Advertisement

Synthesis and Electrocatalysis of Pt-Pd Bimetallic Nanocrystals for Fuel Cells

  • Ruizhong Zhang
  • Wei ChenEmail author
Chapter
Part of the Nanostructure Science and Technology book series (NST)

Abstract

As a clean energy source, fuel cells have been attracted considerable attention in the past decades. To improve the reaction rates on both anode and cathode of fuel cells, various nanostructured materials have been developed as fuel cell catalysts. It has been demonstrated that the catalytic activities of Pt-based nanocrystals can be considerably enhanced by tuning their electronic properties with the formation of bimetallic structures. Because of the same face-centered cubic structure and almost identical lattice constant, Pd is considered as one of the best candidates to form bimetallic nanocrystals with Pt. In this chapter, we summarize the recent advances in the development of Pt-Pd bimetallic nanocrystals as fuel cell electrocatalysts. First, we highlight several synthetic strategies based on co-chemical reduction, galvanic replacement, seed-mediated growth and the combination of galvanic replacement with chemical reduction (or electrochemical deposition) to manipulate the formation of Pt-Pd nanocrystals with different size, morphology, structure and composition. We then summarize different supporting substrates (graphene, carbon nanotubes, etc.) used to improve the electrocatalytic activity and stability of Pt-Pd nanocrystals. Finally, the application of Pt-Pd bimetallic electrocatalysts in oxygen reduction reaction on cathode and oxidation of small organic molecules on anode is summarized.

Keywords

Oxygen Reduction Reaction Methanol Oxidation Oxygen Reduction Reaction Activity Formic Acid Oxidation Methanol Oxidation Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China with the Grant Numbers of 21275136, 21043013 and the Natural Science Foundation of Jilin Province, China (No. 201215090).

References

  1. 1.
    Potocnik J (2007) Renewable energy sources and the realities of setting an energy agenda. Science 315:810–811CrossRefGoogle Scholar
  2. 2.
    Armand M, Tarascon JM (2008) Building better batteries. Nature 451:652–657CrossRefGoogle Scholar
  3. 3.
    Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352CrossRefGoogle Scholar
  4. 4.
    Russell AE, Rose A (2004) X-ray absorption spectroscopy of low temperature fuel cell catalysts. Chem Rev 104:4613–4635CrossRefGoogle Scholar
  5. 5.
    Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C, Leger JM (2002) Recent advances in the development of direct alcohol fuel cells (DAFC). J Power Sources 105:283–296CrossRefGoogle Scholar
  6. 6.
    Vigier F, Rousseau S, Coutanceau C, Leger JM, Lamy C (2006) Electrocatalysis for the direct alcohol fuel cell. Top Catal 40:111–121CrossRefGoogle Scholar
  7. 7.
    Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316:732–735CrossRefGoogle Scholar
  8. 8.
    Chen W, Kim J, Sun SH, Chen SW (2006) Electro-oxidation of formic acid catalyzed by FePt nanoparticles. Phys Chem Chem Phys 8:2779–2786CrossRefGoogle Scholar
  9. 9.
    Chen W, Kim JM, Sun SH, Chen SW (2007) Composition effects of FePt alloy nanoparticles on the electro-oxidation of formic acid. Langmuir 23:11303–11310CrossRefGoogle Scholar
  10. 10.
    Yang HZ, Zhang J, Sun K, Zou SZ, Fang JY (2010) Enhancing by weakening: electrooxidation of methanol on Pt3Co and Pt nanocubes. Angew Chem Int Ed 49:6848–6851CrossRefGoogle Scholar
  11. 11.
    Chen YX, Miki A, Ye S, Sakai H, Osawa M (2003) Formate, an active intermediate for direct oxidation of methanol on Pt electrode. J Am Chem Soc 125:3680–3681CrossRefGoogle Scholar
  12. 12.
    Tripkovic AV, Popovic KD, Grgur BN, Blizanac B, Ross PN, Markovic NM (2002) Methanol electrooxidation on supported Pt and PtRu catalysts in acid and alkaline solutions. Electrochim Acta 47:3707–3714CrossRefGoogle Scholar
  13. 13.
    Qiao Y, Li CM (2011) Nanostructured catalysts in fuel cells. J Mater Chem 21:4027–4036CrossRefGoogle Scholar
  14. 14.
    Zhang RZ, Chen W (2013) Non-precious Ir-V bimetallic nanoclusters assembled on reduced graphene nanosheets as catalysts for the oxygen reduction reaction. J Mater Chem A 1:11457–11464CrossRefGoogle Scholar
  15. 15.
    Liu MM, Zhang RZ, Chen W (2014) Graphene-supported nanoelectrocatalysts for fuel cells: synthesis, properties, and applications. Chem Rev 114:5117–5160CrossRefGoogle Scholar
  16. 16.
    Zhang H, Jin MS, Xia YN (2012) Enhancing the catalytic and electrocatalytic properties of Pt-based catalysts by forming bimetallic nanocrystals with Pd. Chem Soc Rev 41:8035–8049CrossRefGoogle Scholar
  17. 17.
    Gasteiger HA, Markovic N, Ross PN, Cairns EJ (1994) Temperature-dependent methanol electrooxidation on well-characterized Pt-Ru alloys. J Electrochem Soc 141:1795–1803CrossRefGoogle Scholar
  18. 18.
    Dinh HN, Ren XM, Garzon FH, Zelenay P, Gottesfeld S (2000) Electrocatalysis in direct methanol fuel cells: in-situ probing of PtRu anode catalyst surfaces. J Electroanal Chem 491:222–233CrossRefGoogle Scholar
  19. 19.
    Wang DS, Li YD (2011) Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications. Adv Mater 23:1044–1060CrossRefGoogle Scholar
  20. 20.
    Calvo SR, Balbuena PB (2007) Theoretical analysis of reactivity on Pt(111) and Pt-Pd(111) alloys. Surf Sci 601:4786–4792CrossRefGoogle Scholar
  21. 21.
    Calvo SR, Balbuena PB (2007) Density functional theory analysis of reactivity of PtxPdy alloy clusters. Surf Sci 601:165–171CrossRefGoogle Scholar
  22. 22.
    Norskov JK, Bligaard T, Rossmeisl J, Christensen CH (2009) Towards the computational design of solid catalysts. Nat Chem 1:37–46CrossRefGoogle Scholar
  23. 23.
    Norskov JK, Abild-Pedersen F (2009) Catalysis bond control in surface reactions. Nature 461:1223–1225CrossRefGoogle Scholar
  24. 24.
