Recent Advances in the Use of Shape-Controlled Metal Nanoparticles in Electrocatalysis

  • Francisco J. Vidal-Iglesias
  • José Solla-Gullón
  • Juan M. FeliuEmail author
Part of the Nanostructure Science and Technology book series (NST)


Shape-controlled metal nanoparticles have indisputably enhanced the Electrocatalysis of several electrochemical reactions of interest both from a fundamental and applied point of view. In this chapter, we will review and discuss about some of the most relevant advances on the use of these shaped metal nanoparticles in electrocatalysis and, in particular, towards classical reactions for low temperature fuel cells such as formic acid, methanol and ethanol electrooxidation and also oxygen reduction. Each particular reaction will be independently reviewed and some of the most interesting recent contributions discussed. The results included in the present chapter will clearly demonstrate the enormous impact that these shaped nanomaterials have played in the improvement of surface reactivity studies.


Oxygen Reduction Reaction Electrocatalytic Activity Methanol Oxidation Vinyl Pyrrolidone Electrocatalytic Property 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has been financially supported by the MINECO of Spain through projects CTQ2013-44083-P and CTQ2013-48280-C3-3-R and Generalitat Valenciana through project PROMETEOII/2014/013.


  1. 1.
    Wieckowski A (1999) Interfacial electrochemistry: theory, experiment, and applications. Marcel Dekker, New YorkGoogle Scholar
  2. 2.
    Wieckowski A, Savinova ER, Vayenas CG (2003) Catalysis and electrocatalysis at nanoparticle surfaces. CRC Press, New YorkCrossRefGoogle Scholar
  3. 3.
    Koper MTM (2009) Fuel cell catalysis: a surface science approach. Electrocatalysis and electrochemistry. Wiley, HobokenCrossRefGoogle Scholar
  4. 4.
    Climent V, Feliu JM (2011) Thirty years of platinum single crystal electrochemistry. J Solid State Electrochem 15(7–8):1297–1315. doi: 10.1007/s10008-011-1372-1 CrossRefGoogle Scholar
  5. 5.
    Zhou Z-Y, Tian N, Huang Z-Z, Chen D-J, Sun S-G (2009) Nanoparticle catalysts with high energy surfaces and enhanced activity synthesized by electrochemical method. Faraday Discuss 140:81–92CrossRefGoogle Scholar
  6. 6.
    Proussevitch AA, Sahagian DL (2001) Recognition and separation of discrete objects within complex 3D voxelized structures. Comput Geosci 27(4):441–454. doi: 10.1016/s0098-3004(00)00141-2 CrossRefGoogle Scholar
  7. 7.
    Tian N, Zhou ZY, Sun SG (2008) Platinum metal catalysts of high-index surfaces: from single-crystal planes to electrochemically shape-controlled nanoparticles. J Phys Chem C 112(50):19801–19817CrossRefGoogle Scholar
  8. 8.
    Vidal-Iglesias FJ, Solla-Gullón J, Rodríguez P, Herrero E, Montiel V, Feliu JM, Aldaz A (2004) Shape-dependent electrocatalysis: ammonia oxidation on platinum nanoparticles with preferential (100) surfaces. Electrochem Commun 6(10):1080–1084. doi: 10.1016/j.elecom.2004.08.010 CrossRefGoogle Scholar
  9. 9.
    Solla-Gullón J, Vidal-Iglesias FJ, Rodríguez P, Herrero E, Feliu JM, Clavilier J, Aldaz A (2004) In situ surface characterization of preferentially oriented platinum nanoparticles by using electrochemical structure sensitive adsorption reactions. J Phys Chem B 108(36):13573–13575. doi: 10.1021/jp0471453 CrossRefGoogle Scholar
  10. 10.
    Ahmadi TS, Wang ZL, Green TC, Henglein A, El-Sayed MA (1996) Shape-controlled synthesis of colloidal platinum nanoparticles. Science 272(5270):1924–1926CrossRefGoogle Scholar
  11. 11.
    Koper MTM (2011) Structure sensitivity and nanoscale effects in electrocatalysis. Nanoscale 3(5):2054–2073CrossRefGoogle Scholar
  12. 12.
    Solla-Gullon J, Vidal-Iglesias FJ, Feliu JM (2011) Shape dependent electrocatalysis. Annu Rep Prog Chem, Sect C 107:263–297CrossRefGoogle Scholar
  13. 13.
    Bing Y, Liu H, Zhang L, Ghosh D, Zhang J (2010) Nanostructured Pt-alloy electrocatalysts for PEM fuel cell oxygen reduction reaction. Chem Soc Rev 39(6):2184–2202CrossRefGoogle Scholar
  14. 14.
    Chen A, Holt-Hindle P (2010) Platinum-based nanostructured materials: synthesis, properties, and applications. Chem Rev 110(6):3767–3804CrossRefGoogle Scholar
  15. 15.
    Peng Z, Yang H (2009) Designer platinum nanoparticles: control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 4(2):143–164CrossRefGoogle Scholar
  16. 16.
    Chen J, Lim B, Lee EP, Xia Y (2009) Shape-controlled synthesis of platinum nanocrystals for catalytic and electrocatalytic applications. Nano Today 4(1):81–95CrossRefGoogle Scholar
  17. 17.
    Vismadeb Mazumder YL, Sun S (2010) Recent development of active nanoparticle catalysts for fuel cell reactions. Adv Funct Mater 20:1224–1234CrossRefGoogle Scholar
  18. 18.
    Wu B, Zheng N (2013) Surface and interface control of noble metal nanocrystals for catalytic and electrocatalytic applications. Nano Today 8(2):168–197. doi: 10.1016/j.nantod.2013.02.006 CrossRefGoogle Scholar
  19. 19.
    Kleijn SEF, Lai SCS, Koper MTM, Unwin PR (2014) Electrochemistry of nanoparticles. Angew Chem Int Ed 53(14):3558–3586CrossRefGoogle Scholar
  20. 20.
    You H, Yang S, Ding B, Yang H (2013) Synthesis of colloidal metal and metal alloy nanoparticles for electrochemical energy applications. Chem Soc Rev 42(7):2880–2904CrossRefGoogle Scholar
  21. 21.
    Sanchez-Sanchez CM, Solla-Gullon J, Montiel V (2013) Electrocatalysis at nanoparticles. In: Electrochemistry. Nanosystems electrochemistry, vol 11. The Royal Society of Chemistry, London, pp 34–70. doi: 10.1039/9781849734820-00034
  22. 22.
    Dai Y, Wang Y, Liu B, Yang Y (2014) Metallic nanocatalysis: an accelerating seamless integration with nanotechnology. Small 11(3):268–289. doi: 10.1002/smll.201400847 CrossRefGoogle Scholar
  23. 23.
    Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105(4):1025–1102CrossRefGoogle Scholar
  24. 24.
    Xia Y, Xiong Y, Lim B, Skrabalak SE (2009) Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 48(1):60–103CrossRefGoogle Scholar
  25. 25.
    Tao AR, Habas S, Yang P (2008) Shape control of colloidal metal nanocrystals. Small 4(3):310–325CrossRefGoogle Scholar
  26. 26.
    Sau TK, Rogach AL (2010) Nonspherical noble metal nanoparticles: colloid-chemical synthesis and morphology control. Adv Mater (Weinheim, Germany) 22(16):1781–1804CrossRefGoogle Scholar
  27. 27.
    Leong GJ, Schulze MC, Strand MB, Maloney D, Frisco SL, Dinh HN, Pivovar B, Richards RM (2014) Shape-directed platinum nanoparticle synthesis: nanoscale design of novel catalysts. Appl Organomet Chem 28(1):1–17CrossRefGoogle Scholar
  28. 28.
    Gu J, Zhang YW, Tao F (2012) Shape control of bimetallic nanocatalysts through well-designed colloidal chemistry approaches. Chem Soc Rev 41(24):8050–8065CrossRefGoogle Scholar
  29. 29.
    Clavilier J, Faure R, Guinet G, Durand R (1980) Preparation of monocrystalline. Pt microelectrodes and electrochemical study of the plane surfaces cut in the direction of the {111} and {110} planes. J Electroanal Chem 107(1):205–209CrossRefGoogle Scholar
  30. 30.
    Clavilier J (1999) Flame-annealing and cleaning technique. In: Wieckowski A (ed) Interfacial electrochemistry. Marcel Dekker, New York, pp 231–248Google Scholar
  31. 31.
    Hara M, Linke U, Wandlowski T (2007) Preparation and electrochemical characterization of palladium single crystal electrodes in 0.1 M H2SO4 and HClO4 Part I. Low-index phases. Electrochim Acta 52(18):5733–5748CrossRefGoogle Scholar
  32. 32.
    Hamelin A (1996) Cyclic voltammetry at gold single-crystal surfaces. 1. Behaviour at low-index faces. J Electroanal Chem 407(1–2):1–11CrossRefGoogle Scholar
  33. 33.
    Hamelin A (1996) Cyclic voltammetry at gold single-crystal surfaces. 2. Behaviour of high-index faces. J Electroanal Chem 407(1-2):13–21CrossRefGoogle Scholar
  34. 34.
    Ke F-S, Solomon B, Ding Y, Xu G-L, Sun S-G, Wang ZL, Zhou X-D (2014) Enhanced electrocatalytic activity on gold nanocrystals enclosed by high-index facets for oxygen reduction. Nano Energy 7:179–188. doi: 10.1016/j.nanoen.2014.01.003 CrossRefGoogle Scholar
  35. 35.
    Yang S, Lee H (2013) Atomically dispersed platinum on gold nano-octahedra with high catalytic activity on formic acid oxidation. ACS Catal 3(3):437–443. doi: 10.1021/cs300809j CrossRefGoogle Scholar
  36. 36.
    Nichols RJ, Magnussen OM, Hotlos J, Twomey T, Behm RJ, Kolb DM (1990) An in-situ STM study of potential-induced changes in the surface topography of Au(100) electrodes. J Electroanal Chem 290:21–31CrossRefGoogle Scholar
  37. 37.
    Schneeweiss MA, Kolb DM (1997) Oxide formation on Au(111)—an in situ STM study. Solid State Ion 94(1–4):171–179CrossRefGoogle Scholar
  38. 38.
