Integrated Studies of Au@Pt and Ru@Pt Core-Shell Nanoparticles by In Situ Electrochemical NMR, ATR-SEIRAS, and SERS

  • Dejun Chen
  • Dianne O. Atienza
  • YuYe J. TongEmail author
Part of the Nanostructure Science and Technology book series (NST)


In-situ electrochemical spectroscopic methods, such as solid-state nuclear magnetic resonance (NMR), attenuated-total-reflection surface-enhanced IR reflection adsorption spectroscopy (ATR-SEIRAS) and surface-enhanced Raman scattering spectroscopy (SERS), offer complementary atomic and molecular scale information on the electronic, structural, and molecular properties of nanoparticle electrocatalysts and mechanism(s) of surface reactions. In situ electrochemical (EC) 195Pt and 13CO NMR enables measurements of s- and d-like metal surface local density of states at the Fermi level (E f -LDOS) and - and *-like E f -LDOS at the probing CO. Such quantitative, electronic-orbital-specific (EOS) information makes it possible to relate electronic properties of the electrocatalysts with surface reaction mechanism(s) that can be monitored by vibrational spectroscopy, i.e. ATR-SEIRAS and SERS. In this chapter, we discuss integrated in situ EC-NMR, -SEIRAS and -SERS studies of CO and methanol oxidation reactions on core-shell Ru@Pt and Au@Pt nanoparicles (NPs) through which we intend to demonstrate that the integrated approach makes “the whole is greater than the sum of its parts”.


Nuclear Magnetic Resonance Oxygen Reduction Reaction Nuclear Magnetic Resonance Measurement Methanol Oxidation Reaction PtRu Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the financial supports provided by DOE (DE-FG02-07ER15895), NSF (CHE-1413429) and ARO (66191-CH).


  1. 1.
    Markovic NM, Ross PN (2000) New electrocatalysts for fuel cells from model surfaces to commercial catalysts. CATTECH 4:110–126CrossRefGoogle Scholar
  2. 2.
    Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414(6861):345–352CrossRefGoogle Scholar
  3. 3.
    Girishkumar G, McCloskey B, Luntz AC, Swanson S, Wilcke W (2010) Lithium–air battery: promise and challenges. J Phys Chem Lett 1(14):2193–2203. doi: 10.1021/jz1005384 CrossRefGoogle Scholar
  4. 4.
    Shao Y, Park S, Xiao J, Zhang J-G, Wang Y, Liu J (2012) Electrocatalysts for nonaqueous lithium–air batteries: status, challenges, and perspective. ACS Catal 2(5):844–857. doi: 10.1021/cs300036v CrossRefGoogle Scholar
  5. 5.
    Zhang S, Yuan X-Z, Hin JNC, Wang H, Friedrich KA, Schulze M (2009) A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells. J Power Sources 194(2):588–600.
  6. 6.
    Sealy C (2008) The problem with platinum. Mater Today 11(12):65–68CrossRefGoogle Scholar
  7. 7.
    Arenz M, Mayrhofer KJJ, Stamenkovic V, Blizanac BB, Tomoyuki T, Ross PN, Markovic NM (2005) The effect of the particle size on the kinetics of CO electrooxidation on high surface area Pt catalysts. J Am Chem Soc 127(18):6819–6829. doi: 10.1021/ja043602h CrossRefGoogle Scholar
  8. 8.
    Lebedeva NP, Koper MTM, Feliu JM, van Santen RA (2002) Mechanism and kinetics of the electrochemical CO adlayer oxidation on Pt(111). J Electroanal Chem 524–525:242–251.
  9. 9.
    Iwasita T (2002) Electrocatalysis of methanol oxidation. Electrochim Acta 47:3663–3674CrossRefGoogle Scholar
  10. 10.
    Wang H, Jusys Z, Behm RJ (2006) Ethanol electro-oxidation on carbon-supported Pt, PtRu and Pt3Sn catalysts: a quantitative DEMS study. J Power Sources 154(2):351–359.
  11. 11.
    Xia XH, Liess HD, Iwasita T (1997) Early stages in the oxidation of ethanol at low index single crystal platinum electrodes. J Electroanal Chem 437(1–2):233–240.
  12. 12.
    Kang Y, Qi L, Li M, Diaz RE, Su D, Adzic RR, Stach E, Li J, Murray CB (2012) Highly active Pt3Pb and core–shell Pt3Pb–Pt electrocatalysts for formic acid oxidation. ACS Nano 6(3):2818–2825. doi: 10.1021/nn3003373 CrossRefGoogle Scholar
  13. 13.
    Chen DJ, Zhou ZY, Wang Q, Xiang DM, Tian N, Sun SG (2010) A non-intermetallic PtPb/C catalyst of hollow structure with high activity and stability for electrooxidation of formic acid. Chem Commun 46(24):4252–4254. doi: 10.1039/c002964e CrossRefGoogle Scholar
  14. 14.