    Kitchin JR, Norskov JK, Barteau MA, Chen JG (2004) Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces. Phys Rev Lett 93:156801–156804CrossRefGoogle Scholar
  25. 25.
    Hammer B, Norskov JK (2000) Theoretical surface science and catalysis-calculations and concepts. Adv Catal 45:71–129Google Scholar
  26. 26.
    Norskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jonsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892CrossRefGoogle Scholar
  27. 27.
    de Bruijn FA, Dam VAT, Janssen GJM (2008) Durability and degradation issues of PEM fuel cell components. Fuel Cells 8:3–22CrossRefGoogle Scholar
  28. 28.
    Stamenkovic VR, Fowler B, Mun BS, Wang GF, Ross PN, Lucas CA, Markovic NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315:493–497CrossRefGoogle Scholar
  29. 29.
    Ramirez-Caballero GE, Hirunsit P, Balbuena PB (2010) Shell-anchor-core structures for enhanced stability and catalytic oxygen reduction activity. J Chem Phys 133:134705–134713CrossRefGoogle Scholar
  30. 30.
    Xia YN, Xiong YJ, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48:60–103CrossRefGoogle Scholar
  31. 31.
    Shao YY, Yin GP, Gao YZ (2007) Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. J Power Sources 171:558–566CrossRefGoogle Scholar
  32. 32.
    Ferreira PJ, La O’ GJ, Shao-Horn Y, Morgan D, Makharia R, Kocha S, Gasteiger HA (2005) Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells—a mechanistic investigation. J Electrochem Soc 152:A2256–A2271CrossRefGoogle Scholar
  33. 33.
    Wang YJ, Wilkinson DP, Zhang JJ (2011) Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts. Chem Rev 111:7625–7651CrossRefGoogle Scholar
  34. 34.
    Greeley J, Stephens IEL, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, Rossmeisl J, Chorkendorff I, Norskov JK (2009) Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat Chem 1:552–556CrossRefGoogle Scholar
  35. 35.
    Ye HC, Crooks RM (2007) Effect of elemental composition of PtPd bimetallic nanoparticles containing an average of 180 atoms on the kinetics of the electrochemical oxygen reduction reaction. J Am Chem Soc 129:3627–3633CrossRefGoogle Scholar
  36. 36.
    Yang SC, Hong F, Wang LQ, Guo SW, Song XP, Ding BJ, Yang ZM (2010) Ultrathin Pt-based alloy nanowire networks: synthesized by CTAB assistant two-phase water-chloroform micelles. J Phys Chem C 114:203–207CrossRefGoogle Scholar
  37. 37.
    Basu D, Basu S (2012) Performance studies of Pd-Pt and Pt-Pd-Au catalyst for electro-oxidation of glucose in direct glucose fuel cell. Int J Hydrogen Energy 37:4678–4684CrossRefGoogle Scholar
  38. 38.
    Thanasilp S, Hunsom M (2011) Preparation of a high-performance Pt-Pd/C-electrocatalyst-coated membrane for ORR in PEM fuel cells via a combined process of impregnation and seeding: effect of electrocatalyst loading on carbon support. Electrochim Acta 56:1164–1171CrossRefGoogle Scholar
  39. 39.
    Thanasilp S, Hunsom M (2011) Effect of Pt: Pd atomic ratio in Pt-Pd/C electrocatalyst-coated membrane on the electrocatalytic activity of ORR in PEM fuel cells. Renew Energy 36:1795–1801CrossRefGoogle Scholar
  40. 40.
    Tang YF, Zhang HM, Zhong HX, Xu T, Jin H (2011) Carbon-supported Pd-Pt cathode electrocatalysts for proton exchange membrane fuel cells. J Power Sources 196:3523–3529CrossRefGoogle Scholar
  41. 41.
    Maghsodi A, Hoseini MRM, Mobarakeh MD, Kheirmand M, Samiee L, Shoghi F, Kameli M (2011) Exploration of bimetallic Pt-Pd/C nanoparticles as an electrocatalyst for oxygen reduction reaction. Appl Surf Sci 257:6353–6357CrossRefGoogle Scholar
  42. 42.
    Li XW, Zhu Y, Zou ZQ, Zhao MY, Li ZL, Zhou Q, Akins DL, Yang H (2009) Simple complexing-reduction synthesis of Pd-Pt/C alloy electrocatalysts for the oxygen reduction reaction. J Electrochem Soc 156:B1107–B1111CrossRefGoogle Scholar
  43. 43.
    Kim IT, Lee HK, Shim J (2008) Synthesis and characterization of Pt-Pd catalysts for methanol oxidation and oxygen reduction. J Nanosci Nanotechnol 8:5302–5305CrossRefGoogle Scholar
  44. 44.
    Joo JB, Kim YJ, Kim W, Kim ND, Kim P, Kim Y, Yi J (2008) Methanol-tolerant PdPt/C alloy catalyst for oxygen electro-reduction reaction. Korean J Chem Eng 25:770–774CrossRefGoogle Scholar
  45. 45.
    Golikand AN, Asgari M, Lohrasbi E (2011) Study of oxygen reduction reaction kinetics on multi-walled carbon nano-tubes supported Pt-Pd catalysts under various conditions. Int J Hydrogen Energy 36:13317–13324CrossRefGoogle Scholar
  46. 46.
    Golikand AN, Lohrasbi E, Asgari M (2010) Enhancing the durability of multi-walled carbon nanotube supported by Pt and Pt-Pd nanoparticles in gas diffusion electrodes. Int J Hydrogen Energy 35:9233–9240CrossRefGoogle Scholar
  47. 47.
    Morales-Acosta D, Arriaga LG, Alvarez-Contreras L, Luna SF, Varela FJR (2009) Evaluation of Pt40Pd60/MWCNT electrocatalyst as ethylene glycol-tolerant oxygen reduction cathodes. Electrochem Commun 11:1414–1417CrossRefGoogle Scholar
  48. 48.
    Golikand AN, Lohrasbi E, Maragheh MG, Asgari M (2009) Carbon nano-tube supported Pt-Pd as methanol-resistant oxygen reduction electrocatalyts for enhancing catalytic activity in DMFCs. J Appl Electrochem 39:2421–2431CrossRefGoogle Scholar
  49. 49.
    Datta J, Dutta A, Biswas M (2012) Enhancement of functional properties of PtPd nano catalyst in metal-polymer composite matrix: application in direct ethanol fuel cell. Electrochem Commun 20:56–59CrossRefGoogle Scholar
  50. 50.
