Applications of Nanomaterials in Microbial Fuel Cells

  • R. Fogel
  • J. L. LimsonEmail author
Part of the Nanostructure Science and Technology book series (NST)


Microbial fuel cells (MFCs) make use of the bioelectrochemical metabolic pathways of microorganisms to generate electrical energy, often by way of a bioanode-cathode configuration. To translate MFCs into technologies that are implementable, two overarching goals currently dominate research in this area: extending their ability to treat a range of pollutants (bioremediation), and improving their energy generation capacities. The increased knowledge in the field of nanotechnology is a much-examined route to providing innovative solutions to overcome certain existing limitations of MFCs.

In this book chapter, the evolving role of nanotechnology in microbial fuel cells and current main research themes are outlined, according to the intended function of the nanotechnological intervention: supporting organism-electrode (biotic) interactions; as catalysts for abiotic processes, and serving as supports for catalysts of both biotic and abiotic processes.


Oxygen Reduction Reaction Microbial Fuel Cell Direct Electron Transfer Electrode Surface Area Electron Transfer Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Logan BE, Rabaey K (2012) Review: conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337:686–690. doi: 10.1126/science.1217412 CrossRefGoogle Scholar
  2. 2.
    Mohan SV, Velvizhi G, Modestra JA, Srikanth S (2014) Microbial fuel cell: critical factors regulating bio-catalyzed electrochemical process and recent advancements. Renew Sustain Energy Rev 40:779–797. doi: 10.1016/j.rser.2014.07.109 CrossRefGoogle Scholar
  3. 3.
    Rabaey K, Rodríguez J, Blackall LL, Keller J, Gross P, Batstone D, Verstraete W, Nealson KH (2007) Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J 1:9–18. doi: 10.1038/ismej.2007.4 CrossRefGoogle Scholar
  4. 4.
    Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101:1533–1541. doi: 10.1016/j.biortech.2009.10.017 CrossRefGoogle Scholar
  5. 5.
    Friman H, Schechter A, Ioffe Y, Nitzan Y, Cahan R (2013) Current production in a microbial fuel cell using a pure culture of Cupriavidus basilensis growing in acetate or phenol as a carbon source. J Microbial Biotechnol 6:425–434. doi: 10.1111/1751-7915.12026 CrossRefGoogle Scholar
  6. 6.
    Logan BE, Regan JM (2006) Microbial fuel cells—challenges and applications. Environ Sci Technol 40:5172–5180. doi: 10.1021/es0627592 CrossRefGoogle Scholar
  7. 7.
    Pollet BG (2010) The use of ultrasound for the fabrication of fuel cell materials. Int J Hydrogen Energy 35:11986–12004. doi: 10.1016/j.ijhydene.2010.08.021 CrossRefGoogle Scholar
  8. 8.
    Logan BE (2010) Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 85:1665–1671. doi: 10.1007/s00253-009-2378-9 CrossRefGoogle Scholar
  9. 9.
    Hou J, Liu Z, Zhang P (2013) A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes. J Power Sources 224:139–144. doi: 10.1016/j.jpowsour.2012.09.091 CrossRefGoogle Scholar
  10. 10.
    Ghasemi M, Daud WRW, Rahimnejad M, Rezayid M, Fatemi A, Jafari Y, Somalu MR, Manzour A (2013) Copper-phthalocyanine and nickel nanoparticles as novel cathode catalysts in microbial fuel cells. Int J Hydrogen Energy 38:9533–9540. doi: 10.1016/j.ijhydene.2013.01.177 CrossRefGoogle Scholar
  11. 11.
    Haoran Y, Lifang D, Tao L, Yong C (2014) Hydrothermal synthesis of nanostructured manganese oxide as cathodic catalyst in a microbial fuel cell fed with leachate. Sci World J. ID: 791672. doi: 10.1155/2014/791672
  12. 12.
    Hosseini MG, Ahadzadeh I (2012) A dual-chambered microbial fuel cell with Ti/nano-TiO2/Pd nano-structure cathode. J Power Sources 220:292–297. doi: 10.1016/j.jpowsour.2012.07.096 CrossRefGoogle Scholar
  13. 13.
    Alatraktchi FA, Zhang Y, Angelidaki I (2014) Nanomodification of the electrodes in microbial fuel cell: impact of nanoparticle density on electricity production and microbial community. Appl Energy 116:216–222. doi: 10.1016/j.apenergy.2013.11.058 CrossRefGoogle Scholar
  14. 14.