    Schmidt TJ, Ross Jr PN, Markovic NM (2002) Temperature dependent surface electrochemistry on Pt single crystals in alkaline electrolytes: Part 2. The hydrogen evolution/oxidation reaction. J Electroanal Chem 524–525:252–260.
  15. 15.
    Esposito DV, Hunt ST, Stottlemyer AL, Dobson KD, McCandless BE, Birkmire RW, Chen JG (2010) Low-cost hydrogen-evolution catalysts based on monolayer platinum on tungsten monocarbide substrates. Angew Chem Int Ed 49(51):9859–9862. doi: 10.1002/anie.201004718 CrossRefGoogle Scholar
  16. 16.
    Lim B, Jiang M, Camargo PHC, Cho EC, Tao J, Lu X, Zhu Y, Xia Y (2009) Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324(5932):1302–1305. doi: 10.1126/science.1170377 CrossRefGoogle Scholar
  17. 17.
    Zhang J, Sasaki K, Sutter E, Adzic RR (2007) Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters. Science 315(5809):220–222CrossRefGoogle Scholar
  18. 18.
    Lu YC, Xu ZC, Gasteiger HA, Chen S, Hamad-Schifferli K, Shao-Horn Y (2010) Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries. J Am Chem Soc 132(35):12170–12171. doi: 10.1021/ja1036572 CrossRefGoogle Scholar
  19. 19.
    Kerbach I, Climent V, Feliu JM (2011) Reduction of CO2 on bismuth modified Pt(110) single-crystal surfaces. Effect of bismuth and poisoning intermediates on the rate of hydrogen evolution. Electrochim Acta 56(12):4451–4456.
  20. 20.
    Qu J, Zhang X, Wang Y, Xie C (2005) Electrochemical reduction of CO2 on RuO2/TiO2 nanotubes composite modified Pt electrode. Electrochim Acta 50(16–17):3576–3580.
  21. 21.
    Climent V, Garcia-Araez N, Feliu JM (2009) Clues for the molecular-level understanding of electrocatalysis on single-crystal platinum surfaces modified by p-block adatoms. Fuel cell catalysis a surface science approach. Wiley, HobokenGoogle Scholar
  22. 22.
    Liu P, Nørskov JK (2001) Ligand and ensemble effects in adsorption on alloy surfaces. Phys Chem Chem Phys 3(17):3814–3818. doi: 10.1039/b103525h CrossRefGoogle Scholar
  23. 23.
    Tong YY, Wieckowski A, Oldfield E (2002) NMR of electrocatalysts. J Phys Chem B 106(10):2434–2446. doi: 10.1021/jp0129939 CrossRefGoogle Scholar
  24. 24.
    Du B, Danberry AL, Park I-S, Sung Y-E, Tong Y (2008) Spatially resolved 195Pt NMR of carbon-supported PtRu electrocatalysts: local electronic properties, elemental composition, and catalytic activity. J Chem Phys 128(5):052311. doi: 10.1063/1.2830952 CrossRefGoogle Scholar
  25. 25.
    Tan F, Du B, Danberry AL, Park I-S, Sung Y-E, Tong Y (2008) A comparative in situ 195Pt electrochemical-NMR investigation of PtRu nanoparticles supported on diverse carbon nanomaterials. Faraday Discuss 140:139–153. doi: 10.1039/b803073a CrossRefGoogle Scholar
  26. 26.
    Tong RC, Wieckowski A, Oldfield E (2000) A detailed NMR-based model for CO on Pt catalysts in an electrochemical environment: shifts, relaxation, back-bonding, and the fermi-level local density of states. J Am Chem Soc 122(6):1123–1129. doi: 10.1021/ja9922274 CrossRefGoogle Scholar
  27. 27.
    Tong KHS, Babu PK, Waszczuk P, Wieckowski A, Oldfield E (2002) An NMR investigation of CO tolerance in a Pt/Ru fuel cell catalyst. J Am Chem Soc 124(3):468–473. doi: 10.1021/ja011729q CrossRefGoogle Scholar
  28. 28.
    Kobayashi T, Babu PK, Gancs L, Chung JH, Oldfield E, Wieckowski A (2005) An NMR determination of CO diffusion on platinum electrocatalysts. J Am Chem Soc 127(41):14164–14165. doi: 10.1021/ja0550475 CrossRefGoogle Scholar
  29. 29.
    Tian ZQ, Ren B (2004) Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy. Annu Rev Phys Chem 55:197–229. doi: 10.1146/annurev.physchem.54.011002.103833 CrossRefGoogle Scholar
  30. 30.