    Wu M, Shen PK, Wei ZD, Song SQ, Nie M (2007) High activity PtPd-WC/C electrocatalyst for hydrogen evolution reaction. J Power Sources 166:310–316CrossRefGoogle Scholar
  51. 51.
    Zhang HX, Wang C, Wang JY, Zhai JJ, Cai WB (2010) Carbon-Supported Pd-Pt nanoalloy with low Pt content and superior catalysis for formic acid electro-oxidation. J Phys Chem C 114:6446–6451CrossRefGoogle Scholar
  52. 52.
    Godinez-Garcia A, Gervasio DF (2014) Pd-Pt nanostructures on carbon nanofibers as an oxygen reduction electrocatalyst. RSC Adv 4:42009–42013CrossRefGoogle Scholar
  53. 53.
    Tao F, Grass ME, Zhang YW, Butcher DR, Renzas JR, Liu Z, Chung JY, Mun BS, Salmeron M, Somorjai GA (2008) Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science 322:932–934CrossRefGoogle Scholar
  54. 54.
    Arikan T, Kannan AM, Kadirgan F (2013) Binary Pt-Pd and ternary Pt-Pd-Ru nanoelectrocatalysts for direct methanol fuel cells. Int J Hydrogen Energy 38:2900–2907CrossRefGoogle Scholar
  55. 55.
    Ghosh S, Sahu RK, Raj CR (2012) Pt-Pd alloy nanoparticle-decorated carbon nanotubes: a durable and methanol tolerant oxygen reduction electrocatalyst. Nanotechnology 23:385602–285610CrossRefGoogle Scholar
  56. 56.
    Zhao JA, Manthiram A (2011) Preleached Pd-Pt-Ni and binary Pd-Pt electrocatalysts for oxygen reduction reaction in proton exchange membrane fuel cells. Appl Catal B Environ 101:660–668CrossRefGoogle Scholar
  57. 57.
    Long NV, Hien TD, Asaka T, Ohtaki M, Nogami M (2011) Synthesis and characterization of Pt-Pd alloy and core-shell bimetallic nanoparticles for direct methanol fuel cells (DMFCs): enhanced electrocatalytic properties of well-shaped core-shell morphologies and nanostructures. Int J Hydrogen Energy 36:8478–8491CrossRefGoogle Scholar
  58. 58.
    Zhou ZM, Shao ZG, Qin XP, Chen XG, Wei ZD, Yi BL (2010) Durability study of Pt-Pd/C as PEMFC cathode catalyst. Int J Hydrogen Energy 35:1719–1726CrossRefGoogle Scholar
  59. 59.
    Winjobi O, Zhang ZY, Liang CH, Li WZ (2010) Carbon nanotube supported platinum-palladium nanoparticles for formic acid oxidation. Electrochim Acta 55:4217–4221CrossRefGoogle Scholar
  60. 60.
    He W, Liu JY, Qiao YJ, Zou ZQ, Zhang XG, Akins DL, Yang H (2010) Simple preparation of Pd-Pt nanoalloy catalysts for methanol-tolerant oxygen reduction. J Power Sources 195:1046–1050CrossRefGoogle Scholar
  61. 61.
    He W, Chen M, Zou ZQ, Li ZL, Zhang XG, Jin SA, You DJ, Pak C, Yang H (2010) Oxygen reduction on Pd3Pt1 bimetallic nanoparticles highly loaded on different carbon supports. Appl Catal B Environ 97:347–353CrossRefGoogle Scholar
  62. 62.
    Wang WM, Huang QH, Liu JY, Zou ZQ, Zhao MY, Vogel W, Yang H (2009) Surface and structure characteristics of carbon-supported Pd3Pt1 bimetallic nanoparticles for methanol-tolerant oxygen reduction reaction. J Catal 266:156–163CrossRefGoogle Scholar
  63. 63.
    Kadirgan F, Kannan AM, Atilan T, Beyhan S, Ozenler SS, Suzer S, Yorur A (2009) Carbon supported nano-sized Pt-Pd and Pt-Co electrocatalysts for proton exchange membrane fuel cells. Int J Hydrogen Energy 34:9450–9460CrossRefGoogle Scholar
  64. 64.
    Kadirgan F, Beyhan S, Atilan T (2009) Preparation and characterization of nano-sized Pt-Pd/C catalysts and comparison of their electro-activity toward methanol and ethanol oxidation. Int J Hydrogen Energy 34:4312–4320CrossRefGoogle Scholar
  65. 65.
    Ficicilar B, Bayrakceken A, Eroglu I (2009) Effect of Pd loading in Pd-Pt bimetallic catalysts doped into hollow core mesoporous shell carbon on performance of proton exchange membrane fuel cells. J Power Sources 193:17–23CrossRefGoogle Scholar
  66. 66.
    Li HQ, Sun GQ, Li N, Sun SG, Su DS, Xin Q (2007) Design and preparation of highly active Pt-Pd/C catalyst for the oxygen reduction reaction. J Phys Chem C 111:5605–5617CrossRefGoogle Scholar
  67. 67.
    Blair S, Lycke D, Iordache CA (2006) Palladium-platinum alloy anode catalysts for direct formic acid fuel cells. ECS Trans 3:1325–1332CrossRefGoogle Scholar
  68. 68.
    Zhou WJ, Zhou ZH, Song SQ, Li WZ, Sun GQ, Tsiakaras P, Xin Q (2003) Pt based anode catalysts for direct ethanol fuel cells. Appl Catal B Environ 46:273–285CrossRefGoogle Scholar
  69. 69.
    Li X, Hsing I (2006) Electrooxidation of formic acid on carbon supported PtxPd1-x (x = 0-1) nanocatalysts. Electrochim Acta 51:3477–3483CrossRefGoogle Scholar
  70. 70.
    Lee YW, Ko AR, Kim DY, Han SB, Park KW (2012) Octahedral Pt-Pd alloy catalysts with enhanced oxygen reduction activity and stability in proton exchange membrane fuel cells. RSC Adv 2:1119–1125CrossRefGoogle Scholar
  71. 71.
    Selvaraj V, Grace AN, Alagar M (2009) Electrocatalytic oxidation of formic acid and formaldehyde on nanoparticle decorated single walled carbon nanotubes. J Colloid Interface Sci 333:254–262CrossRefGoogle Scholar
  72. 72.
    Lee YW, Ko AR, Han SB, Kim HS, Park KW (2011) Synthesis of octahedral Pt-Pd alloy nanoparticles for improved catalytic activity and stability in methanol electrooxidation. Phys Chem Chem Phys 13:5569–5572CrossRefGoogle Scholar
  73. 73.