    Itaya K, Sugawara S, Sashikata K, Furuya N (1990) Insitu scanning tunneling microscopy of platinum (111) surface with the observation of monatomic steps. J Vac Sci Technol A Vac Surf Films 8(1):515–519CrossRefGoogle Scholar
  39. 39.
    El-Deab MS (2009) On the preferential crystallographic orientation of Au nanoparticles: effect of electrodeposition time. Electrochim Acta 54(14):3720–3725CrossRefGoogle Scholar
  40. 40.
    El-Deab MS, Sotomura T, Ohsaka T (2005) Size and crystallographic orientation controls of gold nanoparticles electrodeposited on GC electrodes. J Electrochem Soc 152(1):C1–C6CrossRefGoogle Scholar
  41. 41.
    El-Deab MS, Arihara K, Ohsaka T (2004) Fabrication of Au(111)-like polycrystalline gold electrodes and their applications to oxygen reduction. J Electrochem Soc 151(6):E213–E218CrossRefGoogle Scholar
  42. 42.
    Walczak MM, Alves CA, Lamp BD, Porter MD (1995) Electrochemical and X-ray photoelectron spectroscopic evidence for differences in the binding sites of alkanethiolate monolayers chemisorbed at gold. J Electroanal Chem 396(1–2):103–114CrossRefGoogle Scholar
  43. 43.
    Zhong CJ, Zak J, Porter MD (1997) Voltammetric reductive desorption characteristics of alkanethiolate monolayers at single crystal Au(111) and (110) electrode surfaces. J Electroanal Chem 421(1–2):9–13CrossRefGoogle Scholar
  44. 44.
    Herrero E, Buller LJ, Abruna HD (2001) Underpotential deposition at single crystal surfaces of Au, Pt, Ag and other materials. Chem Rev 101(7):1897–1930. doi: 10.1021/cr9600363 CrossRefGoogle Scholar
  45. 45.
    Hernández J, Solla-Gullón J, Herrero E, Aldaz A, Feliu JM (2007) Electrochemistry of shape-controlled catalysts: oxygen reduction reaction on cubic gold nanoparticles. J Phys Chem C 111(38):14078–14083. doi: 10.1021/jp0749726CCC CrossRefGoogle Scholar
  46. 46.
    Hernández J, Solla-Gullón J, Herrero E, Feliu JM, Aldaz A (2009) In situ surface characterization and oxygen reduction reaction on shape-controlled gold nanoparticles. J Nanosci Nanotechnol 9(4):2256–2273. doi: 10.1166/jnn.2009.SE38 CrossRefGoogle Scholar
  47. 47.
    Hernández J, Solla-Gullón J, Herrero E (2004) Gold nanoparticles synthesized in a water-in-oil microemulsion: electrochemical characterization and effect of the surface structure on the oxygen reduction reaction. J Electroanal Chem 574(1):185–196. doi: 10.1016/j.jelechem.2003.10.039 CrossRefGoogle Scholar
  48. 48.
    Hamelin A (1979) Lead adsorption on gold single crystal stepped surfaces. J Electroanal Chem 101(2):285–290CrossRefGoogle Scholar
  49. 49.
    Hamelin A, Katayama A (1981) Lead underpotential deposition on gold single-crystal surfaces: the (100) face and its vicinal faces. J Electroanal Chem 117(2):221–232CrossRefGoogle Scholar
  50. 50.
    Hamelin A (1984) Underpotential deposition of lead on single crystal faces of gold. Part I. The influence of crystallographic orientation of the substrate. J Electroanal Chem 165(1–2):167–180CrossRefGoogle Scholar
  51. 51.
    Hamelin A, Lipkowski J (1984) Underpotential deposition of lead on gold single crystal faces. Part II. General discussion. J Electroanal Chem 171(1–2):317–330CrossRefGoogle Scholar
  52. 52.
    Chierchie T, Mayer C (1988) Voltammetric study of the underpotential deposition of copper on polycrystalline and single crystal palladium surfaces. Electrochim Acta 33(3):341–345CrossRefGoogle Scholar
  53. 53.
    Cuesta A, Kibler LA, Kolb DM (1999) A method to prepare single crystal electrodes of reactive metals: application to Pd(hkl). J Electroanal Chem 466(2):165–168CrossRefGoogle Scholar
  54. 54.
    Fang LL, Tao Q, Li MF, Liao LW, Chen D, Chen YX (2010) Determination of the real surface area of palladium electrode. Chin J Chem Phys 23(5):543–548CrossRefGoogle Scholar
  55. 55.
    Francke R, Climent V, Baltruschat H, Feliu JM (2008) Electrochemical deposition of copper on stepped platinum surfaces in the 01(1)over-bar zone vicinal to the (100) plane. J Electroanal Chem 624(1–2):228–240CrossRefGoogle Scholar
  56. 56.
    Danilov AI, Molodkina EB, Rudnev AV, Polukarov YM, Feliu JM (2005) Kinetics of copper deposition on Pt(111) and Au(111) electrodes in solutions of different acidities. Electrochim Acta 50(25–26):5032–5043. doi: 10.1016/j.electacta.2005.02.078 CrossRefGoogle Scholar
  57. 57.
    Solla-Gullón J, Rodríguez P, Herrero E, Aldaz A, Feliu JM (2008) Surface characterization of platinum electrodes. Phys Chem Chem Phys 10(10):1359–1373. doi: 10.1039/b709809j CrossRefGoogle Scholar
  58. 58.
    Rodríguez P, Solla-Gullón J, Vidal-Iglesias FJ, Herrero E, Aldaz A, Feliu JM (2005) Determination of (111) ordered domains on platinum electrodes by irreversible adsorption of bismuth. Anal Chem 77(16):5317–5323. doi: 10.1021/ac050347q CrossRefGoogle Scholar
  59. 59.
    Rodríguez P, Herrero E, Solla-Gullón J, Vidal-Iglesias FJ, Aldaz A, Feliu JM (2005) Specific surface reactions for identification of platinum surface domains—surface characterization and electrocatalytic tests. Electrochim Acta 50(21):4308–4317. doi: 10.1016/j.electacta.2005.02.087 CrossRefGoogle Scholar
  60. 60.
    Rodríguez P, Herrero E, Aldaz A, Feliu JM (2006) Tellurium adatoms as an in-situ surface probe of (111) two-dimensional domains at platinum surfaces. Langmuir 22(25):10329–10337. doi: 10.1021/la060981e CrossRefGoogle Scholar
  61. 61.
    Rodríguez P, Herrero E, Solla-Gullón J, Vidal-Iglesias FJ, Aldaz A, Feliu JM (2005) Electrochemical characterization of irreversibly adsorbed germanium on platinum stepped surfaces vicinal to Pt(100). Electrochim Acta 50(15):3111–3121. doi: 10.1016/j.electacta.2004.10.086 CrossRefGoogle Scholar
  62. 62.
    Brimaud S, Pronier S, Coutanceau C, Léger JM (2008) New findings on CO electrooxidation at platinum nanoparticle surfaces. Electrochem Commun 10(11):1703–1707CrossRefGoogle Scholar
  63. 63.
    Devivaraprasad R, Ramesh R, Naresh N, Kar T, Singh RK, Neergat M (2014) Oxygen reduction reaction and peroxide generation on shape-controlled and polycrystalline platinum nanoparticles in acidic and alkaline electrolytes. Langmuir 30(29):8995–9006CrossRefGoogle Scholar
  64. 64.
    Bertin E, Garbarino S, Guay D (2014) Formic acid oxidation on Bi covered Pt electrodeposited thin films: influence of the underlying structure. Electrochim Acta 134:486–495. doi: 10.1016/j.electacta.2014.04.111 CrossRefGoogle Scholar
  65. 65.
    Levendorf AM, Chen D-J, Rom CL, Liu Y, Tong YJ (2014) Electrochemical and in situ ATR-SEIRAS investigations of methanol and CO electro-oxidation on PVP-free cubic and octahedral/tetrahedral Pt nanoparticles. RSC Adv 4(41):21284–21293. doi: 10.1039/c4ra00815d CrossRefGoogle Scholar
  66. 66.
    Rodriguez-Lopez M, Solla-Gullon J, Herrero E, Tunon P, Feliu JM, Aldaz A, Carrasquillo A (2010) Electrochemical reactivity of aromatic molecules at nanometer-sized surface domains: from Pt(hkl) single crystal electrodes to preferentially oriented platinum nanoparticles. J Am Chem Soc 132(7):2233–2242. doi: 10.1021/Ja909082s CrossRefGoogle Scholar
  67. 67.
    Martínez-Rodríguez RA, Vidal-Iglesias FJ, Solla-Gullón J, Cabrera CR, Feliu JM (2014) Synthesis and electrocatalytic properties of H2SO4-induced (100) Pt nanoparticles prepared in water-in-oil microemulsion. ChemPhysChem 15(10):1997–2001. doi: 10.1002/cphc.201400056 CrossRefGoogle Scholar
  68. 68.
    Van Der Vliet DF, Wang C, Li D, Paulikas AP, Greeley J, Rankin RB, Strmcnik D, Tripkovic D, Markovic NM, Stamenkovic VR (2012) Unique electrochemical adsorption properties of Pt-skin surfaces. Angew Chem Int Ed 51(13):3139–3142CrossRefGoogle Scholar
  69. 69.
    Shao M, Odell JH, Choi SI, Xia Y (2013) Electrochemical surface area measurements of platinum- and palladium-based nanoparticles. Electrochem Commun 31:46–48CrossRefGoogle Scholar
  70. 70.
    Rudi S, Cui C, Gan L, Strasser P (2014) Comparative study of the electrocatalytically active surface areas (ECSAs) of Pt alloy nanoparticles evaluated by Hupd and CO-stripping voltammetry. Electrocatalysis 5(4):408–418CrossRefGoogle Scholar
  71. 71.
    Solla-Gullón J, Vidal-Iglesias FJ, Herrero E, Feliu JM, Aldaz A (2006) CO monolayer oxidation on semi-spherical and preferentially oriented (100) and (111) platinum nanoparticles. Electrochem Commun 8(1):189–194. doi: 10.1016/j.elecom.2005.11.008 CrossRefGoogle Scholar
  72. 72.
    Solla-Gullón J, Vidal-Iglesias FJ, López-Cudero A, Garnier E, Feliu JM, Aldaz A (2008) Shape-dependent electrocatalysis: methanol and formic acid electrooxidation on preferentially oriented Pt nanoparticles. Phys Chem Chem Phys 10(25):3689–3698. doi: 10.1039/b802703j CrossRefGoogle Scholar
  73. 73.