    Zhao F, Harnischa F, Schröder U, Scholz F, Bogdanoff P, Hermann I (2005) Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem Commun 7:1405–1410. doi: 10.1016/j.elecom.2005.09.032 CrossRefGoogle Scholar
  15. 15.
    Esmaeili C, Ghasemi M, Heng LY, Hassan SHA, Abda MM, Daud WRW, Ilbeygi H, Ismail AF (2014) Synthesis and application of polypyrrole/carrageenan nano-biocomposite as a cathode catalyst in microbial fuel cells. Carbohydr Polym 114:253–259. doi: 10.1016/j.carbpol.2014.07.072 CrossRefGoogle Scholar
  16. 16.
    Niessen J, Schröder U, Scholz F (2004) Exploiting complex carbohydrates for microbial electricity generation—a bacterial fuel cell operating on starch. Electrochem Commun 6:955–958. doi: 10.1016/j.elecom.2004.07.010 CrossRefGoogle Scholar
  17. 17.
    Deng L, Zhou M, Liu C, Liu L, Liu C, Dong S (2010) Development of high performance of Co/Fe/N/CNT nanocatalyst for oxygen reduction in microbial fuel cells. Talanta 81:444–448. doi: 10.1016/j.talanta.2009.12.022 CrossRefGoogle Scholar
  18. 18.
    Wang Y, Li B, Cui D, Xiang X, Li W (2014) Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance Escherichia coli-based microbial fuel cell. Biosensors Bioelectron 51:349–355. doi: 10.1016/j.bios.2013.07.069 CrossRefGoogle Scholar
  19. 19.
    Mshoperi E, Fogel R, Limson J (2014) Application of carbon black and iron phthalocyanine composites in bioelectricity production at a brewery wastewater fed microbial fuel cell. Electrochim Acta 128:311–317. doi: 10.1016/j.electacta.2013.11.016 CrossRefGoogle Scholar
  20. 20.
    Edwards SL, Fogel R, Mtambanengwe K, Togo C, Laubscher R, Limson JL (2012) Metallophthalocyanine/carbon nanotube hybrids: extending applications to microbial fuel cells. J Porphyrins Phthalocyanines 16:917–926. doi: 10.1142/S1088424612501027 CrossRefGoogle Scholar
  21. 21.
    Kumar GG, Awan Z, Nahm KS, Xavier JS (2014) Nanotubular MnO2/graphene oxide composites for the application of open air-breathing cathode microbial fuel cells. Biosensors Bioelectron 53:528–534. doi: 10.1016/j.bios.2013.10.012 CrossRefGoogle Scholar
  22. 22.
    Mehdinia A, Ziaei E, Jabbari A (2014) Multi-walled carbon nanotube/SnO2 nanocomposite: a novel anode material for microbial fuel cells. Electrochim Acta 130:512–518. doi: 10.1016/j.electacta.2014.03.011 CrossRefGoogle Scholar
  23. 23.
    Rinaldi A, Mecheri B, Garavaglia V, Licoccia S, Di Nardo P, Traversa E (2008) Review—engineering materials and biology to boost performance of microbial fuel cells: a critical review. Energy Environ Sci 1:417–429. doi: 10.1039/b806498a CrossRefGoogle Scholar
  24. 24.
    Ghasemi M, Daud WRW, Hassan SHA, Oh S-E, Ismail M, Rahimnejad M, Jahim JM (2013) Review—nano-structured carbon as electrode material in microbial fuel cells: a comprehensive review. J Alloys Compd 580:245–255. doi: 10.1016/j.jallcom.2013.05.094 CrossRefGoogle Scholar
  25. 25.
    Gadhamshetty V, Koratkar N (2012) Nano-engineered biocatalyst-electrode structures for next generation microbial fuel cells. Nano Energy 1:3–5. doi: 10.1016/j.nanoen.2011.11.003 CrossRefGoogle Scholar
  26. 26.
    Baranton S, Coutanceau C, Léger J-M, Roux C, Capron P (2005) Alternative cathodes based on iron phthalocyanine catalysts for mini- or micro-DMFC working at room temperature. Electrochim Acta 51:517–525. doi: 10.1016/j.electacta.2005.05.010 CrossRefGoogle Scholar
  27. 27.
    Garret RH, Grisham CM (1999) Electron transport and oxidative phosphorylation. In: Garret RH, Grisham CM (eds) Biochemistry, 2nd edn. Saunders College Publishing, Philadelphia, pp 673–689Google Scholar
  28. 28.