    Nishanth KG, Sridhar P, Pitchumani S, Shukla AK (2011) A DMFC with methanol-tolerant-carbon-supported-Pt-Pd-alloy cathode. J Electrochem Soc 158:B871–B876CrossRefGoogle Scholar
  74. 74.
    Antolini E, Zignani SC, Santos SF, Gonzalez ER (2011) Palladium-based electrodes: a way to reduce platinum content in polymer electrolyte membrane fuel cells. Electrochim Acta 56:2299–2305CrossRefGoogle Scholar
  75. 75.
    Lopes T, Antolini E, Gonzalez ER (2008) Carbon supported Pt-Pd alloy as an ethanol tolerant oxygen reduction electrocatalyst for direct ethanol fuel cells. Int J Hydrogen Energy 33:5563–5570CrossRefGoogle Scholar
  76. 76.
    Guo SJ, Dong SJ, Wang EK (2009) Polyaniline/Pt hybrid nanofibers: high-efficiency nanoelectrocatalysts for electrochemical devices. Small 5:1869–1876CrossRefGoogle Scholar
  77. 77.
    Chen HS, Liang YT, Chen TY, Tseng YC, Liu CW, Chung SR, Hsieh CT, Lee CE, Wang KW (2014) Graphene-supported Pt and PtPd nanorods with enhanced electrocatalytic performance for the oxygen reduction reaction. Chem Commun 50:11165–11168CrossRefGoogle Scholar
  78. 78.
    Solla-Gullon J, Rodes A, Montiel V, Aldaz A, Clavilier J (2003) Electrochemical characterisation of platinum-palladium nanoparticles prepared in a water-in-oil microemulsion. J Electroanal Chem 554:273–284CrossRefGoogle Scholar
  79. 79.
    Chen CH, Hwang BJ, Wang GR, Sarma LS, Tang MT, Liu DG, Lee JF (2005) Nucleation and growth mechanism of Pd/Pt bimetallic clusters in sodium bis(2-ethylhexyl)sulfosuceinate (AOT) reverse micelles as studied by in situ X-ray absorption spectroscopy. J Phys Chem B 109:21566–21575CrossRefGoogle Scholar
  80. 80.
    Escudero MJ, Hontanon E, Schwartz S, Boutonnet M, Daza L (2002) Development and performance characterisation of new electrocatalysts for PEMFC. J Power Sources 106:206–214CrossRefGoogle Scholar
  81. 81.
    Zhang H, Xu XQ, Gu P, Li CY, Wu P, Cai CX (2011) Microwave-assisted synthesis of graphene-supported Pd1Pt3 nanostructures and their electrocatalytic activity for methanol oxidation. Electrochim Acta 56:7064–7070CrossRefGoogle Scholar
  82. 82.
    Zhang H, Yin YJ, Hu YJ, Li CY, Wu P, Wei SH, Cai CX (2010) Pd@Pt core-shell nanostructures with controllable composition synthesized by a microwave method and their enhanced electrocatalytic activity toward oxygen reduction and methanol oxidation. J Phys Chem C 114:11861–11867CrossRefGoogle Scholar
  83. 83.
    Xia H, Wang D (2008) Fabrication of macroscopic freestanding films of metallic nanoparticle monolayers by interfacial self-assembly. Adv Mater 20:4253–4256CrossRefGoogle Scholar
  84. 84.
    Liang HW, Cao XA, Zhou F, Cui CH, Zhang WJ, Yu SH (2011) A free-standing Pt-nanowire membrane as a highly stable electrocatalyst for the oxygen reduction reaction. Adv Mater 23:1467–1471CrossRefGoogle Scholar
  85. 85.
    Jin YD, Dong SJ (2002) Diffusion-limited, aggregation-based, mesoscopic assembly of roughened core shell bimetallic nanoparticles into fractal networks at the air-water interface. Angew Chem Int Ed 41:1040–1044CrossRefGoogle Scholar
  86. 86.
    Shi HY, Hu B, Yu XC, Zhao RL, Ren XF, Liu SL, Liu JW, Feng M, Xu AW, Yu SH (2010) Ordering of disordered nanowires: spontaneous formation of highly aligned, ultralong Ag nanowire films at oil-water-air interface. Adv Funct Mater 20:958–964CrossRefGoogle Scholar
  87. 87.
    Kang YJ, Ye XC, Chen J, Cai Y, Diaz RE, Adzic RR, Stach EA, Murray CB (2013) Design of Pt-Pd binary superlattices exploiting shape effects and synergistic effects for oxygen reduction reactions. J Am Chem Soc 135:42–45CrossRefGoogle Scholar
  88. 88.
    Wu HX, Li HJ, Zhai YJ, Xu XL, Jin YD (2012) Facile synthesis of free-standing Pd-based nanomembranes with enhanced catalytic performance for methanol/ethanol oxidation. Adv Mater 24:1594–1597CrossRefGoogle Scholar
  89. 89.
    Liu Y, Chi MF, Mazumder V, More KL, Soled S, Henao JD, Sun SH (2011) Composition-controlled synthesis of bimetallic PdPt nanoparticles and their electro-oxidation of methanol. Chem Mater 23:4199–4203CrossRefGoogle Scholar
  90. 90.
    Lim B, Wang JG, Camargo PHC, Cobley CM, Kim MJ, Xia YN (2009) Twin-induced growth of palladium-platinum alloy nanocrystals. Angew Chem Int Ed 48:6304–6308CrossRefGoogle Scholar
  91. 91.
    Papageorgopoulos DC, Keijzer M, Veldhuis JBJ, de Bruijn FA (2002) CO tolerance of Pd-rich platinum palladium carbon-supported electrocatalysts-Proton exchange membrane fuel cell applications. J Electrochem Soc 149:A1400–A1404CrossRefGoogle Scholar
  92. 92.
    Yi QF, Huang W, Liu XP, Xu GR, Zhou ZH, Chen AC (2008) Electroactivity of titanium-supported nanoporous Pd-Pt catalysts towards formic acid oxidation. J Electroanal Chem 619:197–205CrossRefGoogle Scholar
  93. 93.
    Huang D, Yuan Q, Wang HH, Zhou ZY (2014) Facile synthesis of PdPt nanoalloys with sub-2.0 nm islands as robust electrocatalysts for methanol oxidation. Chem Commun 50:13551–13554CrossRefGoogle Scholar
  94. 94.
    Yin AX, Min XQ, Zhang YW, Yan CH (2011) Shape-selective synthesis and facet-dependent enhanced electrocatalytic activity and durability of monodisperse sub-10 nm Pt-Pd tetrahedrons and cubes. J Am Chem Soc 133:3816–3819CrossRefGoogle Scholar
  95. 95.