    Vidal-Iglesias FJ, Aran-Ais RM, Solla-Gullon J, Herrero E, Feliu JM (2012) Electrochemical characterization of shape-controlled Pt nanoparticles in different supporting electrolytes. ACS Catal 2(5):901–910. doi: 10.1021/Cs200681x CrossRefGoogle Scholar
  74. 74.
    Erikson H, Sarapuu A, Tammeveski K, Solla-Gullón J, Feliu JM (2011) Enhanced electrocatalytic activity of cubic Pd nanoparticles towards the oxygen reduction reaction in acid media. Electrochem Commun 13(7):734–737CrossRefGoogle Scholar
  75. 75.
    Erikson H, Sarapuu A, Alexeyeva N, Tammeveski K, Solla-Gullón J, Feliu JM (2012) Electrochemical reduction of oxygen on palladium nanocubes in acid and alkaline solutions. Electrochim Acta 59:329–335. doi: 10.1016/j.electacta.2011.10.074 CrossRefGoogle Scholar
  76. 76.
    Vidal-Iglesias FJ, Aran-Ais RM, Solla-Gullon J, Garnier E, Herrero E, Aldaz A, Feliu JM (2012) Shape-dependent electrocatalysis: formic acid electrooxidation on cubic Pd nanoparticles. Phys Chem Chem Phys 14(29):10258–10265. doi: 10.1039/c2cp40992e CrossRefGoogle Scholar
  77. 77.
    Brimaud S, Jusys Z, Behm RJ (2014) Shape-selected nanocrystals for in situ spectro-electrochemistry studies on structurally well defined surfaces under controlled electrolyte transport: a combined in situ ATR-FTIR/online DEMS investigation of CO electrooxidation on Pt. Beilstein J Nanotechnol 5:735–746. doi: 10.3762/bjnano.5.86 CrossRefGoogle Scholar
  78. 78.
    Brimaud S, Jusys Z, Behm RJ (2011) Controlled surface structure for in situ ATR-FTIRS studies using preferentially shaped Pt nanocrystals. Electrocatalysis 2(2):69–74. doi: 10.1007/s12678-011-0040-7 CrossRefGoogle Scholar
  79. 79.
    Coutanceau C, Urchaga P, Brimaud S, Baranton S (2012) Colloidal syntheses of shape- and size-controlled Pt nanoparticles for electrocatalysis. Electrocatalysis 3(2):75–87. doi: 10.1007/s12678-012-0079-0 CrossRefGoogle Scholar
  80. 80.
    Urchaga P, Baranton S, Napporn TW, Coutanceau C (2010) Selective syntheses and electrochemical characterization of platinum nanocubes and nanotetrahedrons/octahedrons. Electrocatalysis 1:3–6CrossRefGoogle Scholar
  81. 81.
    Susut C, Tong Y (2011) Size-dependent methanol electro-oxidation activity of Pt nanoparticles with different shapes. Electrocatalysis 2(2):75–81. doi: 10.1007/s12678-011-0041-6 CrossRefGoogle Scholar
  82. 82.
    Susut C, Chapman GB, Samjeské G, Osawa M, Tong Y (2008) An unexpected enhancement in methanol electro-oxidation on an ensemble of Pt(111) nanofacets: a case of nanoscale single crystal ensemble electrocatalysis. Phys Chem Chem Phys 10(25):3712–3721CrossRefGoogle Scholar
  83. 83.
    Susut C, Nguyen TD, Chapman GB, Tong Y (2008) Shape and size stability of Pt nanoparticles for MeOH electro-oxidation. Electrochim Acta 53(21):6135–6142CrossRefGoogle Scholar
  84. 84.
    Song H, Kim F, Connor S, Somorjai GA, Yang P (2005) Pt nanocrystals: shape control and Langmuir-Blodgett monolayer formation. J Phys Chem B 109(1):188–193CrossRefGoogle Scholar
  85. 85.
    Monzó J, Koper MTM, Rodriguez P (2012) Removing polyvinylpyrrolidone from catalytic Pt nanoparticles without modification of superficial order. ChemPhysChem 13(3):709–715CrossRefGoogle Scholar
  86. 86.
    Yang H, Tang Y, Zou S (2014) Electrochemical removal of surfactants from Pt nanocubes. Electrochem Commun 38:134–137. doi: 10.1016/j.elecom.2013.11.019 CrossRefGoogle Scholar
  87. 87.
    Arán-Ais RM, Vidal-Iglesias FJ, Solla-Gullon J, Herrero E, Feliu JM (2014) Electrochemical characterization of clean shape-controlled Pt nanoparticles prepared in presence of oleylamine/oleic acid. Electroanalysis 27(4):945–956CrossRefGoogle Scholar
  88. 88.
    Zalineeva A, Baranton S, Coutanceau C (2013) Bi-modified palladium nanocubes for glycerol electrooxidation. Electrochem Commun 34:335–338CrossRefGoogle Scholar
  89. 89.
    Zalineeva A, Baranton S, Coutanceau C, Jerkiewicz G (2015) Electrochemical behavior of unsupported shaped palladium nanoparticles. Langmuir 31(5):1605–1609. doi: 10.1021/la5025229 CrossRefGoogle Scholar
  90. 90.
    Nalajala N, Gooty Saleha WF, Ladewig BP, Neergat M (2014) Sodium borohydride treatment: a simple and effective process for the removal of stabilizer and capping agents from shape-controlled palladium nanoparticles. Chem Commun 50(66):9365–9368CrossRefGoogle Scholar
  91. 91.
    Naresh N, Wasim FGS, Ladewig BP, Neergat M (2013) Removal of surfactant and capping agent from Pd nanocubes (Pd-NCs) using tert-butylamine: its effect on electrochemical characteristics. J Mater Chem A 1(30):8553–8559CrossRefGoogle Scholar
  92. 92.
    Hernández J, Solla-Gullón J, Herrero E, Aldaz A, Feliu JM (2005) Characterization of the surface structure of gold nanoparticles and nanorods using structure sensitive reactions. J Phys Chem B 109(26):12651–12654. doi: 10.1021/jp0521609 CrossRefGoogle Scholar
  93. 93.
    Park JY, Aliaga C, Renzas JR, Lee H, Somorjai GA (2009) The role of organic capping layers of platinum nanoparticles in catalytic activity of CO oxidation. Catal Lett 129(1-2):1–6CrossRefGoogle Scholar
  94. 94.
    Aliaga C, Park JY, Yamada Y, Lee HS, Tsung CK, Yang P, Somorjai GA (2009) Sum frequency generation and catalytic reaction studies of the removal of organic capping agents from Pt nanoparticles by UV-Ozone treatment. J Phys Chem C 113(15):6150–6155CrossRefGoogle Scholar
  95. 95.
    Krier JM, Michalak WD, Baker LR, An K, Komvopoulos K, Somorjai GA (2012) Sum frequency generation vibrational spectroscopy of colloidal platinum nanoparticle catalysts: disordering versus removal of organic capping. J Phys Chem C 116(33):17540–17546CrossRefGoogle Scholar
  96. 96.
    Crespo-Quesada M, Andanson JM, Yarulin A, Lim B, Xia Y, Kiwi-Minsker L (2011) UV-ozone cleaning of supported poly(vinylpyrrolidone)-stabilized palladium nanocubes: effect of stabilizer removal on morphology and catalytic behavior. Langmuir 27(12):7909–7916CrossRefGoogle Scholar
  97. 97.
    Vidal-Iglesias FJ, Solla-Gullón J, Herrero E, Montiel V, Aldaz A, Feliu JM (2011) Evaluating the ozone cleaning treatment in shape-controlled Pt nanoparticles: evidences of atomic surface disordering. Electrochem Commun 13(5):502–505. doi: 10.1016/j.elecom.2011.02.033 CrossRefGoogle Scholar
  98. 98.
    Levendorf A, Sun S-G, Tong Y (2014) In situ FT-IR investigation of methanol and CO electrooxidation on cubic and octahedral/tetrahedral Pt nanoparticles having residual PVP. Electrocatalysis 5(3):248–255. doi: 10.1007/s12678-014-0186-1 CrossRefGoogle Scholar
  99. 99.
    Tong YJ (2012) Unconventional promoters of catalytic activity in electrocatalysis. Chem Soc Rev 41(24):8195–8209CrossRefGoogle Scholar
  100. 100.
    Susut C, Chen DJ, Sun SG, Tong YJ (2011) Capping polymer-enhanced electrocatalytic activity on Pt nanoparticles: a combined electrochemical and in situ IR spectroelectrochemical study. Phys Chem Chem Phys 13(16):7467–7474CrossRefGoogle Scholar
  101. 101.
    Shen J, Ziaei-Azad H, Semagina N (2014) Is it always necessary to remove a metal nanoparticle stabilizer before catalysis? J Mol Catal A Chem 391(1):36–40CrossRefGoogle Scholar
  102. 102.
    Chung YH, Chung DY, Jung N, Sung YE (2013) Tailoring the electronic structure of nanoelectrocatalysts induced by a surface-capping organic molecule for the oxygen reduction reaction. J Phys Chem Lett 4(8):1304–1309CrossRefGoogle Scholar
  103. 103.
    Miyabayashi K, Nishihara H, Miyake M (2014) Platinum nanoparticles modified with alkylamine derivatives as an active and stable catalyst for oxygen reduction reaction. Langmuir 30(10):2936–2942CrossRefGoogle Scholar
  104. 104.
    Niu Z, Li Y (2013) Removal and utilization of capping agents in nanocatalysis. Chem Mater 26(1):72–83. doi: 10.1021/cm4022479 CrossRefGoogle Scholar
  105. 105.
    Lee H (2014) Utilization of shape-controlled nanoparticles as catalysts with enhanced activity and selectivity. RSC Adv 4(77):41017–41027CrossRefGoogle Scholar
  106. 106.
    Newton JE, Preece JA, Rees NV, Horswell SL (2014) Nanoparticle catalysts for proton exchange membrane fuel cells: can surfactant effects be beneficial for electrocatalysis? Phys Chem Chem Phys 16(23):11435–11446CrossRefGoogle Scholar
  107. 107.