    Rismani-Yazdi H, Carver SM, Christy AD, Tuovinen OH (2008) Cathodic limitations in microbial fuel cells: an overview. J Power Sources 180:683–694. doi: 10.1016/j.jpowsour.2008.02.074 CrossRefGoogle Scholar
  29. 29.
    Chae KJ, Choi M, Ajayi FF, Park W, Chang IS, Kim IS (2008) Mass transport through a proton exchange membrane (nafion) in microbial fuel cells. Energy Fuel 22:169–176. doi: 10.1021/ef700308u CrossRefGoogle Scholar
  30. 30.
    Zhang X, Cheng S, Wang X, Huang X, Logan BE (2009) Separator characteristics for increasing performance of microbial fuel cells. Environ Sci Technol 43:8456–8461. doi: 10.1021/es901631p CrossRefGoogle Scholar
  31. 31.
    Huggins T, Wang H, Kearns J, Jenkins P, Ren ZJ (2014) Biochar as a sustainable electrode material for electricity production in microbial fuel cells. Bioresour Technol 157:114–119. doi: 10.1016/j.biortech.2014.01.058 CrossRefGoogle Scholar
  32. 32.
    Kumar GG, Sarathi VGS, Nahm KS (2013) Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells. Biosensors Bioelectron 43:461–475. doi: 10.1016/j.bios.2012.12.048 CrossRefGoogle Scholar
  33. 33.
    Peng X, Yu H, Lina A, Li N, Wang X (2013) Time behavior and capacitance analysis of nano-Fe3O4 added microbial fuel cells. Bioresour Technol 114:689–692. doi: 10.1016/j.biortech.2013.07.037 CrossRefGoogle Scholar
  34. 34.
    Sevilla M, Sanchís C, Valdés-Solís T, Morallón E, Fuertes AB (2007) Synthesis of graphitic carbon nanostructures from sawdust and their application as electrocatalyst supports. J Phys Chem C 111:9749–9756. doi: 10.1021/jp072246x CrossRefGoogle Scholar
  35. 35.
    Vix-Guterl C, Couzi M, Dentzer J, Trinquecoste M, Delhaes P (2004) Surface characterizations of carbon multiwall nanotubes: comparison between surface active sites and raman spectroscopy. J Phys Chem B 108:19361–19367. doi: 10.1021/jp047237s CrossRefGoogle Scholar
  36. 36.
    Paulus UA, Schmidt TJ, Gasteiger HA, Behm RJ (2001) Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. J Electroanal Chem 495:134–145. doi: 10.1016/S0022-0728(00)00407-1 CrossRefGoogle Scholar
  37. 37.
    Kelly PT, He Z (2014) Nutrients removal and recovery in bioelectrochemical systems: a review. Bioresour Technol 153:351–360. doi: 10.1016/j.biortech.2013.12.046 CrossRefGoogle Scholar
  38. 38.
    Xu F (2000) Applications of oxidoreductases: recent progress. Ind Biotechnol 1:38–50. doi: 10.1089/ind.2005.1.38 CrossRefGoogle Scholar
  39. 39.
    Read ST, Dutta P, Bond PL, Keller J, Rabaey K (2010) Initial development and structure of biofilms on microbial fuel cell anodes. BMC Microbiol 10:98. doi: 10.1186/1471-2180-10-98 CrossRefGoogle Scholar
  40. 40.
    Wu Y, Liu T, Li X, Li F (2014) Exogenous electron shuttle-mediated extracellular electron transfer of Shewanella putrefaciens 200: electrochemical parameters and thermodynamics. Environ Sci Technol 48:9306–9314. doi: 10.1021/es5017312 CrossRefGoogle Scholar
  41. 41.
    Biffinger JC, Pietron J, Bretschger O, Nadeau LJ, Johnson GR, Williams CC, Nealson KH, Ringeisen BR (2008) The influence of acidity on microbial fuel cells containing Shewanella oneidensis. Biosensors Bioelectron 24:900–905. doi: 10.1016/j.bios.2008.07.034 CrossRefGoogle Scholar
  42. 42.
    Pham TH, Boon N, De Maeyer K, Höfte M, Rabaey K, Verstraete W (2008) Use of Pseudomonas species producing phenazine-based metabolites in the anodes of microbial fuel cells to improve electricity generation. Appl Microbiol Biotechnol 80:985–993. doi: 10.1007/s00253-008-1619-7 CrossRefGoogle Scholar
  43. 43.