    Osawa M (2006) Diffraction and spectroscopic methods in electrochemistry: in-situ surface-enhanced infrared spectroscopy of the electrode/solution interface, vol 9, Advances in electrochemical science and engineering. Wiley-VCH, New YorkGoogle Scholar
  31. 31.
    Osawa M, Ataka K, Yoshii K, Yotsuyanagi T (1993) Surface-enhanced infrared ATR spectroscopy for in situ studies of electrode/electrolyte interfaces. J Electron Spectrosc Relat Phenom 64:371–379. uuid: CE0FC3F0-7DA6-4A00-8375-39A57E55959AGoogle Scholar
  32. 32.
    Ataka K, Yotsuyanagi T, Osawa M (1996) Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy. J Phys Chem 100(25):10664–10672. doi: 10.1021/jp953636z CrossRefGoogle Scholar
  33. 33.
    Garcia-Araez N, Rodriguez P, Bakker HJ, Koper MTM (2012) Effect of the surface structure of gold electrodes on the coadsorption of water and anions. J Phys Chem C 116(7):4786–4792. doi: 10.1021/jp211782v CrossRefGoogle Scholar
  34. 34.
    Sun SG, Cai WB, Wan LJ, Osawa M (1999) Infrared absorption enhancement for CO adsorbed on Au films in perchloric acid solutions and effects of surface structure studied by cyclic voltammetry, scanning tunneling microscopy, and surface-enhanced IR spectroscopy. J Phys Chem B 103(13):2460–2466CrossRefGoogle Scholar
  35. 35.
    Yoshida M, Yamakata A, Takanabe K, Kubota J, Osawa M, Domen K (2009) ATR-SEIRAS investigation of the fermi level of Pt cocatalyst on a GaN photocatalyst for hydrogen evolution under irradiation. J Am Chem Soc 131(37):13218–13219. doi: 10.1021/ja904991p CrossRefGoogle Scholar
  36. 36.
    Shao MH, Adzic RR (2005) Electrooxidation of ethanol on a Pt electrode in acid solutions: in situ ATR-SEIRAS study. Electrochim Acta 50(12):2415–2422. doi: 10.1016/j.electacta.2004.10.063 CrossRefGoogle Scholar
  37. 37.
    Smolinka T, Heinen M, Chen YX, Jusys Z, Lehnert W, Behm RJ (2005) CO2 reduction on Pt electrocatalysts and its impact on H-2 oxidation in CO2 containing fuel cell feed gas—a combined in situ infrared spectroscopy, mass spectrometry and fuel cell performance study. Electrochim Acta 50(25–26):5189–5199. doi: 10.1016/j.electacta.2005.02.082 CrossRefGoogle Scholar
  38. 38.
    Kunimatsu K, Uchida H, Osawa M, Watanabe M (2006) In situ infrared spectroscopic and electrochemical study of hydrogen electro-oxidation on Pt electrode in sulfuric acid. J Electroanal Chem 587(2):299–307. doi: 10.1016/j.jelechem.2005.11.026 CrossRefGoogle Scholar
  39. 39.
    Osawa M, K-i K, Samjeské G, Uchida T, Ikeshoji T, Cuesta A, Gutiérrez C (2011) The role of bridge-bonded adsorbed formate in the electrocatalytic oxidation of formic acid on platinum. Angew Chem Int Ed 50(5):1159–1163. doi: 10.1002/anie.201004782 CrossRefGoogle Scholar
  40. 40.
    Chen YX, Miki A, Ye S, Sakai H, Osawa M (2003) Formate, an active intermediate for direct oxidation of methanol on Pt electrode. J Am Chem Soc 125(13):3680–3681. doi: 10.1021/ja029044t CrossRefGoogle Scholar
  41. 41.
    Samjeske G, Komatsu K, Osawa M (2009) Dynamics of CO oxidation on a polycrystalline platinum electrode: a time-resolved infrared study. J Phys Chem C 113(23):10222–10228. doi: 10.1021/jp900582c CrossRefGoogle Scholar
  42. 42.
    Kunimatsu K, Hanawa H, Uchida H, Watanabe M (2009) Role of adsorbed species in methanol oxidation on Pt studied by ATR-FTIRAS combined with linear potential sweep voltammetry. J Electroanal Chem 632(1–2):109–119CrossRefGoogle Scholar
  43. 43.
    Yajima T, Uchida H, Watanabe M (2004) In-situ ATR-FTIR spectroscopic study of electro-oxidation of methanol and adsorbed CO at PtRu alloy. J Phys Chem B 108(8):2654–2659. doi: 10.1021/jp037215q CrossRefGoogle Scholar
  44. 44.
    Wang C, Peng B, Xie H-N, Zhang H-X, Shi F-F, Cai W-B (2009) Facile fabrication of Pt, Pd and Pt–Pd alloy films on Si with tunable infrared internal reflection absorption and synergetic electrocatalysis. J Phys Chem C 113(31):13841–13846. doi: 10.1021/jp9034562 CrossRefGoogle Scholar
  45. 45.