    Du L, Zhang S, Chen G, Yin G, Du C, Tan Q, Sun Y, Qu Y, Gao Y (2014) Polyelectrolyte assisted synthesis and enhanced oxygen reduction activity of Pt nanocrystals with controllable shape and size. ACS Appl Mater Interfaces 6(16):14043–14049CrossRefGoogle Scholar
  108. 108.
    Tian N, Zhou Z-Y, Sun S-G, Ding Y, Wang ZL (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316(5825):732–735. doi: 10.1126/science.1140484 CrossRefGoogle Scholar
  109. 109.
    Tian N, Xiao J, Zhou Z-Y, Liu H-X, Deng Y-J, Huang L, Xu B-B, Sun S-G (2013) Pt-group bimetallic nanocrystals with high-index facets as high performance electrocatalysts. Faraday Discuss 162:77–89. doi: 10.1039/c3fd20146e CrossRefGoogle Scholar
  110. 110.
    Cui C, Gan L, Li HH, Yu SH, Heggen M, Strasser P (2012) Octahedral PtNi nanoparticle catalysts: exceptional oxygen reduction activity by tuning the alloy particle surface composition. Nano Lett 12(11):5885–5889CrossRefGoogle Scholar
  111. 111.
    Gumeci C, Marathe A, Behrens RL, Chaudhuri J, Korzeniewski C (2014) Solvothermal synthesis and electrochemical characterization of shape-controlled Pt nanocrystals. J Phys Chem C 118(26):14433–14440CrossRefGoogle Scholar
  112. 112.
    Carpenter MK, Moylan TE, Kukreja RS, Atwan MH, Tessema MM (2012) Solvothermal synthesis of platinum alloy nanoparticles for oxygen reduction electrocatalysis. J Am Chem Soc 134(20):8535–8542CrossRefGoogle Scholar
  113. 113.
    Zhang C, Hwang SY, Trout A, Peng Z (2014) Solid-state chemistry-enabled scalable production of octahedral Pt-Ni alloy electrocatalyst for oxygen reduction reaction. J Am Chem Soc 136(22):7805–7808CrossRefGoogle Scholar
  114. 114.
    Shao M (2013) Electrocatalysis in fuel cells: a non- and low-platinum approach. Springer, LondonCrossRefGoogle Scholar
  115. 115.
    Feliu JM, Herrero E (2003) Formic acid oxidation. In: Vielstich W, Gasteiger H, Lamm A (eds) Handbook of fuel cells, vol 2, Fundamentals, technology and applications. Wiley, ChichesterGoogle Scholar
  116. 116.
    Jiang K, Zhang HX, Zou S, Cai WB (2014) Electrocatalysis of formic acid on palladium and platinum surfaces: from fundamental mechanisms to fuel cell applications. Phys Chem Chem Phys 16(38):20360–20376CrossRefGoogle Scholar
  117. 117.
    Capon A, Parsons R (1973) The oxidation of formic acid at noble metal electrodes: I. Review of previous work. J Electroanal Chem 44(1):1–7CrossRefGoogle Scholar
  118. 118.
    Capon A, Parsons R (1973) The oxidation of formic acid on noble metal electrodes: II. A comparison of the behaviour of pure electrodes. J Electroanal Chem 44(2):239–254CrossRefGoogle Scholar
  119. 119.
    Capon A, Parsons R (1973) The oxidation of formic acid at noble metal electrodes Part III. Intermediates and mechanism on platinum electrodes. J Electroanal Chem 45(2):205–231CrossRefGoogle Scholar
  120. 120.
    Grozovski V, Solla-Gullon J, Climent V, Herrero E, Feliu JM (2010) Formic acid oxidation on shape-controlled Pt nanoparticles studied by pulsed voltammetry. J Phys Chem C 114(32):13802–13812. doi: 10.1021/jp104755b CrossRefGoogle Scholar
  121. 121.
    Huang X, Zhao Z, Fan J, Tan Y, Zheng N (2011) Amine-assisted synthesis of concave polyhedral platinum nanocrystals having {411} high-index facets. J Am Chem Soc 133(13):4718–4721CrossRefGoogle Scholar
  122. 122.
    Li Y, Jiang Y, Chen M, Liao H, Huang R, Zhou Z, Tian N, Chen S, Sun S (2012) Electrochemically shape-controlled synthesis of trapezohedral platinum nanocrystals with high electrocatalytic activity. Chem Commun 48(76):9531–9533. doi: 10.1039/c2cc34322c CrossRefGoogle Scholar
  123. 123.
    Zhang Z-C, Hui J-F, Liu Z-C, Zhang X, Zhuang J, Wang X (2012) Glycine-mediated syntheses of Pt concave nanocubes with high-index {hk0} facets and their enhanced electrocatalytic activities. Langmuir 28(42):14845–14848. doi: 10.1021/la302973r CrossRefGoogle Scholar
  124. 124.
    Xia BY, Wu HB, Wang X, Lou XW (2013) Highly concave platinum nanoframes with high-index facets and enhanced electrocatalytic properties. Angew Chem Int Ed 52(47):12337–12340. doi: 10.1002/anie.201307518 CrossRefGoogle Scholar
  125. 125.
    Lu GQ, Crown A, Wieckowski A (1999) Formic acid decomposition on polycrystalline platinum and palladized platinum electrodes. J Phys Chem B 103(44):9700–9711CrossRefGoogle Scholar
  126. 126.
    Rice C, Ha S, Masel RI, Wieckowski A (2003) Catalysts for direct formic acid fuel cells. J Power Sources 115(2):229–235. doi: 10.1016/s0378-7753(03)00026-0 CrossRefGoogle Scholar
  127. 127.
    Rice C, Ha RI, Masel RI, Waszczuk P, Wieckowski A, Barnard T (2002) Direct formic acid fuel cells. J Power Sources 111(1):83–89CrossRefGoogle Scholar
  128. 128.
    Hoshi N, Kida K, Nakamura M, Nakada M, Osada K (2006) Structural effects of electrochemical oxidation of formic acid on single crystal electrodes of palladium. J Phys Chem B 110(25):12480–12484CrossRefGoogle Scholar
  129. 129.
    Baldauf M, Kolb DM (1996) Formic acid oxidation on ultrathin Pd films on Au(hkl) and Pt(hkl) electrodes. J Phys Chem 100(27):11375–11381CrossRefGoogle Scholar
  130. 130.
    Jin M, Zhang H, Xie Z, Xia Y (2012) Palladium nanocrystals enclosed by {100} and {111} facets in controlled proportions and their catalytic activities for formic acid oxidation. Energy Environ Sci 5(4):6352–6357CrossRefGoogle Scholar
  131. 131.
    Zhang H-X, Wang H, Re Y-S, Cai W-B (2012) Palladium nanocrystals bound by {110} or {100} facets: from one pot synthesis to electrochemistry. Chem Commun 48(67):8362–8364. doi: 10.1039/c2cc33941b CrossRefGoogle Scholar
  132. 132.
    Shao Z, Zhu W, Wang H, Yang Q, Yang S, Liu X, Wang G (2013) Controllable synthesis of concave nanocubes, right bipyramids, and 5-fold twinned nanorods of palladium and their enhanced electrocatalytic performance. J Phys Chem C 117(27):14289–14294CrossRefGoogle Scholar
  133. 133.
    Kuo CH, Lamontagne LK, Brodsky CN, Chou LY, Zhuang J, Sneed BT, Sheehan MK, Tsung CK (2013) The effect of lattice strain on the catalytic properties of Pd nanocrystals. Chemsuschem 6(10):1993–2000CrossRefGoogle Scholar
  134. 134.
    Xia X, Choi SI, Herron JA, Lu N, Scaranto J, Peng HC, Wang J, Mavrikakis M, Kim MJ, Xia Y (2013) Facile synthesis of palladium right bipyramids and their use as seeds for overgrowth and as catalysts for formic acid oxidation. J Am Chem Soc 135(42):15706–15709CrossRefGoogle Scholar
  135. 135.
    LV T, Wang Y, Choi SI, Chi M, Tao J, Pan L, Huang CZ, Zhu Y, Xia Y (2013) Controlled synthesis of nanosized palladium icosahedra and their catalytic activity towards formic-acid oxidation. Chemsuschem 6(10):1923–1930CrossRefGoogle Scholar
  136. 136.
    Shao M, Odell J, Humbert M, Yu T, Xia Y (2013) Electrocatalysis on shape-controlled palladium nanocrystals: oxygen reduction reaction and formic acid oxidation. J Phys Chem C 117(8):4172–4180CrossRefGoogle Scholar
  137. 137.
    Zhang X, Yin H, Wang J, Chang L, Gao Y, Liu W, Tang Z (2013) Shape-dependent electrocatalytic activity of monodispersed palladium nanocrystals toward formic acid oxidation. Nanoscale 5(18):8392–8397. doi: 10.1039/c3nr03100d CrossRefGoogle Scholar
  138. 138.
    Zhang J, Feng C, Deng Y, Liu L, Wu Y, Shen B, Zhong C, Hu W (2014) Shape-controlled synthesis of palladium single-crystalline nanoparticles: the effect of HCl oxidative etching and facet-dependent catalytic properties. Chem Mater 26(2):1213–1218. doi: 10.1021/cm403591g CrossRefGoogle Scholar
  139. 139.
    Tang Y, Edelmann RE, Zou S (2014) Length tunable penta-twinned palladium nanorods: seedless synthesis and electrooxidation of formic acid. Nanoscale 6(11):5630–5633. doi: 10.1039/c4nr00299g CrossRefGoogle Scholar
  140. 140.
    Nørskov JK, Abild-Pedersen F, Studt F, Bligaard T (2011) Density functional theory in surface chemistry and catalysis. Proc Natl Acad Sci 108(3):937–943. doi: 10.1073/pnas.1006652108 CrossRefGoogle Scholar
  141. 141.
    Boronat-Gonzalez A, Herrero E, Feliu JM (2014) Fundamental aspects of HCOOH oxidation at platinum single crystal surfaces with basal orientations and modified by irreversibly adsorbed adatoms. J Solid State Electrochem 18(5):1181–1193. doi: 10.1007/s10008-013-2209-x CrossRefGoogle Scholar
  142. 142.