    Lu YZ, Jiang YY, Wu HB, Chen W (2013) Nano-PtPd cubes on graphene exhibit enhanced activity and durability in methanol electrooxidation after CO stripping-cleaning. J Phys Chem C 117:2926–2938CrossRefGoogle Scholar
  96. 96.
    Lu YZ, Jiang YY, Chen W (2014) Graphene nanosheet-tailored PtPd concave nanocubes with enhanced electrocatalytic activity and durability for methanol oxidation. Nanoscale 6:3309–3315CrossRefGoogle Scholar
  97. 97.
    Guo SJ, Dong SJ, Wang EK (2008) A general method for the rapid synthesis of hollow metallic or bimetallic nanoelectrocatalysts with urchinlike morphology. Chem Eur J 14:4689–4695CrossRefGoogle Scholar
  98. 98.
    Yang JH, Lee JY, Zhang QB, Zhou WJ, Liu ZL (2008) Carbon-supported pseudo-core-shell Pd-Pt nanoparticles for ORR with and without methanol. J Electrochem Soc 155:B776–B781CrossRefGoogle Scholar
  99. 99.
    Liu B, Li HY, Die L, Zhang XH, Fan Z, Chen JH (2009) Carbon nanotubes supported PtPd hollow nanospheres for formic acid electrooxidation. J Power Sources 186:62–66CrossRefGoogle Scholar
  100. 100.
    Zhou XM, Fan LZ (2010) Pt/Pd alloy nanoparticles composed of bimetallic nanobowls Synthesis, characterization and electrocatalytic activities. Electrochim Acta 55:8111–8115CrossRefGoogle Scholar
  101. 101.
    Chen ZW, Waje M, Li WZ, Yan YS (2007) Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. Angew Chem Int Ed 46:4060–4063CrossRefGoogle Scholar
  102. 102.
    Zhang H, Jin MS, Wang JG, Li WY, Camargo PHC, Kim MJ, Yang DR, Xie ZX, Xia YA (2011) Synthesis of Pd-Pt bimetallic nanocrystals with a concave structure through a bromide-induced galvanic replacement reaction. J Am Chem Soc 133:6078–6089CrossRefGoogle Scholar
  103. 103.
    Zhang H, Jin MS, Liu HY, Wang JG, Kim MJ, Yang DR, Xie ZX, Liu JY, Xia YN (2011) Facile synthesis of Pd-Pt alloy nanocages and their enhanced performance for preferential oxidation of CO in excess hydrogen. ACS Nano 5:8212–8222CrossRefGoogle Scholar
  104. 104.
    Lu YZ, Jiang YY, Chen W (2013) PtPd porous nanorods with enhanced electrocatalytic activity and durability for oxygen reduction reaction. Nano Energy 2:836–844CrossRefGoogle Scholar
  105. 105.
    Huang XQ, Zhang HH, Guo CY, Zhou ZY, Zheng NF (2009) Simplifying the creation of hollow metallic nanostructures: One-pot synthesis of hollow palladium/platinum single-crystalline nanocubes. Angew Chem Int Ed 48:4808–4812CrossRefGoogle Scholar
  106. 106.
    Bauer E, Vandermerwe JH (1986) Structure and growth of crystalline superlattices-from monolayer to superlattice. Phys Rev B 33:3657–3671CrossRefGoogle Scholar
  107. 107.
    Fan FR, Liu DY, Wu YF, Duan S, Xie ZX, Jiang ZY, Tian ZQ (2008) Epitaxial growth of heterogeneous metal nanocrystals: From gold nano-octahedra to palladium and silver nanocubes. J Am Chem Soc 130:6949–6951CrossRefGoogle Scholar
  108. 108.
    Beard KD, Van Zee JW, Monnier JR (2009) Preparation of carbon-supported Pt-Pd electrocatalysts with improved physical properties using electroless deposition methods. Appl Catal B Environ 88:185–193CrossRefGoogle Scholar
  109. 109.
    Long NV, Asaka T, Matsubara T, Nogami M (2011) Shape-controlled synthesis of Pt-Pd core shell nanoparticles exhibiting polyhedral morphologies by modified polyol method. Acta Mater 59:2901–2907CrossRefGoogle Scholar
  110. 110.
    Long NV, Ohtaki M, Hien TD, Randy J, Nogami M (2011) A comparative study of Pt and Pt-Pd core-shell nanocatalysts. Electrochim Acta 56:9133–9143CrossRefGoogle Scholar
  111. 111.
    Zhang L, Zhang JW, Jiang ZY, Xie SF, Jin MS, Han XG, Kuang Q, Xie ZX, Zheng LS (2011) Facile syntheses and electrocatalytic properties of porous Pd and its alloy nanospheres. J Mater Chem 21:9620–9625CrossRefGoogle Scholar
  112. 112.
    Jung DH, Bae SJ, Kim SJ, Nahm KS, Kim P (2011) Effect of the Pt precursor on the morphology and catalytic performance of Pt-impregnated on Pd/C for the oxygen reduction reaction in polymer electrolyte fuel cells. Int J Hydrogen Energy 36:9115–9122CrossRefGoogle Scholar
  113. 113.
    Nguyen VL, Ohtaki M, Matsubara T, Cao MT, Nogami M (2012) New experimental evidences of Pt-Pd bimetallic nanoparticles with core-shell configuration and highly fine-ordered nanostructures by high-resolution electron transmission microscopy. J Phys Chem C 116:12265–12274CrossRefGoogle Scholar
  114. 114.
    Liu L, Samjeske G, Nagamatsu S, Sekizawa O, Nagasawa K, Takao S, Imaizumi Y, Yamamoto T, Uruga T, Iwasawa Y (2012) Enhanced oxygen reduction reaction activity and characterization of Pt-Pd/C bimetallic fuel cell catalysts with Pt-enriched surfaces in acid media. J Phys Chem C 116:23453–23464CrossRefGoogle Scholar
  115. 115.
    Li YJ, Wang ZW, Chiu CY, Ruan LY, Yang WB, Yang Y, Palmer RE, Huang Y (2012) Synthesis of bimetallic Pt-Pd core-shell nanocrystals and their high electrocatalytic activity modulated by Pd shell thickness. Nanoscale 4:845–851CrossRefGoogle Scholar
  116. 116.
    Habas SE, Lee H, Radmilovic V, Somorjai GA, Yang P (2007) Shaping binary metal nanocrystals through epitaxial seeded growth. Nat Mater 6:692–697CrossRefGoogle Scholar
  117. 117.
