Sun SH (2010) Core/shell Pd/FePt nanoparticles as an active and durable catalyst for the oxygen reduction reaction. J Am Chem Soc 132(23):7848–7849. doi: 10.1021/Ja1024436 CrossRefGoogle Scholar
  88. 88.
    Chen YM, Liang ZX, Yang F, Liu YW, Chen SL (2011) Ni-Pt core-shell nanoparticles as oxygen reduction electrocatalysts: effect of Pt shell coverage. J Phys Chem C 115(49):24073–24079. doi: 10.1021/Jp207828n CrossRefGoogle Scholar
  89. 89.
    Kuttiyiel KA, Sasaki K, Choi YM, Su D, Liu P, Adzic RR (2012) Nitride stabilized PtNi core-shell nanocatalyst for high oxygen reduction activity. Nano Lett 12(12):6266–6271. doi: 10.1021/Nl303362s CrossRefGoogle Scholar
  90. 90.
    Beard KD, Borrelli D, Cramer AM, Blom D, Van Zee JW, Monnier JR (2009) Preparation and structural analysis of carbon-supported Co core/Pt shell electrocatalysts using electroless deposition methods. ACS Nano 3(9):2841–2853. doi: 10.1021/Nn900214g CrossRefGoogle Scholar
  91. 91.
    Wang C, van der Vliet D, More KL, Zaluzec NJ, Peng S, Sun SH, Daimon H, Wang GF, Greeley J, Pearson J, Paulikas AP, Karapetrov G, Strmcnik D, Markovic NM, Stamenkovic VR (2011) Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett 11(3):919–926. doi: 10.1021/Nl102369k CrossRefGoogle Scholar
  92. 92.
    Yang H (2011) Platinum-based electrocatalysts with core-shell nanostructures. Angew Chem Int Ed 50(12):2674–2676. doi: 10.1002/anie.201005868 CrossRefGoogle Scholar
  93. 93.
    Zhang J, Sasaki K, Sutter E, Adzic RR (2007) Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315(5809):220–222CrossRefGoogle Scholar
  94. 94.
    Wang C, Daimon H, Sun SH (2009) Dumbbell-like Pt-Fe3O4 nanoparticles and their enhanced catalysis for oxygen reduction reaction. Nano Lett 9(4):1493–1496. doi: 10.1021/Nl8034724 CrossRefGoogle Scholar
  95. 95.
    Alia SM, Jensen KO, Pivovar BS, Yan YS (2012) platinum-coated palladium nanotubes as oxygen reduction reaction electrocatalysts. ACS Catal 2(5):858–863. doi: 10.1021/Cs200682c CrossRefGoogle Scholar
  96. 96.
    van der Vliet DF, Wang C, Tripkovic D, Strmcnik D, Zhang XF, Debe MK, Atanasoski RT, Markovic NM, Stamenkovic VR (2012) Mesostructured thin films as electrocatalysts with tunable composition and surface morphology. Nat Mater 11(12):1051–1058Google Scholar
  97. 97.
    Snyder J, Fujita T, Chen MW, Erlebacher J (2010) Oxygen reduction in nanoporous metal-ionic liquid composite electrocatalysts. Nat Mater 9(11):904–907. doi: 10.1038/Nmat2878 CrossRefGoogle Scholar
  98. 98.
    Zhang J, Mo Y, Vukmirovic MB, Klie R, Sasaki K, Adzic RR (2004) Platinum monolayer electrocatalysts for O-2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. J Phys Chem B 108(30):10955–10964CrossRefGoogle Scholar
  99. 99.
    Sasaki K, Naohara H, Cai Y, Choi YM, Liu P, Vukmirovic MB, Wang JX, Adzic RR (2010) Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. Angew Chem Int Ed 49(46):8602–8607. doi: 10.1002/anie.201004287 CrossRefGoogle Scholar
  100. 100.
    Adzic RR, Zhang J, Sasaki K, Vukmirovic MB, Shao M, Wang JX, Nilekar AU, Mavrikakis M, Valerio JA, Uribe F (2007) Platinum monolayer fuel cell electrocatalysts. Top Catal 46(3–4):249–262. doi: 10.1007/s11244-007-9003-x CrossRefGoogle Scholar
  101. 101.