    Chen QS, Zhou ZY, Vidal-Iglesias FJ, Solla-Gullon J, Feliu JM, Sun SG (2011) Significantly enhancing catalytic activity of tetrahexahedral Pt nanocrystals by Bi adatom decoration. J Am Chem Soc 133(33):12930–12933. doi: 10.1021/ja2042029 CrossRefGoogle Scholar
  143. 143.
    López-Cudero A, Vidal-Iglesias FJ, Solla-Gullón J, Herrero E, Aldaz A, Feliu JM (2009) Formic acid electrooxidation on Bi-modified polyoriented and preferential (111) Pt nanoparticles. Phys Chem Chem Phys 11(2):416–424. doi: 10.1039/b814072c CrossRefGoogle Scholar
  144. 144.
    Vidal-Iglesias FJ, Solla-Gullon J, Herrero E, Aldaz A, Feliu JM (2010) Pd adatom decorated (100) preferentially oriented Pt nanoparticles for formic acid electrooxidation. Angew Chem Int Ed 49(39):6998–7001. doi: 10.1002/anie.201002501 CrossRefGoogle Scholar
  145. 145.
    Vidal-Iglesias FJ, Lopez-Cudero A, Solla-Gullon J, Aldaz A, Feliu JM (2012) Pd-modified shape-controlled Pt nanoparticles towards formic acid electrooxidation. Electrocatalysis 3(3–4):313–323. doi: 10.1007/s12678-012-0094-1 CrossRefGoogle Scholar
  146. 146.
    Vidal-Iglesias FJ, López-Cudero A, Solla-Gullón J, Feliu JM (2013) Towards more active and stable electrocatalysts for formic acid electrooxidation: antimony-decorated octahedral platinum nanoparticles. Angew Chem Int Ed 52(3):964–967. doi: 10.1002/anie.201207517 CrossRefGoogle Scholar
  147. 147.
    Buso-Rogero C, Perales-Rondon JV, Farias MJS, Vidal-Iglesias FJ, Solla-Gullon J, Herrero E, Feliu JM (2014) Formic acid electrooxidation on thallium-decorated shape-controlled platinum nanoparticles: an improvement in electrocatalytic activity. Phys Chem Chem Phys 16(27):13616–13624. doi: 10.1039/c4cp00304g CrossRefGoogle Scholar
  148. 148.
    Liu HX, Tian N, Brandon MP, Pei J, Huangfu ZC, Zhan C, Zhou ZY, Hardacre C, Lin WF, Sun SG (2012) Enhancing the activity and tuning the mechanism of formic acid oxidation at tetrahexahedral Pt nanocrystals by Au decoration. Phys Chem Chem Phys 14(47):16415–16423CrossRefGoogle Scholar
  149. 149.
    Yuan Q, Zhou Z, Zhuang J, Wang X (2010) Pd-Pt random alloy nanocubes with tunable compositions and their enhanced electrocatalytic activities. Chem Commun 46(9):1491–1493. doi: 10.1039/b922792j CrossRefGoogle Scholar
  150. 150.
    Zhang J, Yang H, Yang K, Fang J, Zou S, Luo Z, Wang H, Bae IT, Jung DY (2010) Monodisperse Pt3Fe nanocubes: synthesis, characterization, self-assembly, and electrocatalytic activity. Adv Funct Mater 20(21):3727–3733CrossRefGoogle Scholar
  151. 151.
    Yang H, Dai L, Xu D, Fang J, Zou S (2010) Electrooxidation of methanol and formic acid on PtCu nanoparticles. Electrochim Acta 55(27):8000–8004. doi: 10.1016/j.electacta.2010.03.026 CrossRefGoogle Scholar
  152. 152.
    Xu D, Bliznakov S, Liu Z, Fang J, Dimitrov N (2010) Composition-dependent electrocatalytic activity of Pt-Cu nanocube catalysts for formic acid oxidation. Angew Chem Int Ed 49(7):1282–1285. doi: 10.1002/anie.200905248 CrossRefGoogle Scholar
  153. 153.
    Zhang J, Yang H, Martens B, Luo Z, Xu D, Wang Y, Zou S, Fang J (2012) Pt-Cu nanoctahedra: synthesis and comparative study with nanocubes on their electrochemical catalytic performance. Chem Sci 3(11):3302–3306CrossRefGoogle Scholar
  154. 154.
    Bromberg L, Fayette M, Martens B, Luo ZP, Wang Y, Xu D, Zhang J, Fang J, Dimitrov N (2013) Catalytic performance comparison of shape-dependent nanocrystals and oriented ultrathin films of Pt4Cu alloy in the formic acid oxidation process. Electrocatalysis 4(1):24–36CrossRefGoogle Scholar
  155. 155.
    Quan Z, Wang Y, Fang J (2013) High-index faceted noble metal nanocrystals. Acc Chem Res 46(2):191–202CrossRefGoogle Scholar
  156. 156.
    Porter NS, Wu H, Quan Z, Fang J (2013) Shape-control and electrocatalytic activity-enhancement of Pt-based bimetallic nanocrystals. Acc Chem Res 46(8):1867–1877. doi: 10.1021/ar3002238 CrossRefGoogle Scholar
  157. 157.
    Kang Y, Murray CB (2010) Synthesis and electrocatalytic properties of cubic Mn–Pt nanocrystals (nanocubes). J Am Chem Soc 132(22):7568–7569. doi: 10.1021/ja100705j CrossRefGoogle Scholar
  158. 158.
    Yu Y, Zhang Q, Liu B, Lee JY (2010) Synthesis of nanocrystals with variable high-index Pd facets through the controlled heteroepitaxial growth of trisoctahedral Au templates. J Am Chem Soc 132(51):18258–18265CrossRefGoogle Scholar
  159. 159.
    Zhang L, Zhang J, Kuang Q, Xie S, Jiang Z, Xie Z, Zheng L (2011) Cu2 + -assisted synthesis of hexoctahedral Au-Pd alloy nanocrystals with high-index facets. J Am Chem Soc 133(43):17114–17117CrossRefGoogle Scholar
  160. 160.
    Deng YJ, Tian N, Zhou ZY, Huang R, Liu ZL, Xiao J, Sun SG (2012) Alloy tetrahexahedral Pd-Pt catalysts: enhancing significantly the catalytic activity by synergy effect of high-index facets and electronic structure. Chem Sci 3(4):1157–1161CrossRefGoogle Scholar
  161. 161.
    Zhang ZC, Hui JF, Guo ZG, Yu QY, Xu B, Zhang X, Liu ZC, Xu CM, Gao JS, Wang X (2012) Solvothermal synthesis of Pt-Pd alloys with selective shapes and their enhanced electrocatalytic activities. Nanoscale 4(8):2633–2639CrossRefGoogle Scholar
  162. 162.
    Jia Y, Jiang Y, Zhang J, Zhang L, Chen Q, Xie Z, Zheng L (2014) Unique excavated rhombic dodecahedral PtCu3 alloy nanocrystals constructed with ultrathin nanosheets of high-energy {110} facets. J Am Chem Soc 136(10):3748–3751. doi: 10.1021/ja413209q CrossRefGoogle Scholar
  163. 163.
    Sneed BT, Young AP, Jalalpoor D, Golden MC, Mao S, Jiang Y, Wang Y, Tsung C-K (2014) Shaped Pd–Ni–Pt core-sandwich-shell nanoparticles: influence of Ni sandwich layers on catalytic electrooxidations. ACS Nano 8(7):7239–7250. doi: 10.1021/nn502259g CrossRefGoogle Scholar
  164. 164.
    Zhang L, Choi S-I, Tao J, Peng H-C, Xie S, Zhu Y, Xie Z, Xia Y (2014) Pd-Cu bimetallic tripods: a mechanistic understanding of the synthesis and their enhanced electrocatalytic activity for formic acid oxidation. Adv Funct Mater 24(47):7520–7529. doi: 10.1002/adfm.201402350 CrossRefGoogle Scholar
  165. 165.
    Li M, Adzic R (2013) Low-platinum-content electrocatalysts for methanol and ethanol electrooxidation. In: Shao M (ed) Electrocatalysis in fuel cells, vol 9, Lecture notes in energy. Springer, London, pp 1–25. doi: 10.1007/978-1-4471-4911-8_1 CrossRefGoogle Scholar
  166. 166.
    Xia XH, Iwasita T, Ge F, Vielstich W (1996) Structural effects and reactivity in methanol oxidation on polycrystal line and single crystal platinum. Electrochim Acta 41(5):711–718CrossRefGoogle Scholar
  167. 167.
    Lamy C, Leger JM, Clavilier J, Parsons R (1983) Structural effects in electrocatalysis—a comparative-study of the oxidation of CO, HCOOH and CH3OH on single-crystal Pt electrodes. J Electroanal Chem 150(1-2):71–77CrossRefGoogle Scholar
  168. 168.
    Hofstead-Duffy AM, Chen D-J, Sun S-G, Tong YJ (2012) Origin of the current peak of negative scan in the cyclic voltammetry of methanol electro-oxidation on Pt-based electrocatalysts: a revisit to the current ratio criterion. J Mater Chem 22(11):5205–5208. doi: 10.1039/c2jm15426a CrossRefGoogle Scholar
  169. 169.
    Chen G, Tan Y, Wu B, Fu G, Zheng N (2012) Carbon monoxide-controlled synthesis of surface-clean Pt nanocubes with high electrocatalytic activity. Chem Commun 48(22):2758–2760. doi: 10.1039/c2cc17984a CrossRefGoogle Scholar
  170. 170.
    Chen J, Mao J, Zhao J, Ren M, Wei M (2014) Surfactant-free platinum nanocubes with greatly enhanced activity towards methanol/ethanol electrooxidation. RSC Adv 4(55):28832–28835. doi: 10.1039/c4ra03446e CrossRefGoogle Scholar
  171. 171.
    Liu H-X, Tian N, Brandon MP, Zhou Z-Y, Lin J-L, Hardacre C, Lin W-F, Sun S-G (2012) Tetrahexahedral Pt nanocrystal catalysts decorated with Ru adatoms and their enhanced activity in methanol electrooxidation. ACS Catal 2(5):708–715. doi: 10.1021/cs200686a CrossRefGoogle Scholar
  172. 172.
    Arjona N, Guerra-Balcázar M, Ortiz-Frade L, Osorio-Monreal G, Álvarez-Contreras L, Ledesma-García J, Arriaga LG (2013) Electrocatalytic activity of well-defined and homogeneous cubic-shaped Pd nanoparticles. J Mater Chem A 1(48):15524–15529CrossRefGoogle Scholar
  173. 173.