    Miyake H, Okada T, Samjeske G, Osawa M (2008) Formic acid electrooxidation on Pd in acidic solutions studied by surface-enhanced infrared absorption spectroscopy. Phys Chem Chem Phys 10(25):3662–3669. doi: 10.1039/b805955a CrossRefGoogle Scholar
  46. 46.
    Wang HF, Yan YG, Hu SJ, Cai WB, Xu QH, Osawa M (2007) Seeded growth fabrication of Cu-on-Si electrodes for in situ ATR-SEIRAS applications. Electrochim Acta 52(19):5950–5957. doi: 10.1016/j.electacta.2007.03.042 CrossRefGoogle Scholar
  47. 47.
    Delgado JM, Orts JM, Rodes A (2007) A comparison between chemical and sputtering methods for preparing thin-film silver electrodes for in situ ATR-SEIRAS studies. Electrochim Acta 52(14):4605–4613. doi: 10.1016/j.electacta.2006.12.045 CrossRefGoogle Scholar
  48. 48.
    Yajima T, Wakabayashi N, Uchida H, Watanabe M (2003) Adsorbed water for the electro-oxidation of methanol at Pt-Ru alloy. Chem Commun 7:828–829. doi: 10.1039/b212197b CrossRefGoogle Scholar
  49. 49.
    Yan LQ-X, Huo S-J, Ma M, Cai W-B, Osawa M (2005) Ubiquitous strategy for probing ATR surface-enhanced infrared absorption at platinum group metal-electrolyte interfaces. J Phys Chem B 109(16):7900–7906. doi: 10.1021/jp044085s CrossRefGoogle Scholar
  50. 50.
    Wang J-Y, Zhang H-X, Jiang K, Cai W-B (2011) From HCOOH to CO at Pd electrodes: a surface-enhanced infrared spectroscopy study. J Am Chem Soc 133:14876–14879. doi: 10.1021/ja205747j CrossRefGoogle Scholar
  51. 51.
    Vassilev P, Koper MTM (2007) Electrochemical reduction of oxygen on gold surfaces: a density functional theory study of intermediates and reaction paths. J Phys Chem C 111(6):2607–2613. doi: 10.1021/jp064515+ CrossRefGoogle Scholar
  52. 52.
    Kunimatsu K, Yoda T, Tryk DA, Uchida H, Watanabe M (2010) In situ ATR-FTIR study of oxygen reduction at the Pt/Nafion interface. Phys Chem Chem Phys 12(3):621–629. doi: 10.1039/B917306D CrossRefGoogle Scholar
  53. 53.
    Cuesta A, Cabello G, Hartl FW, Escudero-Escribano M, Vaz-Domínguez C, Kibler LA, Osawa M, Gutiérrez C (2013) Electrooxidation of formic acid on gold: an ATR-SEIRAS study of the role of adsorbed formate. Catal Today 202:79–86.
  54. 54.
    Shiroishi H, Ayato Y, Kunimatsu K, Okada T (2005) Study of adsorbed water on Pt during methanol oxidation by ATR-SEIRAS (surface-enhanced infrared absorption spectroscopy). J Electroanal Chem 581(1):132–138. doi: 10.1016/j.jelechem.2005.04.027 CrossRefGoogle Scholar
  55. 55.
    Futamata M, Luo LQ (2007) Adsorbed water and CO on Pt electrode modified with Ru. J Power Sources 164(2):532–537. doi: 10.1016/j.jpowsour.2006.10.079 CrossRefGoogle Scholar
  56. 56.
    Li X, Gewirth AA (2005) Oxygen electroreduction through a superoxide intermediate on Bi-modified Au surfaces. J Am Chem Soc 127(14):5252–5260. doi: 10.1021/ja043170a CrossRefGoogle Scholar
  57. 57.
    Yang H, Yang Y, Zou S (2007) In situ surface-enhanced raman spectroscopic studies of CO adsorption and methanol oxidation on Ru-modified Pt surfaces. J Phys Chem C 111(51):19058–19065. doi: 10.1021/jp075929l CrossRefGoogle Scholar
  58. 58.
    Xu B, Park I-S, Li Y, Chen D-J, Tong YJ (2011) An in situ SERS investigation of the chemical states of sulfur species adsorbed onto Pt from different sulfur sources. J Electroanal Chem 662:52–56. doi: 10.1016/j.jelechem.2011.02.031 CrossRefGoogle Scholar
  59. 59.
    Tian ZQ, Ren B, Wu DY (2002) Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures. J Phys Chem B 106(37):9463–9483. doi: 10.1021/jp0257449 CrossRefGoogle Scholar
  60. 60.