    Sasaki K, Mo Y, Wang JX, Balasubramanian M, Uribe F, McBreen J, Adzic RR (2003) Pt submonolayers on metal nanoparticles—novel electrocatalysts for H-2 oxidation and O-2 reduction. Electrochim Acta 48(25–26):3841–3849. doi: 10.1016/S0013-4686(03)00518-8 CrossRefGoogle Scholar
  102. 102.
    Shao M, Sasaki K, Marinkovic NS, Zhang L, Adzic RR (2007) Synthesis and characterization of platinum monolayer oxygen-reduction electrocatalysts with Co-Pd core-shell nanoparticle supports. Electrochem Commun 9(12):2848–2853CrossRefGoogle Scholar
  103. 103.
    Debe MK, Schmoeckel AK, Vernstrorn GD, Atanasoski R (2006) High voltage stability of nanostructured thin film catalysts for PEM fuel cells. J Power Sources 161(2):1002–1011. doi: 10.1016/j.jpowsour.2006.05.033 CrossRefGoogle Scholar
  104. 104.
    Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486(7401):43–51. doi: 10.1038/Nature11115 CrossRefGoogle Scholar
  105. 105.
    Marcilly C (2003) Present status and future trends in catalysis for refining and petrochemicals. J Catal 216(1–2):47–62. doi: 10.1016/S0021-9517(02)00129-X CrossRefGoogle Scholar
  106. 106.
    Vermeiren W, Gilson JP (2009) Impact of zeolites on the petroleum and petrochemical industry. Top Catal 52(9):1131–1161. doi: 10.1007/s11244-009-9271-8 CrossRefGoogle Scholar
  107. 107.
    Armor JN (2011) A history of industrial catalysis. Catal Today 163(1):3–9. doi: 10.1016/j.cattod.2009.11.019 CrossRefGoogle Scholar
  108. 108.
    Fajin JLC, Cordeiro MNDS, Gomes JRB (2011) On the theoretical understanding of the unexpected O-2 activation by nanoporous gold. Chem Commun 47(29):8403–8405. doi: 10.1039/C1cc12166a CrossRefGoogle Scholar
  109. 109.
    Wittstock A, Zielasek V, Biener J, Friend CM, Baumer M (2010) Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 327(5963):319–322. doi: 10.1126/science.1183591 CrossRefGoogle Scholar
  110. 110.
    Zielasek V, Jurgens B, Schulz C, Biener J, Biener MM, Hamza AV, Baumer M (2006) Gold catalysts: nanoporous gold foams. Angew Chem Int Ed 45(48):8241–8244. doi: 10.1002/anie.200602484 CrossRefGoogle Scholar
  111. 111.
    Zeis R, Lei T, Sieradzki K, Snyder J, Erlebacher J (2008) Catalytic reduction of oxygen and hydrogen peroxide by nanoporous gold. J Catal 253(1):132–138. doi: 10.1016/j.jcat.2007.10.017 CrossRefGoogle Scholar
  112. 112.
    Yan M, Jin T, Ishikawa Y, Minato T, Fujita T, Chen LY, Bao M, Asao N, Chen MW, Yamamoto Y (2012) nanoporous gold catalyst for highly selective semihydrogenation of alkynes: remarkable effect of amine additives. J Am Chem Soc 134(42):17536–17542. doi: 10.1021/Ja3087592 CrossRefGoogle Scholar
  113. 113.
    Chen C, Kang YJ, Huo ZY, Zhu ZW, Huang WY, Xin HLL, Snyder JD, Li DG, Herron JA, Mavrikakis M, Chi MF, More KL, Li YD, Markovic NM, Somorjai GA, Yang PD, Stamenkovic VR (2014) Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343(6177):1339–1343CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • David Raciti
    • 1
  • Zhen Liu
    • 1
  • Miaofang Chi
    • 2
  • Chao Wang
    • 1
    Email author
  1. 1.Department of Chemical and Biomolecular EngineeringJohns Hopkins University BaltimoreUSA
  2. 2.Center for Nanophase Materials Sciences, Oak Ridge National Laboratory Oak RidgeUSA

Personalised recommendations