    Kannan P, Maiyalagan T, Opallo M (2013) One-pot synthesis of chain-like palladium nanocubes and their enhanced electrocatalytic activity for fuel-cell applications. Nano Energy 2(5):677–687. doi: 10.1016/j.nanoen.2013.08.001 CrossRefGoogle Scholar
  174. 174.
    Qin Y-L, Zhang X-B, Wang J, Wang L-M (2012) Rapid and shape-controlled synthesis of “clean” star-like and concave Pd nanocrystallites and their high performance toward methanol oxidation. J Mater Chem 22(30):14861–14863. doi: 10.1039/c2jm32682e CrossRefGoogle Scholar
  175. 175.
    Wang A-J, Li F-F, Zheng J-N, Xi H-X, Meng Z-Y, Feng J-J (2013) Green synthesis of porous flower-like palladium with high electrocatalytic activity towards methanol oxidation. RSC Adv 3(26):10355–10362. doi: 10.1039/c3ra40556g CrossRefGoogle Scholar
  176. 176.
    Chen X, Cai Z, Chen X, Oyama M (2014) Synthesis of bimetallic PtPd nanocubes on graphene with N,N-dimethylformamide and their direct use for methanol electrocatalytic oxidation. Carbon 66:387–394. doi: 10.1016/j.carbon.2013.09.014 CrossRefGoogle Scholar
  177. 177.
    Yin AX, Min XQ, Zhang YW, Yan CH (2011) Shape-selective synthesis and facet-dependent enhanced electrocatalytic activity and durability of monodisperse sub-10 nm Pt-Pd tetrahedrons and cubes. J Am Chem Soc 133(11):3816–3819CrossRefGoogle Scholar
  178. 178.
    Lee Y-W, Ko AR, Han S-B, Kim H-S, Park K-W (2011) Synthesis of octahedral Pt-Pd alloy nanoparticles for improved catalytic activity and stability in methanol electrooxidation. Phys Chem Chem Phys 13(13):5569–5572. doi: 10.1039/c0cp02167a CrossRefGoogle Scholar
  179. 179.
    Yin A-X, Min X-Q, Zhu W, Wu H-S, Zhang Y-W, Yan C-H (2012) Multiply twinned Pt-Pd nanoicosahedrons as highly active electrocatalysts for methanol oxidation. Chem Commun 48(4):543–545. doi: 10.1039/c1cc16482a CrossRefGoogle Scholar
  180. 180.
    Zhan F, Bian T, Zhao W, Zhang H, Jin M, Yang D (2014) Facile synthesis of Pd-Pt alloy concave nanocubes with high-index facets as electrocatalysts for methanol oxidation. CrystEngComm 16(12):2411–2416. doi: 10.1039/c3ce42362j CrossRefGoogle Scholar
  181. 181.
    Zhang J, Xi C, Feng C, Xia H, Wang D, Tao X (2014) High yield seedless synthesis of high-quality gold nanocrystals with various shapes. Langmuir 30(9):2480–2489. doi: 10.1021/la404602h CrossRefGoogle Scholar
  182. 182.
    Venkatasubramanian R, He J, Johnson MW, Stern I, Kim DH, Pesika NS (2013) Additive-mediated electrochemical synthesis of platelike copper crystals for methanol electrooxidation. Langmuir 29(43):13135–13139. doi: 10.1021/la4027078 CrossRefGoogle Scholar
  183. 183.
    Qi Y, Bian T, Choi S-I, Jiang Y, Jin C, Fu M, Zhang H, Yang D (2014) Kinetically controlled synthesis of Pt-Cu alloy concave nanocubes with high-index facets for methanol electro-oxidation. Chem Commun 50(5):560–562. doi: 10.1039/c3cc48061e CrossRefGoogle Scholar
  184. 184.
    Yin A-X, Min X-Q, Zhu W, Liu W-C, Zhang Y-W, Yan C-H (2012) Pt-Cu and Pt-Pd-Cu concave nanocubes with high-index facets and superior electrocatalytic activity. Chem Eur J 18(3):777–782. doi: 10.1002/chem.201102632 CrossRefGoogle Scholar
  185. 185.
    Choi S-I, Choi R, Han SW, Park JT (2011) Shape-controlled synthesis of Pt3Co nanocrystals with high electrocatalytic activity toward oxygen reduction. Chem Eur J 17(44):12280–12284. doi: 10.1002/chem.201101138 CrossRefGoogle Scholar
  186. 186.
    Hu Y, Wu P, Zhang H, Cai C (2012) Synthesis of graphene-supported hollow Pt–Ni nanocatalysts for highly active electrocatalysis toward the methanol oxidation reaction. Electrochim Acta 85:314–321. doi: 10.1016/j.electacta.2012.08.080 CrossRefGoogle Scholar
  187. 187.
    Hu Y, Wu P, Yin Y, Zhang H, Cai C (2012) Effects of structure, composition, and carbon support properties on the electrocatalytic activity of Pt-Ni-graphene nanocatalysts for the methanol oxidation. Appl Catal Environ 111–112:208–217. doi: 10.1016/j.apcatb.2011.10.001 CrossRefGoogle Scholar
  188. 188.
    Wang L, Nemoto Y, Yamauchi Y (2011) Direct synthesis of spatially-controlled Pt-on-Pd bimetallic nanodendrites with superior electrocatalytic activity. J Am Chem Soc 133(25):9674–9677. doi: 10.1021/ja202655j CrossRefGoogle Scholar
  189. 189.
    Wang L, Yamauchi Y (2011) Synthesis of mesoporous pt nanoparticles with uniform particle size from aqueous surfactant solutions toward highly active electrocatalysts. Chem Eur J 17(32):8810–8815. doi: 10.1002/chem.201100386 CrossRefGoogle Scholar
  190. 190.
    Zhou X-W, Zhang R-H, Zhou Z-Y, Sun S-G (2011) Preparation of PtNi hollow nanospheres for the electrocatalytic oxidation of methanol. J Power Sources 196(14):5844–5848. doi: 10.1016/j.jpowsour.2011.02.088 CrossRefGoogle Scholar
  191. 191.
    Luo X, Liu Y, Zhang H, Yang B (2012) Shape-selective synthesis and facet-dependent electrocatalytic activity of CoPt3 nanocrystals. CrystEngComm 14(10):3359–3362. doi: 10.1039/c2ce25088h CrossRefGoogle Scholar
  192. 192.
    Kang Y, Pyo JB, Ye X, Gordon TR, Murray CB (2012) Synthesis, shape control, and methanol electro-oxidation properties of Pt-Zn alloy and Pt 3Zn intermetallic nanocrystals. ACS Nano 6(6):5642–5647CrossRefGoogle Scholar
  193. 193.
    Koper MTM, Lai SCS, Herrero E (2009) Mechanisms of the oxidation of carbon monoxide and small organic molecules at metal electrodes. In: Koper MTM (ed) Fuel cell catalysis. A surface science approach. Wiley, Hoboken, pp 159–208CrossRefGoogle Scholar
  194. 194.
    Buso-Rogero C, Grozovski V, Vidal-Iglesias FJ, Solla-Gullon J, Herrero E, Feliu JM (2013) Surface structure and anion effects in the oxidation of ethanol on platinum nanoparticles. J Mater Chem A 1(24):7068–7076. doi: 10.1039/c3ta10996h CrossRefGoogle Scholar
  195. 195.
    Lee YW, Han SB, Kim DY, Park KW (2011) Monodispersed platinum nanocubes for enhanced electrocatalytic properties in alcohol electrooxidation. Chem Commun 47(22):6296–6298CrossRefGoogle Scholar
  196. 196.
    Wei L, Fan YJ, Wang HH, Tian N, Zhou ZY, Sun SG (2012) Electrochemically shape-controlled synthesis in deep eutectic solvents of Pt nanoflowers with enhanced activity for ethanol oxidation. Electrochim Acta 76:468–474CrossRefGoogle Scholar
  197. 197.
    Wei L, Fan YJ, Tian N, Zhou ZY, Zhao XQ, Mao BW, Sun SG (2012) Electrochemically shape-controlled synthesis in deep eutectic solvents—a new route to prepare Pt nanocrystals enclosed by high-index facets with high catalytic activity. J Phys Chem C 116(2):2040–2044CrossRefGoogle Scholar
  198. 198.
    Wei L, Zhou ZY, Chen SP, Xu CD, Su D, Schuster ME, Sun SG (2013) Electrochemically shape-controlled synthesis in deep eutectic solvents: triambic icosahedral platinum nanocrystals with high-index facets and their enhanced catalytic activity. Chem Commun 49(95):11152–11154CrossRefGoogle Scholar
  199. 199.
    Zhou ZY, Shang SJ, Tian N, Wu BH, Zheng NF, Xu BB, Chen C, Wang HH, Xiang DM, Sun SG (2012) Shape transformation from Pt nanocubes to tetrahexahedra with size near 10 nm. Electrochem Commun 22(1):61–64CrossRefGoogle Scholar
  200. 200.
    Zhang L, Chen D, Jiang Z, Zhang J, Xie S, Kuang Q, Xie Z, Zheng L (2012) Facile syntheses and enhanced electrocatalytic activities of Pt nanocrystals with {hkk} high-index surfaces. Nano Res 5(3):181–189CrossRefGoogle Scholar
  201. 201.
    Zhang J, Zhang L, Xie S, Kuang Q, Han X, Xie Z, Zheng L (2011) Synthesis of concave palladium nanocubes with high-index surfaces and high electrocatalytic activities. Chem Eur J 17(36):9915–9919CrossRefGoogle Scholar
  202. 202.
    Yu N-F, Tian N, Zhou Z-Y, Huang L, Xiao J, Wen Y-H, Sun S-G (2014) Electrochemical synthesis of tetrahexahedral rhodium nanocrystals with extraordinarily high surface energy and high electrocatalytic activity. Angew Chem Int Ed 53(20):5097–5101. doi: 10.1002/anie.201310597 Google Scholar
  203. 203.