    Gómez R, Pérez JM, Solla-Gullón J, Montiel V, Aldaz A (2004) In situ surface enhanced raman spectroscopy on electrodes with platinum and palladium nanoparticle ensembles. J Phys Chem B 108(28):9943–9949. doi: 10.1021/jp038030m CrossRefGoogle Scholar
  61. 61.
    Gómez R, Solla-Gullón J, Pérez JM, Aldaz A (2005) Surface-enhanced raman spectroscopy study of ethylene adsorbed on a Pt electrode decorated with Pt nanoparticles. ChemPhysChem 6(10):2017–2021. doi: 10.1002/cphc.200500168 CrossRefGoogle Scholar
  62. 62.
    Solla-Gullón J, Gómez R, Aldaz A, Pérez JM (2008) A combination of SERS and electrochemistry in Pt nanoparticle electrocatalysis: promotion of formic acid oxidation by ethylidyne. Eletrochem Commun 10(2):319–322.
  63. 63.
    Pu Zhang JC, Chen Y-X, Tang Z-Q, Dong C, Yang JL, Wu D-Y, Ren B, Tian Z-Q (2010) Potential-dependent chemisorption of carbon monoxide at a gold core-platinum shell nanoparticle electrode: a combined study by electrochemical in situ surface-enhanced raman spectroscopy and density functional theory. J Phys Chem C 114:403–411CrossRefGoogle Scholar
  64. 64.
    Park I-S, Chen D-J, Atienza DO, Tong YYJ (2013) Enhanced CO monolayer electro-oxidation reaction on sulfide-adsorbed Pt nanoparticles: a combined electrochemical and in situ ATR-SEIRAS spectroscopic study. Catal Today 202:175–182.
  65. 65.
    Park I-S, Atienza DO, Hofstead-Duffy AM, Chen D, Tong YJ (2011) Mechanistic insights on sulfide-adsorption enhanced activity of methanol electro-oxidation on Pt nanoparticles. ACS Catal 2(1):168–174. doi: 10.1021/cs200546f CrossRefGoogle Scholar
  66. 66.
    Li X, Gewirth AA (2003) Peroxide electroreduction on bi-modified au surfaces: vibrational spectroscopy and density functional calculations. J Am Chem Soc 125(23):7086–7099. doi: 10.1021/ja034125q CrossRefGoogle Scholar
  67. 67.
    Li X, Heryadi D, Gewirth AA (2005) Electroreduction activity of hydrogen peroxide on Pt and Au electrodes. Langmuir 21(20):9251–9259. doi: 10.1021/la0508745 CrossRefGoogle Scholar
  68. 68.
    Du B, Rabb SA, Zangmeister C, Tong Y (2009) A volcano curve: optimizing methanol electro-oxidation on Pt-decorated Ru nanoparticles. Phys Chem Chem Phys 11(37):8231–8239. uuid:F4A2892D-47E4-478B-825C-8EB0584C7F0FGoogle Scholar
  69. 69.
    Le Rhun V, Garnier E, Pronier S, Alonso-Vante N (2000) Electrocatalysis on nanoscale ruthenium-based material manufactured by carbonyl decomposition. Electrochem Commun 2(7):475–479CrossRefGoogle Scholar
  70. 70.
    Park IS, Lee KS, Jung DS, Park HY, Sung Y-E (2007) Electrocatalytic activity of carbon-supported Pt-Au nanoparticles for methanol electro-oxidation. Electrochim Acta 52:5599–5605. uuid:84E52FA9-41B4-4917-93F1-E2222D793214Google Scholar
  71. 71.
    Atienza DO, Allison TC, Tong YJ (2012) Spatially resolved electronic alterations as seen by in situ 195Pt and 13CO NMR in Ru@Pt and Au@Pt core–shell nanoparticles. J Phys Chem C 116(50):26480–26486. doi: 10.1021/jp310313k CrossRefGoogle Scholar
  72. 72.
    Du B, Zaluzhna O, Tong YJ (2011) Electrocatalytic properties of Au@Pt nanoparticles: effects of Pt shell packing density and Au core size. Phys Chem Chem Phys 13(24):11568–11574CrossRefGoogle Scholar
  73. 73.
    Tong RC, Godbout N, Wieckowski A, Oldfield E (1999) Correlation between the knight shift of chemisorbed CO and the fermi level local density of states at clean platinum catalyst surfaces. J Am Chem Soc 121(13):2996–3003. doi: 10.1021/ja9830492 CrossRefGoogle Scholar
  74. 74.
    Stokes HT, Rhodes HE, Wang PK, Slichter CP, Sinfelt JH (1982) NMR of platinum catalysts. III. Microscopic variation of the Knight shifts. Phys Rev B 26(7):3575–3581. uuid:572642F8-60BF-49D7-83A6-B7AE0A58B890Google Scholar
  75. 75.