    Guo SJ, Dong SJ, Wang EK (2010) Pt/Pd bimetallic nanotubes with petal-like surfaces for enhanced catalytic activity and stability towards ethanol electrooxidation. Energy Environ Sci 3:1307–1310CrossRefGoogle Scholar
  118. 118.
    Lim BW, Lu XM, Jiang MJ, Camargo PHC, Cho EC, Lee EP, Xia YN (2008) Facile synthesis of highly faceted multioctahedral Pt nanocrystals through controlled overgrowth. Nano Lett 8:4043–4047CrossRefGoogle Scholar
  119. 119.
    Jiang MJ, Lim B, Tao J, Camargo PHC, Ma C, Zhu YM, Xia YN (2010) Epitaxial overgrowth of platinum on palladium nanocrystals. Nanoscale 2:2406–2411CrossRefGoogle Scholar
  120. 120.
    Bai S, Wang C, Deng M, Gong M, Bai Y, Jiang J, Xiong YJ (2014) Surface polarization matters: enhancing the hydrogen-evolution reaction by shrinking Pt Shells in Pt–Pd–Graphene stack structures. Angew Chem Int Ed 126:12316–12320CrossRefGoogle Scholar
  121. 121.
    Zhang H, Jin MS, Wang JG, Kim MJ, Yang DR, Xia YN (2011) Nanocrystals composed of alternating shells of Pd and Pt can be obtained by sequentially adding different precursors. J Am Chem Soc 133:10422–10425CrossRefGoogle Scholar
  122. 122.
    Lim B, Jiang MJ, Camargo PHC, Cho EC, Tao J, Lu XM, Zhu YM, Xia YN (2009) Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324:1302–1305CrossRefGoogle Scholar
  123. 123.
    Lee HJ, Habas SE, Somorjai GA, Yang PD (2008) Localized Pd overgrowth on cubic Pt nanocrystals for enhanced electrocatalytic oxidation of formic acid. J Am Chem Soc 130:5406–5407CrossRefGoogle Scholar
  124. 124.
    Lim B, Jiang MJ, Yu T, Camargo PHC, Xia YN (2010) Nucleation and growth mechanisms for Pd-Pt bimetallic nanodendrites and their electrocatalytic properties. Nano Res 3:69–80CrossRefGoogle Scholar
  125. 125.
    Guo SJ, Dong SJ, Wang EK (2010) Ultralong Pt-on-Pd bimetallic nanowires with nanoporous surface: nanodendritic structure for enhanced electrocatalytic activity. Chem Commun 46:1869–1871CrossRefGoogle Scholar
  126. 126.
    Peng ZM, Yang H (2009) Synthesis and oxygen reduction electrocatalytic property of Pt-on-Pd bimetallic heteronanostructures. J Am Chem Soc 131:7542–7543CrossRefGoogle Scholar
  127. 127.
    Guo SJ, Dong SJ, Wang EK (2010) Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano 4:547–555CrossRefGoogle Scholar
  128. 128.
    Wang L, Nemoto Y, Yamauchi Y (2011) Direct synthesis of spatially-controlled Pt-on-Pd bimetallic nanodendrites with superior electrocatalytic activity. J Am Chem Soc 133:9674–9677CrossRefGoogle Scholar
  129. 129.
    Serpell CJ, Cookson J, Ozkaya D, Beer PD (2011) Core@shell bimetallic nanoparticle synthesis via anion coordination. Nat Chem 3:478–483Google Scholar
  130. 130.
    Lee H, Habas SE, Kweskin S, Butcher D, Somorjai GA, Yang PD (2006) Morphological control of catalytically active platinum nanocrystals. Angew Chem Int Ed 45:7824–7828CrossRefGoogle Scholar
  131. 131.
    Climent V, Markovic NM, Ross PN (2000) Kinetics of oxygen reduction on an epitaxial film of palladium on Pt(111). J Phys Chem B 104:3116–3120CrossRefGoogle Scholar
  132. 132.
    Arenz M, Schmidt TJ, Wandelt K, Ross PN, Markovic NM (2003) The oxygen reduction reaction on thin palladium films supported on a Pt(111) electrode. J Phys Chem B 107:9813–9819CrossRefGoogle Scholar
  133. 133.
    Babu PK, Kim HS, Chung JH, Oldfield E, Wieckowski A (2004) Bonding and motional aspects of CO adsorbed on the surface of Pt nanoparticles decorated with Pd. J Phys Chem B 108:20228–20232CrossRefGoogle Scholar
  134. 134.
    Zhao MC, Rice C, Masel RI, Waszczuk P, Wieckowski A (2004) Kinetic study of electro-oxidation of formic acid on spontaneously-deposited Pt/Pd nanoparticles-CO tolerant fuel cell chemistry. J Electrochem Soc 151:A131–A136CrossRefGoogle Scholar
  135. 135.
    Jayashree RS, Spendelow JS, Yeom J, Rastogi C, Shannon MA, Kenis PJA (2005) Characterization and application of electrodeposited Pt, Pt/Pd, and Pd catalyst structures for direct formic acid micro fuel cells. Electrochim Acta 50:4674–4682CrossRefGoogle Scholar
  136. 136.
    Grace AN, Pandian K (2006) Pt, Pt-Pd and Pt-Pd/Ru nanoparticles entrapped polyaniline electrodes—a potent electrocatalyst towards the oxidation of glycerol. Electrochem Commun 8:1340–1348CrossRefGoogle Scholar
  137. 137.
    Selvaraj V, Alagar M, Hamerton I (2006) Electrocatalytic properties of monometallic and bimetallic nanoparticles-incorporated polypyrrole films for electro-oxidation of methanol. J Power Sources 160:940–948CrossRefGoogle Scholar
  138. 138.
    Selvaraj V, Alagar M, Hamerton I (2007) Nanocatalysts impregnated polythiophene electrodes for the electrooxidation of formic acid. Appl Catal B Environ 73:172–179CrossRefGoogle Scholar
  139. 139.
    Xu Y, Lin X (2007) Facile fabrication and electrocatalytic activity of Pt0.9 Pd0.1alloy film catalysts. J Power Sources 170:13–19CrossRefGoogle Scholar
  140. 140.
    Galal A, Atta NF, Darwish SA, Ali SM (2008) Electrodeposited metals at conducting polymer electrodes. II: Study of the oxidation of methanol at poly(3-methylthiophene) modified with Pt-PdCo-catalyst. Top Catal 47:73–83CrossRefGoogle Scholar
  141. 141.