    Chen X, Cai Z, Chen X, Oyama M (2014) Green synthesis of graphene-PtPd alloy nanoparticles with high electrocatalytic performance for ethanol oxidation. J Mater Chem 2(2):315–320. doi: 10.1039/c3ta13155f CrossRefGoogle Scholar
  204. 204.
    de Souza JPI, Queiroz SL, Bergamaski K, Gonzalez ER, Nart FC (2002) Electro-oxidation of ethanol on Pt, Rh, and PtRh electrodes. A study using DEMS and in-situ FTIR techniques. J Phys Chem B 106(38):9825–9830. doi: 10.1021/jp014645c CrossRefGoogle Scholar
  205. 205.
    Lima FHB, Gonzalez ER (2008) Ethanol electro-oxidation on carbon-supported Pt-Ru, Pt-Rh and Pt-Ru-Rh nanoparticles. Electrochim Acta 53(6):2963–2971CrossRefGoogle Scholar
  206. 206.
    Yuan Q, Zhou Z, Zhuang J, Wang X (2010) Seed displacement, epitaxial synthesis of Rh/Pt bimetallic ultrathin nanowires for highly selective oxidizing ethanol to CO2. Chem Mater 22(7):2395–2402CrossRefGoogle Scholar
  207. 207.
    Rao L, Jiang Y-X, Zhang B-W, Cai Y-R, Sun S-G (2014) High activity of cubic PtRh alloys supported on graphene towards ethanol electrooxidation. Phys Chem Chem Phys 16(27):13662–13671. doi: 10.1039/c3cp55059a CrossRefGoogle Scholar
  208. 208.
    Hong JW, Lee YW, Kim M, Kang SW, Han SW (2011) One-pot synthesis and electrocatalytic activity of octapodal Au-Pd nanoparticles. Chem Commun 47(9):2553–2555. doi: 10.1039/c0cc04856a CrossRefGoogle Scholar
  209. 209.
    Wang ED, Xu JB, Zhao TS (2010) Density functional theory studies of the structure sensitivity of ethanol oxidation on palladium surfaces. J Phys Chem C 114(23):10489–10497. doi: 10.1021/jp101244t CrossRefGoogle Scholar
  210. 210.
    Zhang J, Hou C, Huang H, Zhang L, Jiang Z, Chen G, Jia Y, Kuang Q, Xie Z, Zheng L (2013) Surfactant-concentration-dependent shape evolution of Au–Pd alloy nanocrystals from rhombic dodecahedron to trisoctahedron and hexoctahedron. Small 9(4):538–544. doi: 10.1002/smll.201202013 CrossRefGoogle Scholar
  211. 211.
    Zhang G-R, Wu J, Xu B-Q (2012) Syntheses of sub-30 nm Au@Pd concave nanocubes and Pt-on-(Au@Pd) trimetallic nanostructures as highly efficient catalysts for ethanol oxidation. J Phys Chem C 116(39):20839–20847. doi: 10.1021/jp304570c CrossRefGoogle Scholar
  212. 212.
    Xing W, Yin G, Zhang J (2014) Rotating electrode methods and oxygen reduction electrocatalysts. Elsevier Science, AmsterdamGoogle Scholar
  213. 213.
    Katsounaros I, Cherevko S, Zeradjanin AR, Mayrhofer KJJ (2014) Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew Chem Int Ed 53(1):102–121CrossRefGoogle Scholar
  214. 214.
    Vidal-Iglesias F, Solla-Gullón J, Herrero E, Feliu J (2013) Au electrocatalysis for oxygen reduction. In: Shao M (ed) Electrocatalysis in fuel cells, vol 9, Lecture notes in energy. Springer, London, pp 483–512. doi: 10.1007/978-1-4471-4911-8_16 CrossRefGoogle Scholar
  215. 215.
    Guo S, Zhang S, Sun S (2013) Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew Chem Int Ed 52(33):8526–8544CrossRefGoogle Scholar
  216. 216.
    Lee J, Jeong B, Ocon JD (2013) Oxygen electrocatalysis in chemical energy conversion and storage technologies. Curr Appl Phys 13(2):309–321CrossRefGoogle Scholar
  217. 217.
    Gewirth AA, Thorum MS (2010) Electroreduction of dioxygen for fuel-cell applications: materials and challenges. Inorg Chem 49(8):3557–3566. doi: 10.1021/ic9022486 CrossRefGoogle Scholar
  218. 218.
    Wu J, Yang H (2013) Platinum-based oxygen reduction electrocatalysts. Acc Chem Res 46(8):1848–1857. doi: 10.1021/ar300359w CrossRefGoogle Scholar
  219. 219.
    Gomez-Marin AM, Rizo R, Feliu JM (2014) Oxygen reduction reaction at Pt single crystals: a critical overview. Catal Sci Technol 4(6):1685–1698. doi: 10.1039/C3cy01049j CrossRefGoogle Scholar
  220. 220.
    Gomez-Marin AM, Rizo R, Feliu JM (2013) Some reflections on the understanding of the oxygen reduction reaction at Pt(111). Beilstein J Nanotechnol 4:956–967. doi: 10.3762/Bjnano.4.108 CrossRefGoogle Scholar
  221. 221.
    Adzic RR (1998) Recent advances in the kinetics of oxygen reduction. In: Lipkowski J, Ross PN (eds) Electrocatalysis. Wiley-VCH, New York, pp 197–242Google Scholar
  222. 222.
    Markovic NM, Gasteiger HA, Ross PN (1995) Oxygen reduction on platinum low-index single-crystal surfaces in sulfuric-acid-solution—rotating ring-Pt(Hkl) disk studies. J Phys Chem 99(11):3411–3415CrossRefGoogle Scholar
  223. 223.
    Kuzume A, Herrero E, Feliu JM (2007) Oxygen reduction on stepped platinum surfaces in acidic media. J Electroanal Chem 599(2):333–343. doi: 10.1016/j.jelechem.2006.05.006 CrossRefGoogle Scholar
  224. 224.
    Bandarenka AS, Hansen HA, Rossmeisl J, Stephens IEL (2014) Elucidating the activity of stepped Pt single crystals for oxygen reduction. Phys Chem Chem Phys 16(27):13625–13629CrossRefGoogle Scholar
  225. 225.
    Maciá MD, Campina JM, Herrero E, Feliu JM (2004) On the kinetics of oxygen reduction on platinum stepped surfaces in acidic media. J Electroanal Chem 564(1-2):141–150. doi: 10.1016/j.jelechem.2003.09.035 CrossRefGoogle Scholar
  226. 226.
    Inaba M, Ando M, Hatanaka A, Nomoto A, Matsuzawa K, Tasaka A, Kinumoto T, Iriyama Y, Ogumi Z (2006) Controlled growth and shape formation of platinum nanoparticles and their electrochemical properties. Electrochim Acta 52(4):1632–1638CrossRefGoogle Scholar
  227. 227.
    Sanchez-Sanchez CM, Solla-Gullon J, Vidal-Iglesias FJ, Aldaz A, Montiel V, Herrero E (2010) Imaging structure sensitive catalysis on different shape-controlled platinum nanoparticles. J Am Chem Soc 132(16):5622–5624. doi: 10.1021/ja100922h CrossRefGoogle Scholar
  228. 228.
    Yu T, Kim DY, Zhang H, Xia Y (2011) Platinum concave nanocubes with high-index facets and their enhanced activity for oxygen reduction reaction. Angew Chem Int Ed 50(12):2773–2777CrossRefGoogle Scholar
  229. 229.
    Fu G, Wu K, Jiang X, Tao L, Chen Y, Lin J, Zhou Y, Wei S, Tang Y, Lu T, Xia X (2013) Polyallylamine-directed green synthesis of platinum nanocubes. Shape and electronic effect codependent enhanced electrocatalytic activity. Phys Chem Chem Phys 15(11):3793–3802CrossRefGoogle Scholar
  230. 230.
    Zhou W, Wu J, Yang H (2013) Highly uniform platinum icosahedra made by hot injection-assisted GRAILS method. Nano Lett 13(6):2870–2874CrossRefGoogle Scholar
  231. 231.
    Wu J, Gross A, Yang H (2011) Shape and composition-controlled platinum alloy nanocrystals using carbon monoxide as reducing agent. Nano Lett 11(2):798–802. doi: 10.1021/nl104094p CrossRefGoogle Scholar
  232. 232.
    Kang Y, Ye X, Murray CB (2010) Size- and shape-selective synthesis of metal nanocrystals and nanowires using CO as a reducing agent. Angew Chem Int Ed 49(35):6156–6159CrossRefGoogle Scholar
  233. 233.
    Tripković V, Cerri I, Bligaard T, Rossmeisl J (2014) The influence of particle shape and size on the activity of platinum nanoparticles for oxygen reduction reaction: a density functional theory study. Catal Lett 144(3):380–388CrossRefGoogle Scholar
  234. 234.
    Li D, Wang C, Strmcnik DS, Tripkovic DV, Sun X, Kang Y, Chi M, Snyder JD, van der Vliet D, Tsai Y, Stamenkovic VR, Sun S, Markovic NM (2014) Functional links between Pt single crystal morphology and nanoparticles with different size and shape: the oxygen reduction reaction case. Energy Environ Sci 7:4061–4069. doi: 10.1039/c4ee01564a CrossRefGoogle Scholar
  235. 235.
    Kondo S, Nakamura M, Maki N, Hoshi N (2009) Active sites for the oxygen reduction reaction on the low and high index planes of palladium. J Phys Chem C 113(29):12625–12628CrossRefGoogle Scholar
  236. 236.
    Hitotsuyanagi A, Kondo S, Nakamura M, Hoshi N (2011) Structural effects on the oxygen reduction reaction on n(1 1 1)-(1 0 0) series of Pd. J Electroanal Chem 657(1–2):123–127CrossRefGoogle Scholar
  237. 237.
    Xiao L, Zhuang L, Liu Y, Lu J, Abruña HD (2008) Activating Pd by morphology tailoring for oxygen reduction. J Am Chem Soc 131(2):602–608. doi: 10.1021/ja8063765 CrossRefGoogle Scholar
  238. 238.
    Shao M, Yu T, Odell JH, Jin M, Xia Y (2011) Structural dependence of oxygen reduction reaction on palladium nanocrystals. Chem Commun 47(23):6566–6568CrossRefGoogle Scholar
  239. 239.
    Grdeń M, Łukaszewski M, Jerkiewicz G, Czerwiński A (2008) Electrochemical behaviour of palladium electrode: oxidation, electrodissolution and ionic adsorption. Electrochim Acta 53(26):7583–7598CrossRefGoogle Scholar
  240. 240.