    Bucher J, van der Klink J (1988) Electronic properties of small supported Pt particles: NMR study of 195Pt hyperfine parameters. Phys Rev B Condens Matter 38(16):11038–11047. doi: 10.1103/PhysRevB.38.11038 CrossRefGoogle Scholar
  76. 76.
    Adekunle AS, Ozoemena KI (2008) Electron transfer behaviour of single-walled carbon nanotubes electro-decorated with nickel and nickel oxide layers. Electrochim Acta 53(19):5774–5782CrossRefGoogle Scholar
  77. 77.
    Wang PK, Ansermet JP, Rudaz SL, Wang Z, Shore S, Slichter CP, Sinfelt JH (1986) NMR studies of simple molecules on metal surfaces. Science 234(4772):35–41. doi: 10.1126/science.234.4772.35 CrossRefGoogle Scholar
  78. 78.
    Korringa J (1950) Nuclear magnetic relaxation and resonance line shift in metals. Physica XVI(7–8):601–610CrossRefGoogle Scholar
  79. 79.
    Blyholder G (1964) Molecular orbital view of chemisorbed carbon monoxide. J Phys Chem 68(10):2772–2777. doi: 10.1021/j100792a006 CrossRefGoogle Scholar
  80. 80.
    Chen D-J, Hofstead-Duffy AM, Park I-S, Atienza DO, Susut C, Sun S-G, Tong YJ (2011) Identification of the most active sites and surface water species: a comparative study of CO and methanol oxidation reactions on core–shell M@Pt (M = Ru, Au) nanoparticles by in situ IR spectroscopy. J Phys Chem C 115(17):8735–8743. doi: 10.1021/jp200557m CrossRefGoogle Scholar
  81. 81.
    Chen D-J, Xu B, Sun S-G, Tong YJ (2012) Electroless deposition of ultrathin Au film for surface enhanced in situ spectroelectrochemistry and reaction-driven surface reconstruction for oxygen reduction reaction. Catal Today 182:46–53. doi: 10.1016/j.cattod.2011.08.052 CrossRefGoogle Scholar
  82. 82.
    Lin WF, Zei MS, Eiswirth M, Ertl G, Iwasita T, Vielstich W (1999) Electrocatalytic Activity of Ru-Modified Pt(111) Electrodes toward CO Oxidation. J Phys Chem B 103(33):6968–6977. doi: 10.1021/jp9910901 CrossRefGoogle Scholar
  83. 83.
    Lu GQ, White JO, Wieckowski A (2004) Vibrational analysis of chemisorbed CO on the Pt(111)/Ru bimetallic electrode. Surf Sci 564(1–3):131–140CrossRefGoogle Scholar
  84. 84.
    Spendelow JS, Babu PK, Wieckowski A (2005) Electrocatalytic oxidation of carbon monoxide and methanol on platinum surfaces decorated with ruthenium. Curr Opin Solid State Mater Sci 9(1–2):37–48CrossRefGoogle Scholar
  85. 85.
    Watanabe M, Sato T, Kunimatsu K, Uchida H (2008) Temperature dependence of co-adsorption of carbon monoxide and water on highly dispersed Pt/C and PtRu/C electrodes studied by in-situ ATR-FTIRAS. Electrochim Acta 53(23):6928–6937. doi: 10.1016/j.electacta.2008.02.023 CrossRefGoogle Scholar
  86. 86.
    Ianniello R, Schmidt VM, Stimming U, Stumper J, Wallau A (1994) CO adsorption and oxidation on Pt and Pt Ru alloys: dependence on substrate composition. Electrochim Acta 39(11–12):1863–1869CrossRefGoogle Scholar
  87. 87.
    Friedrich KA, Geyzers KP, Dickinson AJ, Stimming U (2002) Fundamental aspects in electrocatalysis: from the reactivity of single-crystals to fuel cell electrocatalysts. J Electroanal Chem 524–525:261–272CrossRefGoogle Scholar
  88. 88.
    Zheng MS, Sun SG, Chen SP (2001) Abnormal infrared effects and electrocatalytic properties of nanometer scale thin film of PtRu alloys for CO adsorption and oxidation. J Appl Electrochem 31(7):749–757CrossRefGoogle Scholar
  89. 89.
    Lin WF, Iwasita T, Vielstich W (1999) Catalysis of CO electrooxidation at Pt, Ru, and PtRu alloy. An in situ FTIR study. J Phys Chem B 103(16):3250–3257CrossRefGoogle Scholar
  90. 90.
    Brankovic SR, Wang JX, Adzic RR (2001) Pt submonolayers on Ru nanoparticles—a novel low Pt loading, high CO tolerance fuel cell electrocatalyst. Electrochem Solid State Lett 4(12):A217–a220CrossRefGoogle Scholar
  91. 91.