    Zhou ZL, Kang TF, Zhang Y, Cheng SY (2009) Electrochemical sensor for formaldehyde based on Pt-Pd nanoparticles and a Nafion-modified glassy carbon electrode. Microchim Acta 164:133–138CrossRefGoogle Scholar
  142. 142.
    Mahapatra SS, Dutta A, Datta J (2010) Temperature effect on the electrode kinetics of ethanol oxidation on Pd modified Pt electrodes and the estimation of intermediates formed in alkali medium. Electrochim Acta 55:9097–9104CrossRefGoogle Scholar
  143. 143.
    Mahapatra SS, Dutta A, Datta J (2011) Temperature dependence on methanol oxidation and product formation on Pt and Pd modified Pt electrodes in alkaline medium. Int J Hydrogen Energy 36:14873–14883CrossRefGoogle Scholar
  144. 144.
    Yang X, Yang QD, Xu J, Lee CS (2012) Bimetallic PtPd nanoparticles on Nafion-graphene film as catalyst for ethanol electro-oxidation. J Mater Chem 22:8057–8062CrossRefGoogle Scholar
  145. 145.
    Vidal-Iglesias FJ, Solla-Gullon J, Herrero E, Aldaz A, Feliu JM (2010) Pd adatom decorated (100) preferentially oriented Pt nanoparticles for formic acid electrooxidation. Angew Chem Int Ed 49:6998–7001CrossRefGoogle Scholar
  146. 146.
    Zhang JL, Vukmirovic MB, Xu Y, Mavrikakis M, Adzic RR (2005) Controlling the catalytic activity of platinum-monolayer electrocatalysts for oxygen reduction with different substrates. Angew Chem Int Ed 44:2132–2135CrossRefGoogle Scholar
  147. 147.
    Zhang J, Mo Y, Vukmirovic M, Klie R, Sasaki K, Adzic R (2004) Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd (111) and on carbon-supported Pd nanoparticles. J Phys Chem B 108:10955–10964CrossRefGoogle Scholar
  148. 148.
    Adzic RR, Zhang J, Shao M, Sasaki K, Vukmirovic M, Uribe FA (2006) Platinum and mixed platinum-metal monolayer fuel cell electrocatalysts: design, activity and long-term performance stability. ECS Trans 3:31–36CrossRefGoogle Scholar
  149. 149.
    Vukmirovic MB, Zhang J, Sasaki K, Nilekar AU, Uribe F, Mavrikakis M, Adzic RR (2007) Platinum monolayer electrocatalysts for oxygen reduction. Electrochim Acta 52:2257–2263CrossRefGoogle Scholar
  150. 150.
    Bliznakov ST, Vukmirovic MB, Yang L, Sutter EA, Adzic RR (2012) Pt Monolayer on electrodeposited Pd nanostructures: advanced cathode catalysts for PEM fuel cells. J Electrochem Soc 159:F501–F506CrossRefGoogle Scholar
  151. 151.
    Sasaki K, Naohara H, Cai Y, Choi YM, Liu P, Vukmirovic MB, Wang JX, Adzic RR (2010) Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes. Angew Chem Int Ed 49:8602–8607CrossRefGoogle Scholar
  152. 152.
    Koenigsmann C, Santulli AC, Gong KP, Vukmirovic MB, Zhou WP, Sutter E, Wong SS, Adzic RR (2011) Enhanced electrocatalytic performance of processed, ultrathin, supported Pd-Pt core-shell nanowire catalysts for the oxygen reduction reaction. J Am Chem Soc 133:9783–9795CrossRefGoogle Scholar
  153. 153.
    Wang JX, Inada H, Wu LJ, Zhu YM, Choi YM, Liu P, Zhou WP, Adzic RR (2009) Oxygen reduction on well-defined core-shell nanocatalysts: particle size, facet, and Pt shell thickness effects. J Am Chem Soc 131:17298–17302CrossRefGoogle Scholar
  154. 154.
    Shao MH, He GN, Peles A, Odell JH, Zeng J, Su D, Tao J, Yu T, Zhu YM, Xia YN (2013) Manipulating the oxygen reduction activity of platinum shells with shape-controlled palladium nanocrystal cores. Chem Commun 49:9030–9032CrossRefGoogle Scholar
  155. 155.
    Seweryn J, Lewera A (2012) Electrooxidation of ethanol on carbon-supported Pt-Pd nanoparticles. J Power Sources 205:264–271CrossRefGoogle Scholar
  156. 156.
    Ignaszak A, Song C, Zhu W, Wang YJ, Zhang J, Bauer A, Baker R, Neburchilov V, Ye S, Campbell S (2012) Carbon–Nb0.07Ti 0.93O2 composite supported Pt–Pd electrocatalysts for PEM fuel cell oxygen reduction reaction. Electrochim Acta 75:220–228CrossRefGoogle Scholar
  157. 157.
    Lopes PP, Ticianelli EA, Varela H (2011) Potential oscillations in a proton exchange membrane fuel cell with a Pd-Pt/C anode. J Power Sources 196:84–89CrossRefGoogle Scholar
  158. 158.
    Kim KH, Yu JK, Lee HS, Choi JH, Noh SY, Yoon SK, Lee CS, Hwang TS, Rhee YW (2007) Preparation of Pt-Pd catalysts for direct formic acid fuel cell and their characteristics. Korean J Chem Eng 24:518–521CrossRefGoogle Scholar
  159. 159.
    Parinyaswan A, Pongstabodee S, Luengnaruemitchai A (2006) Catalytic performances of Pt-Pd/CeO2 catalysts for selective CO oxidation. Int J Hydrogen Energy 31:1942–1949CrossRefGoogle Scholar
  160. 160.
    Koutsopoulos S, Johannessen T, Eriksen KM, Fehrmann R (2006) Titania-supported Pt and Pt-Pd nanoparticle catalysts for the oxidation of sulfur dioxide. J Catal 238:206–213CrossRefGoogle Scholar
  161. 161.
    Mougenot M, Caillard A, Brault P, Baranton S, Coutanceau C (2011) High performance plasma sputtered PdPt fuel cell electrodes with ultra low loading. Int J Hydrogen Energy 36:8429–8434CrossRefGoogle Scholar
  162. 162.
    Schmidt TJ, Markovic NM, Stamenkovic V, Ross PN, Attard GA, Watson DJ (2002) Surface characterization and electrochemical behavior of well-defined Pt-Pd{111} single-crystal surfaces: a comparative study using Pt{111} and palladium-modified Pt{111} electrodes. Langmuir 18:6969–6975CrossRefGoogle Scholar
  163. 163.