    Jayapriya J, Ramamurthy V (2014) The role of electrode material in capturing power generated in Pseudomonas catalysed fuel cells. Can J Chem Eng 92:610–614. doi: 10.1002/cjce.21895 CrossRefGoogle Scholar
  44. 44.
    Chalenko Y, Shumyantseva V, Ermolaeva S, Archakov A (2012) Electrochemistry of Escherichia coli JM109: direct electron transfer and antibiotic resistance. Biosensors Bioelectron 31:219–223. doi: 10.1016/j.bios.2011.12.015 CrossRefGoogle Scholar
  45. 45.
    Park HS, Kim BH, Kim HS, Kim HJ, Kim GT, Kim M, Cahn IS, Park YK, Chang HI (2001) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7:297–306. doi: 10.1006/anae.2001.0399 CrossRefGoogle Scholar
  46. 46.
    Feng C, Li J, Qin D, Chen L, Zhao F, Chen S, Hongbo H, Yu C-P (2014) Characterization of exoelectrogenic bacteria enterobacter strains isolated from a microbial fuel cell exposed to copper shock load. PLoS One 9:e11379. doi: 10.1371/journal.pone.0113379 Google Scholar
  47. 47.
    Juang DF, Yang PC, Lee CH, Hsueh SC, Kuo TH (2011) Electrogenic capabilities of Gram negative and Gram positive bacteria in microbial fuel cell combined with biological wastewater treatment. Int J Environ Sci Technol 8:781–792. doi: 10.1007/BF03326261 CrossRefGoogle Scholar
  48. 48.
    Yang Y, Xu M, Guo J, Sun G (2012) Bacterial extracellular electron transfer in bioelectrochemical systems. Process Biochem 47:1707–1714. doi: 10.1016/j.procbio.2012.07.032 CrossRefGoogle Scholar
  49. 49.
    Du J, Catania C, Bazan GC (2014) Modification of abiotic−biotic interfaces with small molecules and nanomaterials for improved bioelectronics. Chem Mater 26:686–697. doi: 10.1021/cm401912j CrossRefGoogle Scholar
  50. 50.
    Devi UV, Puri P, Sharma NN, Ananthasubramanian M (2014) Electrokinetics of cells in dielectrophoretic separation: a biological perspective. BioNanoScience 4:276–287. doi: 10.1007/s12668-014-0140-y CrossRefGoogle Scholar
  51. 51.
    Kato S, Watanebe K (2010) Ecological and evolutionary interactions in syntrophic methanogenic consortia. Microbes Environ 25:145–151. doi: 10.1264/jsme2.ME10122 CrossRefGoogle Scholar
  52. 52.
    Inoue S, Parra EA, Higa A, Jiang Y, Wang P, Buie CR, Coates JD, Lin L (2012) Structural optimization of contact electrodes in microbial fuel cells for current density enhancements. Sensor Actuat A Phys 177:30–36. doi: 10.1016/j.sna.2011.09.023 CrossRefGoogle Scholar
  53. 53.
    Park IH, Christy M, Kim P, Nahm KS (2014) Enhanced electrical contact of microbes using Fe3O4/CNT nanocomposite anode in mediator-less microbial fuel cell. Biosensors Bioelectron 58:75–80. doi: 10.1016/j.bios.2014.02.044 CrossRefGoogle Scholar
  54. 54.
    Xu S, Liu H, Fan Y, Schaller R, Jia J, Chaplen F (2012) Enhanced performance and mechanism study of microbial electrolysis cells using Fe nanoparticle-decorated anodes. Appl Microbiol Biotechnol 93:871–880. doi: 10.1007/s00253-011-3643-2 CrossRefGoogle Scholar
  55. 55.
    Gai P-P, Zhao C-E, Wang Y, Abdel-Halim ES, Zhang J-R, Zhu J-J (2014) NADH dehydrogenase-like behaviour of nitrogen-doped graphene and its application in NAD+-dependent dehydrogenase biosensing. Biosensors Bioelectron 62:170–176. doi: 10.1016/j.bios.2014.06.043 CrossRefGoogle Scholar
  56. 56.
    Yehezkeli O, Tel-Vered R, Raichlin S, Willner I (2011) Nano-engineered flavin-dependent glucose dehydrogenase/gold nanoparticle-modified electrodes for glucose sensing and biofuel cell applications. ACS Nano 5:2385–2391. doi: 10.1021/nn200313t CrossRefGoogle Scholar
  57. 57.