    Vogel W, Le Rhun V, Garnier E, Alonso-Vante N (2001) Ru clusters synthesized chemically from dissolved carbonyl: in situ study of a novel electrocatalyst in the gas phase and in electrochemical environment. J Phys Chem B 105(22):5238–5243. doi: 10.1021/jp0100654 CrossRefGoogle Scholar
  92. 92.
    Chen DJ, Tong YYJ (2015) In situ Raman spectroscopic measurement of near-surface proton concentration changes during electrochemical reactions. Chem Commun 51(26):5683–5686. doi: 10.1039/C5CC00427F CrossRefGoogle Scholar
  93. 93.
    Zhu Y, Uchida H, Watanabe M (1999) Oxidation of carbon monoxide at a platinum film electrode studied by Fourier transform infrared spectroscopy with attenuated total reflection technique. Langmuir 15(25):8757–8764. doi: 10.1021/la990835r CrossRefGoogle Scholar
  94. 94.
    Peremans A, Tadjeddine A (1994) Vibrational spectroscopy of electrochemically deposited hydrogen on platinum. Phys Rev Lett 73(22):3010CrossRefGoogle Scholar
  95. 95.
    Osawa M, Tsushima M, Mogami H, Samjeske G, Yamakata A (2008) Structure of water at the electrified platinum-water interface: a study by surface-enhanced infrared absorption spectroscopy. J Phys Chem C 112(11):4248–4256. doi: 10.1021/jp710386g CrossRefGoogle Scholar
  96. 96.
    Kunimatsu K, Senzaki T, Samjesk G, Tsushima M, Osawa M (2007) Hydrogen adsorption and hydrogen evolution reaction on a polycrystalline Pt electrode studied by surface-enhanced infrared absorption spectroscopy. Electrochim Acta 52(18):5715–5724CrossRefGoogle Scholar
  97. 97.
    Kunimatsu K, Uchida H, Osawa M, Watanabe M (2006) In situ infrared spectroscopic and electrochemical study of hydrogen electro-oxidation on Pt electrode in sulfuric acid (vol 587, p 299, 2006). J Electroanal Chem 596(2):169–169. doi: 10.1016/j.jelechem.2006.07.015 CrossRefGoogle Scholar
  98. 98.
    Futamata M, Luo L, Nishihara C (2005) ATR-SEIR study of anions and water adsorbed on platinum electrode. Surf Sci 590(2–3):196–211CrossRefGoogle Scholar
  99. 99.
    Climent V, Gomez R, Feliu JM (1999) Effect of increasing amount of steps on the potential of zero total charge of Pt(111) electrodes. Electrochim Acta 45(4–5):629–637CrossRefGoogle Scholar
  100. 100.
    Bergelin M, Herrero E, Feliu JM, Wasberg M (1999) Oxidation of CO adlayers on Pt(111) at low potentials: an impinging jet study in H2SO4 electrolyte with mathematical modeling of the current transients. J Electroanal Chem 467(1–2):74–84CrossRefGoogle Scholar
  101. 101.
    Vidal-Iglesias FJ, Solla-Gullon J, Campina JM, Herrero E, Aldaz A, Feliu JM (2009) CO monolayer oxidation on stepped Pt(S) [(n-1)(100)*(110)] surfaces. Electrochim Acta 54(19):4459–4466CrossRefGoogle Scholar
  102. 102.
    Roth C, Benker N, Buhrmester T, Mazurek M, Loster M, Fuess H, Koningsberger DC, Ramaker DE (2005) Determination of O[H] and CO coverage and adsorption sites on PtRu electrodes in an operating PEM fuel cell. J Am Chem Soc 127(42):14607–14615. doi: 10.1021/ja050139f CrossRefGoogle Scholar
  103. 103.
    Coker DF, Miller RE, Watts RO (1985) The infrared predissociation spectra of water clusters. J Chem Phys 82(8):3554–3562CrossRefGoogle Scholar
  104. 104.
    Richmond GL (2002) Molecular bonding and interactions at aqueous surfaces as probed by vibrational sum frequency spectroscopy. Chem Rev 102(8):2693–2724. doi: 10.1021/cr0006876 CrossRefGoogle Scholar
  105. 105.
    Wasileski SA, Koper MTM, Weaver MJ (2001) Field-dependent chemisorption of carbon monoxide on platinum-group (111) surfaces: relationships between binding energetics, geometries, and vibrational properties as assessed by density functional theory. J Phys Chem B 105(17):3518–3530. doi: 10.1021/jp003263o CrossRefGoogle Scholar
  106. 106.
    Oudenhuijzen MK, van Bokhoven JA, Ramaker DE, Koningsberger DC (2004) Theoretical study on Pt particle adsorbate bonding: influence of support ionicity and implications for catalysis. J Phys Chem B 108(52):20247–20254. uuid:FEE96E5D-8FA4-4172-95A9-A6C6AC66EE05Google Scholar
  107. 107.