    Lee C-L, Chiou H-P, Liu C-R (2012) Palladium nanocubes enclosed by (100) planes as electrocatalyst for alkaline oxygen electroreduction. Int J Hydrogen Energy 37(5):3993–3997. doi: 10.1016/j.ijhydene.2011.11.118 CrossRefGoogle Scholar
  241. 241.
    Shao M (2013) Palladium-based electrocatalysts for oxygen reduction reaction. In: Shao M (ed) Electrocatalysis in fuel cells, vol 9, Lecture notes in energy. Springer, London, pp 513–531. doi: 10.1007/978-1-4471-4911-8_17 CrossRefGoogle Scholar
  242. 242.
    Zhang H, Jin M, Xiong Y, Lim B, Xia Y (2012) Shape-controlled synthesis of Pd nanocrystals and their catalytic applications. Acc Chem Res 46(8):1783–1794. doi: 10.1021/ar300209w CrossRefGoogle Scholar
  243. 243.
    Rodriguez P, Koper MTM (2014) Electrocatalysis on gold. Phys Chem Chem Phys 16(27):13583–13594. doi: 10.1039/c4cp00394b CrossRefGoogle Scholar
  244. 244.
    Mei D, He ZD, Zheng YL, Jiang DC, Chen Y-X (2014) Mechanistic and kinetic implications on the ORR on a Au(100) electrode: pH, temperature and H-D kinetic isotope effects. Phys Chem Chem Phys 16(27):13762–13773. doi: 10.1039/c4cp00257a CrossRefGoogle Scholar
  245. 245.
    Erikson H, Sarapuu A, Tammeveski K, Solla-Gullón J, Feliu JM (2014) Shape-dependent electrocatalysis: oxygen reduction on carbon-supported gold nanoparticles. ChemElectroChem 1(8):1338–1347. doi: 10.1002/celc.201402013 CrossRefGoogle Scholar
  246. 246.
    Gan L, Cui C, Rudi S, Strasser P (2014) Core-shell and nanoporous particle architectures and their effect on the activity and stability of Pt ORR electrocatalysts. Top Catal 57(1–4):236–244CrossRefGoogle Scholar
  247. 247.
    Oezaslan M, Hasché F, Strasser P (2013) Pt-based core-shell catalyst architectures for oxygen fuel cell electrodes. J Phys Chem Lett 4(19):3273–3291CrossRefGoogle Scholar
  248. 248.
    Lim B, Jiang M, Camargo PHC, Cho EC, Tao J, Lu X, Zhu Y, Xia Y (2009) Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324(5932):1302–1305CrossRefGoogle Scholar
  249. 249.
    Stamenkovic VR, Fowler B, Mun BS, Wang GF, Ross PN, Lucas CA, Markovic NM (2007) Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315(5811):493–497CrossRefGoogle Scholar
  250. 250.
    Gasteiger HA, Markovic NM (2009) Just a dream or future reality? Science 324(5923):48–49CrossRefGoogle Scholar
  251. 251.
    Zhang J, Yang H, Fang J, Zou S (2010) Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra. Nano Lett 10(2):638–644CrossRefGoogle Scholar
  252. 252.
    Zhang J, Fang J (2009) A general strategy for preparation of Pt 3d-transition metal (Co, Fe, Ni) nanocubes. J Am Chem Soc 131(51):18543–18547CrossRefGoogle Scholar
  253. 253.
    Wu J, Zhang J, Peng Z, Yang S, Wagner FT, Yang H (2010) Truncated octahedral Pt3Ni oxygen reduction reaction electrocatalysts. J Am Chem Soc 132(14):4984–4985CrossRefGoogle Scholar
  254. 254.
    Wu J, Yang H (2011) Synthesis and electrocatalytic oxygen reduction properties of truncated octahedral Pt3Ni nanoparticles. Nano Res 4(1):72–82CrossRefGoogle Scholar
  255. 255.
    Wu J, Qi L, You H, Gross A, Li J, Yang H (2012) Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities. J Am Chem Soc 134(29):11880–11883CrossRefGoogle Scholar
  256. 256.
    Choi SI, Xie S, Shao M, Odell JH, Lu N, Peng HC, Protsailo L, Guerrero S, Park J, Xia X, Wang J, Kim MJ, Xia Y (2013) Synthesis and characterization of 9 nm Pt-Ni octahedra with a record high activity of 3.3 A/mgPt for the oxygen reduction reaction. Nano Lett 13(7):3420–3425CrossRefGoogle Scholar
  257. 257.
    Sang-Il Choi SX, Shao M, Lu N, Guerrero S, Odell JH, Park J, Wang J, Kim MJ, Xia Y (2014) Controlling the size and composition of nanosized Pt–Ni octahedra to optimize their catalytic activities toward the oxygen reduction reaction. Chemsuschem 7(5):1476–1483CrossRefGoogle Scholar
  258. 258.
    Chen C, Kang Y, Huo Z, Zhu Z, Huang W, Xin HL, Snyder JD, Li D, Herron JA, Mavrikakis M, Chi M, More KL, Li Y, Markovic NM, Somorjai GA, Yang P, Stamenkovic VR (2014) Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343(6177):1339–1343. doi: 10.1126/science.1249061 CrossRefGoogle Scholar
  259. 259.
    Sakamoto R, Omichi K, Furuta T, Ichikawa M (2014) Effect of high oxygen reduction reaction activity of octahedral PtNi nanoparticle electrocatalysts on proton exchange membrane fuel cell performance. J Power Sources 269:117–123. doi: 10.1016/j.jpowsour.2014.07.011 CrossRefGoogle Scholar
  260. 260.
    Chou S-W, Lai Y-R, Yang YY, Tang C-Y, Hayashi M, Chen H-C, Chen H-L, Chou P-T (2014) Uniform size and composition tuning of PtNi octahedra for systematic studies of oxygen reduction reactions. J Catal 309:343–350. doi: 10.1016/j.jcat.2013.09.008 CrossRefGoogle Scholar
  261. 261.
    Xu X, Zhang X, Sun H, Yang Y, Dai X, Gao J, Li X, Zhang P, Wang H-H, Yu N-F, Sun S-G (2014) Synthesis of Pt–Ni alloy nanocrystals with high-index facets and enhanced electrocatalytic properties. Angew Chem Int Ed 126:12730–12735. doi: 10.1002/anie.201406497 CrossRefGoogle Scholar
  262. 262.
    Huang X, Zhao Z, Chen Y, Zhu E, Li M, Duan X, Huang Y (2014) A rational design of carbon-supported dispersive Pt-based octahedra as efficient oxygen reduction reaction catalysts. Energy Environ Sci 7(9):2957–2962. doi: 10.1039/c4ee01082e CrossRefGoogle Scholar
  263. 263.
    Wu J, Yang H (2012) Study of the durability of faceted Pt3Ni oxygen–reduction electrocatalysts. ChemCatChem 4(10):1572–1577. doi: 10.1002/cctc.201200242 CrossRefGoogle Scholar
  264. 264.
    Cui C, Gan L, Heggen M, Rudi S, Strasser P (2013) Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat Mater 12(8):765–771. doi: 10.1038/nmat3668 CrossRefGoogle Scholar
  265. 265.
    Ahmadi M, Behafarid F, Cui C, Strasser P, Cuenya BR (2013) Long-range segregation phenomena in shape-selected bimetallic nanoparticles: chemical state effects. ACS Nano 7(10):9195–9204. doi: 10.1021/nn403793a CrossRefGoogle Scholar
  266. 266.
    Tuaev X, Rudi S, Petkov V, Hoell A, Strasser P (2013) In situ study of atomic structure transformations of Pt–Ni nanoparticle catalysts during electrochemical potential cycling. ACS Nano 7(7):5666–5674. doi: 10.1021/nn402406k CrossRefGoogle Scholar
  267. 267.
    Cui C, Ahmadi M, Behafarid F, Gan L, Neumann M, Heggen M, Cuenya BR, Strasser P (2013) Shape-selected bimetallic nanoparticle electrocatalysts: evolution of their atomic-scale structure, chemical composition, and electrochemical reactivity under various chemical environments. Faraday Discuss 162:91–112. doi: 10.1039/c3fd20159g CrossRefGoogle Scholar
  268. 268.
    Wu J, Shi M, Yin X, Yang H (2013) Enhanced stability of (111)-surface-dominant core–shell nanoparticle catalysts towards the oxygen reduction reaction. Chemsuschem 6(10):1888–1892. doi: 10.1002/cssc.201300388 CrossRefGoogle Scholar
  269. 269.
    Choi S-I, Shao M, Lu N, Ruditskiy A, Peng H-C, Park J, Guerrero S, Wang J, Kim MJ, Xia Y (2014) Synthesis and characterization of Pd@Pt–Ni core–shell octahedra with high activity toward oxygen reduction. ACS Nano 8(10):10363–10371. doi: 10.1021/nn5036894 CrossRefGoogle Scholar
  270. 270.
    Xie S, Choi S-I, Lu N, Roling LT, Herron JA, Zhang L, Park J, Wang J, Kim MJ, Xie Z, Mavrikakis M, Xia Y (2014) Atomic layer-by-layer deposition of Pt on Pd nanocubes for catalysts with enhanced activity and durability toward oxygen reduction. Nano Lett 14(6):3570–3576. doi: 10.1021/nl501205j CrossRefGoogle Scholar
  271. 271.
    Shao M, He G, Peles A, Odell JH, Zeng J, Su D, Tao J, Yu T, Zhu Y, Xia Y (2013) Manipulating the oxygen reduction activity of platinum shells with shape-controlled palladium nanocrystal cores. Chem Commun 49(79):9030–9032. doi: 10.1039/c3cc43276a CrossRefGoogle Scholar
  272. 272.
    Li Y, Quan F, Chen L, Zhang W, Yu H, Chen C (2014) Synthesis of Fe-doped octahedral Pt3Ni nanocrystals with high electro-catalytic activity and stability towards oxygen reduction reaction. RSC Adv 4(4):1895–1899. doi: 10.1039/c3ra46299d CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Francisco J. Vidal-Iglesias
    • 1
  • José Solla-Gullón
    • 1
  • Juan M. Feliu
    • 1
    Email author
  1. 1.Instituto de Electroquímica, Universidad de AlicanteAlicanteSpain

Personalised recommendations