    Wang G, He X, Zhou F, Li Z, Fang B, Zhang X, Wang L (2012) Application of gold nanoparticles/TiO2 modified electrode for the electrooxidative determination of catechol in tea samples. Food Chem 135:446–451. doi: 10.1016/j.foodchem.2012.04.139 CrossRefGoogle Scholar
  58. 58.
    Harvey D (2000) Appendix 3D: standard reduction potentials. In: Harvey D (ed) Modern analytical chemistry, 1st edn. McGraw-Hill Higher Education, New York, pp 743–747Google Scholar
  59. 59.
    Bagotsky VS (2006) Reactions at nonconsumable electrodes. In: Bagotsky VS (ed), Fundamentals of electrochemistry, 2 edn. Wiley, New York, pp 261–296Google Scholar
  60. 60.
    Leong JX, Daud WRW, Ghasemi M, Liew KB, Ismail M (2013) Ion exchange membranes as separators in microbial fuel cells for bioenergy conversion: a comprehensive review. Renew Sustain Energy Rev 28:575–587. doi: 10.1016/j.rser.2013.08.052 CrossRefGoogle Scholar
  61. 61.
    Liew KB, Daud WRW, Ghasemi M, Leong JX, Lim SS, Ismail M (2014) Non-Pt catalyst as oxygen reduction reaction in microbial fuel cells: a review. Int J Hydrogen Energy 39:4870–4883. doi: 10.1016/j.ijhydene.2014.01.062 CrossRefGoogle Scholar
  62. 62.
    Patnaik P (2003) Platinum. In: Patnaik P (ed) Handbook of inorganic chemicals. McGraw-Hill Higher Education, New York, pp 719–722Google Scholar
  63. 63.
    Tarasevich MR, Korchagin OV (2013) Electrocatalysis and pH (a review). Russ J Electrochem 49:600–618. doi: 10.1134/S102319351307015X CrossRefGoogle Scholar
  64. 64.
    Geniès L, Faure R, Durand R (1998) Electrochemical reduction of oxygen on platinum nanoparticles in alkaline media. Electrochim Acta 44:1317–1327. doi: 10.1016/S0013-4686(98)00254-0 CrossRefGoogle Scholar
  65. 65.
    Zagal JH, Griveau S, Silva JF, Nyokong T, Bedioui F (2010) Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions. Coord Chem Rev 251:2755–2791. doi: 10.1016/j.ccr.2010.05.001 CrossRefGoogle Scholar
  66. 66.
    Masa J, Zhao A, Xia W, Muhler M, Schuhmann W (2013) Metal-free catalysts for oxygen reduction in alkaline electrolytes: influence of the presence of Co, Fe, Mn and Ni inclusions. Electrochim Acta 128:271–278. doi: 10.1016/j.electacta.2013.11.026 CrossRefGoogle Scholar
  67. 67.
    Kobayashi M, Niwa H, Saito M, Harada Y, Masaharu O, Ofuchi H, Terakura K, Ikeda T, Koshigoe Y, Ozaki J, Miyata S (2012) Indirect contribution of transition metal towards oxygen reduction reaction activity in iron phthalocyanine-based carbon catalysts for polymer electrolyte fuel cells. Electrochim Acta 74:254–259. doi: 10.1016/j.electacta.2012.04.075 CrossRefGoogle Scholar
  68. 68.
    Qu L, Liu Y, Baek J-B, Dai L (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4:1321–1326. doi: 10.1021/nn901850u CrossRefGoogle Scholar
  69. 69.
    Hu X, Xia D, Zhang L, Zhang J (2013) High crystallinity binuclear iron phthalocyanine catalyst with enhanced performance for oxygen reduction reaction. J Power Sources 231:91–96. doi: 10.1016/j.jpowsour.2012.12.018 CrossRefGoogle Scholar
  70. 70.
    Chen Y, Zhu H, Rasmussen M, Scherson D (2010) Rational design of electrocatalytic interfaces: the multielectron reduction of nitrate in aqueous electrolytes. J Phys Chem Lett 1:1907–1911. doi: 10.1021/jz1005253 CrossRefGoogle Scholar
  71. 71.
    Ghach W, Etienne M, Billard P, Jorand FPA, Walcarius A (2013) Electrochemically assisted bacteria encapsulation in thin hybrid sol-gel films. J Mater Chem B 1:1052–1059. doi: 10.1039/C2TB00421F CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Biotechnology Innovation CentreRhodes UniversityGrahamstownSouth Africa

Personalised recommendations