    Dronskowski R, Bloechl PE (1993) Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. J Phys Chem 97(33):8617–8624. doi: 10.1021/j100135a014 CrossRefGoogle Scholar
  108. 108.
    Papoian G, Norskov JK, Hoffmann R (2000) A comparative theoretical study of the hydrogen, methyl, and ethyl chemisorption on the Pt(111) surface. J Am Chem Soc 122(17):4129–4144. doi: 10.1021/ja993483j CrossRefGoogle Scholar
  109. 109.
    Glassey WV, Hoffmann R (2001) A comparative study of the p (2×2)-CO/M (111), M = Pt, Cu, Al chemisorption systems. J Phys Chem B 105(16):3245–3260. doi: 10.1021/jp003922x CrossRefGoogle Scholar
  110. 110.
    Glassey WV, Hoffmann R (2001) A molecular orbital study of surface–adsorbate interactions during the oxidation of CO on the Pt(111) surface. Surf Sci 475(1–3):47–60. doi: 10.1016/S0039-6028(00)01062-1 CrossRefGoogle Scholar
  111. 111.
    Glassey WV, Papoian GA, Hoffmann R (1999) Total energy partitioning within a one-electron formalism: a Hamilton population study of surface–CO interaction in the c(2 × 2)-CO/ Ni(100) chemisorption system. J Chem Phys 111(3):893–910. doi: 10.1063/1.479200 CrossRefGoogle Scholar
  112. 112.
    Somorjai GA, Aliaga C (2010) Molecular studies of model surfaces of metals from single crystals to nanoparticles under catalytic reaction conditions. Evolution from prenatal and postmortem studies of catalysts. Langmuir 26(21):16190–16203. doi: 10.1021/la101884s CrossRefGoogle Scholar
  113. 113.
    Somorjai GA, Contreras AM, Montano M, Rioux RM (2006) Clusters, surfaces, and catalysis. Proc Natl Acad Sci U S A 103:10577–10583CrossRefGoogle Scholar
  114. 114.
    Somorjai GA (1994) Introduction to surface chemistry and catalysis. Wiley, New YorkGoogle Scholar
  115. 115.
    Hoffmann R (1993) A chemical and theoretical approach to bonding at surfaces. J Phys Condens Matter 5:A1–A16CrossRefGoogle Scholar
  116. 116.
    Hoffmann R (1971) Interaction of orbitals through space and through bonds. Acc Chem Res 4(1):1–9CrossRefGoogle Scholar
  117. 117.
    Housmans THM, Wonders AH, Koper MTM (2006) Structure sensitivity of methanol electrooxidation pathways on platinum: an on-line electrochemical mass spectrometry study. J Phys Chem B 110(20):10021–10031. doi: 10.1021/jp055949s CrossRefGoogle Scholar
  118. 118.
    Huang Z, Kim K-J (2007) Review of X-ray free-electron laser theory. Phys Rev ST Accel Beams 10(3):034801–034826. doi: 10.1103/PhysRevSTAB.10.034801 CrossRefGoogle Scholar
  119. 119.
    Shearing P, Wu Y, Harris SJ, Brandon N (2011) In situ X-ray spectroscopy and imaging of battery materials. Interface 20:43–47. uuid:27465B6F-DD87-45E1-8587-699AFDB658FFGoogle Scholar
  120. 120.
    Huang L, Sorte EG, Sun SG, Tong YYJ (2015) A straightforward implementation of in situ solution electrochemical 13C NMR spectroscopy for studying reactions on commercial electrocatalysts: ethanol oxidation. Chem Commun 51(38):1–3. doi: 10.1039/C5CC00862J Google Scholar
  121. 121.
    DeVience SJ, Pham LM, Lovchinsky I, Sushkov AO, Bar-Gill N, Belthangady C, Casola F, Corbett M, Zhang H, Lukin M, Park H, Yacoby A, Walsworth RL (2015) Nanoscale NMR spectroscopy and imaging of multiple nuclear species. Nat Nanotechnol 10(2):129–134. doi: 10.1038/nnano.2014.313 CrossRefGoogle Scholar
  122. 122.
    Häberle T, Schmid-Lorch D, Reinhard F, Wrachtrup J (2015) Nanoscale nuclear magnetic imaging with chemical contrast. Nat Nanotechnol 10(2):125–128. doi: 10.1038/nnano.2014.299 CrossRefGoogle Scholar
  123. 123.
    Rugar D, Mamin HJ, Sherwood MH, Kim M, Rettner CT, Ohno K, Awschalom DD (2015) Proton magnetic resonance imaging using a nitrogen-vacancy spin sensor. Nat Nanotechnol 10(2):120–124. doi: 10.1038/nnano.2014.288 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of ChemistryGeorgetown UniversityWashingtonUSA

Personalised recommendations