    Ohashi M, Beard KD, Ma SG, Blom DA, St-Pierre J, Van Zee JW, Monnier JR (2010) Electrochemical and structural characterization of carbon-supported Pt-Pd bimetallic electrocatalysts prepared by electroless deposition. Electrochim Acta 55:7376–7384CrossRefGoogle Scholar
  164. 164.
    Wang C, Peng B, Xie HN, Zhang HX, Shi FF, Cai WB (2009) Facile fabrication of Pt, Pd and Pt-Pd alloy films on Si with tunable infrared internal reflection absorption and synergetic electrocatalysis. J Phys Chem C 113:13841–13846CrossRefGoogle Scholar
  165. 165.
    Cangul B, Zhang LC, Aindow M, Erkey C (2009) Preparation of carbon black supported Pd, Pt and Pd-Pt nanoparticles using supercritical CO2 deposition. J Supercrit Fluids 50:82–90CrossRefGoogle Scholar
  166. 166.
    Yen CH, Shimizu K, Lin YY, Bailey F, Cheng IF, Wai CM (2007) Chemical fluid deposition of Pt-based bimetallic nanoparticles on multiwalled carbon nanotubes for direct methanol fuel cell application. Energy Fuel 21:2268–2271CrossRefGoogle Scholar
  167. 167.
    Arico AS, Srinivasan S, Antonucci V (2001) DMFCs: from fundamental aspects to technology development. Fuel Cells 1:133–161CrossRefGoogle Scholar
  168. 168.
    Choi WC, Jeon MK, Kim YJ, Woo SI, Hong WH (2004) Development of enhanced materials for direct-methanol fuel cell by combinatorial method and nanoscience. Catal Today 93–95:517–522CrossRefGoogle Scholar
  169. 169.
    Koenigsmann C, Wong SS (2011) One-dimensional noble metal electrocatalysts: a promising structural paradigm for direct methanol fuel cells. Energy Environ Sci 4:1161–1176CrossRefGoogle Scholar
  170. 170.
    Shukla AK, Ravikumar MK, Gandhi KS (1998) Direct methanol fuel cells for vehicular applications. J Solid State Electrochem 2:117–122CrossRefGoogle Scholar
  171. 171.
    Leger JM (2001) Mechanistic aspects of methanol oxidation on platinum-based electrocatalysts. J Appl Electrochem 31:767–771CrossRefGoogle Scholar
  172. 172.
    Zhang XY, Lu W, Da JY, Wang HT, Zhao DY, Webley PA (2009) Porous platinum nanowire arrays for direct ethanol fuel cell applications. Chem Commun 2:195–197CrossRefGoogle Scholar
  173. 173.
    Arenz M, Stamenkovic V, Ross PN, Markovic NM (2004) Surface (electro-)chemistry on Pt(111) modified by a pseudomorphic Pd monolayer. Surf Sci 573:57–66CrossRefGoogle Scholar
  174. 174.
    Qian W, Hao R, Zhou J, Eastman M, Manhat BA, Sun Q, Goforth AM, Jiao J (2013) Exfoliated graphene-supported Pt and Pt-based alloys as electrocatalysts for direct methanol fuel cells. Carbon 52:595–604CrossRefGoogle Scholar
  175. 175.
    Feng JX, Zhang QL, Wang AJ, Wei J, Chen JR, Feng JJ (2014) Caffeine-assisted facile synthesis of platinum@palladium core-shell nanoparticles supported on reduced graphene oxide with enhanced electrocatalytic activity for methanol oxidation. Electrochim Acta 142:343–350CrossRefGoogle Scholar
  176. 176.
    Bianchini C, Shen PK (2009) Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem Rev 109:4183–4206CrossRefGoogle Scholar
  177. 177.
    Lamy C, Rousseau S, Belgsir EM, Coutanceau C, Leger JM (2004) Recent progress in the direct ethanol fuel cell: development of new platinum-tin electrocatalysts. Electrochim Acta 49:3901–3908CrossRefGoogle Scholar
  178. 178.
    Simoes FC, dos Anjos DM, Vigier F, Leger JM, Hahn F, Coutanceau C, Gonzalez ER, Tremiliosi G, de Andrade AR, Olivi P, Kokoh KB (2007) Electroactivity of tin modified platinum electrodes for ethanol electrooxidation. J Power Sources 167:1–10CrossRefGoogle Scholar
  179. 179.
    Yu XW, Pickup PG (2008) Recent advances in direct formic acid fuel cells (DFAFC). J Power Sources 182:124–132CrossRefGoogle Scholar
  180. 180.
    Rees NV, Compton RG (2011) Sustainable energy: a review of formic acid electrochemical fuel cells. J Solid State Electrochem 15:2095–2100CrossRefGoogle Scholar
  181. 181.
    Rees NV, Compton RG (2012) Sustainable energy: a review of formic acid electrochemical fuel cells. J Solid State Electrochem 16:419–419CrossRefGoogle Scholar
  182. 182.
    Grigoriev SA, Lyutikova EK, Martemianov S, Fateev VN (2007) On the possibility of replacement of Pt by Pd in a hydrogen electrode of PEM fuel cells. Int J Hydrogen Energy 32:4438–4442CrossRefGoogle Scholar
  183. 183.
    Baranova EA, Miles N, Mercier PH, Le Page Y, Patarachao B (2010) Formic acid electro-oxidation on carbon supported PdxPt1− x(0 ≥ x ≥ 1) nanoparticles synthesized via modified polyol method. Electrochim Acta 55:8182–8188CrossRefGoogle Scholar
  184. 184.
    Guo SJ, Zhang S, Sun SH (2013) Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew Chem Int Ed 52:8526–8544CrossRefGoogle Scholar
  185. 185.
    Jiang YY, Lu YZ, Lv XY, Han DX, Zhang QX, Niu L, Chen W (2013) Enhanced catalytic performance of Pt-free iron phthalocyanine by graphene support for efficient oxygen reduction reaction. ACS Catal 3:1263–1271CrossRefGoogle Scholar
  186. 186.
    Bliznakov ST, Vukmirovic MB, Yang L, Sutter EA, Adzic RR (2011) Pt monolayer on electrodeposited Pd nanostructures-advanced cathode catalysts for PEM fuel cells. ECS Trans 41:1055–1066CrossRefGoogle Scholar
  187. 187.
    Sasaki K, Wang JX, Naohara H, Marinkovic N, More K, Inada H, Adzic RR (2010) Recent advances in platinum monolayer electrocatalysts for oxygen reduction reaction: Scale-up synthesis, structure and activity of Pt shells on Pd cores. Electrochim Acta 55:2645–2652CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchunChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations