Skip to main content

Applications of Nanomaterials in Microbial Fuel Cells

  • Chapter
  • First Online:
Book cover Nanomaterials for Fuel Cell Catalysis

Part of the book series: Nanostructure Science and Technology ((NST))

Abstract

Microbial fuel cells (MFCs) make use of the bioelectrochemical metabolic pathways of microorganisms to generate electrical energy, often by way of a bioanode-cathode configuration. To translate MFCs into technologies that are implementable, two overarching goals currently dominate research in this area: extending their ability to treat a range of pollutants (bioremediation), and improving their energy generation capacities. The increased knowledge in the field of nanotechnology is a much-examined route to providing innovative solutions to overcome certain existing limitations of MFCs.

In this book chapter, the evolving role of nanotechnology in microbial fuel cells and current main research themes are outlined, according to the intended function of the nanotechnological intervention: supporting organism-electrode (biotic) interactions; as catalysts for abiotic processes, and serving as supports for catalysts of both biotic and abiotic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Logan BE, Rabaey K (2012) Review: conversion of wastes into bioelectricity and chemicals by using microbial electrochemical technologies. Science 337:686–690. doi:10.1126/science.1217412

    Article  CAS  Google Scholar 

  2. Mohan SV, Velvizhi G, Modestra JA, Srikanth S (2014) Microbial fuel cell: critical factors regulating bio-catalyzed electrochemical process and recent advancements. Renew Sustain Energy Rev 40:779–797. doi:10.1016/j.rser.2014.07.109

    Article  Google Scholar 

  3. Rabaey K, Rodríguez J, Blackall LL, Keller J, Gross P, Batstone D, Verstraete W, Nealson KH (2007) Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J 1:9–18. doi:10.1038/ismej.2007.4

    Article  CAS  Google Scholar 

  4. Pant D, Van Bogaert G, Diels L, Vanbroekhoven K (2010) A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresour Technol 101:1533–1541. doi:10.1016/j.biortech.2009.10.017

    Article  CAS  Google Scholar 

  5. Friman H, Schechter A, Ioffe Y, Nitzan Y, Cahan R (2013) Current production in a microbial fuel cell using a pure culture of Cupriavidus basilensis growing in acetate or phenol as a carbon source. J Microbial Biotechnol 6:425–434. doi:10.1111/1751-7915.12026

    Article  Google Scholar 

  6. Logan BE, Regan JM (2006) Microbial fuel cells—challenges and applications. Environ Sci Technol 40:5172–5180. doi:10.1021/es0627592

    Article  CAS  Google Scholar 

  7. Pollet BG (2010) The use of ultrasound for the fabrication of fuel cell materials. Int J Hydrogen Energy 35:11986–12004. doi:10.1016/j.ijhydene.2010.08.021

    Article  CAS  Google Scholar 

  8. Logan BE (2010) Scaling up microbial fuel cells and other bioelectrochemical systems. Appl Microbiol Biotechnol 85:1665–1671. doi:10.1007/s00253-009-2378-9

    Article  CAS  Google Scholar 

  9. Hou J, Liu Z, Zhang P (2013) A new method for fabrication of graphene/polyaniline nanocomplex modified microbial fuel cell anodes. J Power Sources 224:139–144. doi:10.1016/j.jpowsour.2012.09.091

    Article  CAS  Google Scholar 

  10. Ghasemi M, Daud WRW, Rahimnejad M, Rezayid M, Fatemi A, Jafari Y, Somalu MR, Manzour A (2013) Copper-phthalocyanine and nickel nanoparticles as novel cathode catalysts in microbial fuel cells. Int J Hydrogen Energy 38:9533–9540. doi:10.1016/j.ijhydene.2013.01.177

    Article  CAS  Google Scholar 

  11. Haoran Y, Lifang D, Tao L, Yong C (2014) Hydrothermal synthesis of nanostructured manganese oxide as cathodic catalyst in a microbial fuel cell fed with leachate. Sci World J. ID: 791672. doi:10.1155/2014/791672

    Google Scholar 

  12. Hosseini MG, Ahadzadeh I (2012) A dual-chambered microbial fuel cell with Ti/nano-TiO2/Pd nano-structure cathode. J Power Sources 220:292–297. doi:10.1016/j.jpowsour.2012.07.096

    Article  CAS  Google Scholar 

  13. Alatraktchi FA, Zhang Y, Angelidaki I (2014) Nanomodification of the electrodes in microbial fuel cell: impact of nanoparticle density on electricity production and microbial community. Appl Energy 116:216–222. doi:10.1016/j.apenergy.2013.11.058

    Article  CAS  Google Scholar 

  14. Zhao F, Harnischa F, Schröder U, Scholz F, Bogdanoff P, Hermann I (2005) Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells. Electrochem Commun 7:1405–1410. doi:10.1016/j.elecom.2005.09.032

    Article  CAS  Google Scholar 

  15. Esmaeili C, Ghasemi M, Heng LY, Hassan SHA, Abda MM, Daud WRW, Ilbeygi H, Ismail AF (2014) Synthesis and application of polypyrrole/carrageenan nano-biocomposite as a cathode catalyst in microbial fuel cells. Carbohydr Polym 114:253–259. doi:10.1016/j.carbpol.2014.07.072

    Article  CAS  Google Scholar 

  16. Niessen J, Schröder U, Scholz F (2004) Exploiting complex carbohydrates for microbial electricity generation—a bacterial fuel cell operating on starch. Electrochem Commun 6:955–958. doi:10.1016/j.elecom.2004.07.010

    Article  CAS  Google Scholar 

  17. Deng L, Zhou M, Liu C, Liu L, Liu C, Dong S (2010) Development of high performance of Co/Fe/N/CNT nanocatalyst for oxygen reduction in microbial fuel cells. Talanta 81:444–448. doi:10.1016/j.talanta.2009.12.022

    Article  CAS  Google Scholar 

  18. Wang Y, Li B, Cui D, Xiang X, Li W (2014) Nano-molybdenum carbide/carbon nanotubes composite as bifunctional anode catalyst for high-performance Escherichia coli-based microbial fuel cell. Biosensors Bioelectron 51:349–355. doi:10.1016/j.bios.2013.07.069

    Article  CAS  Google Scholar 

  19. Mshoperi E, Fogel R, Limson J (2014) Application of carbon black and iron phthalocyanine composites in bioelectricity production at a brewery wastewater fed microbial fuel cell. Electrochim Acta 128:311–317. doi:10.1016/j.electacta.2013.11.016

    Article  CAS  Google Scholar 

  20. Edwards SL, Fogel R, Mtambanengwe K, Togo C, Laubscher R, Limson JL (2012) Metallophthalocyanine/carbon nanotube hybrids: extending applications to microbial fuel cells. J Porphyrins Phthalocyanines 16:917–926. doi:10.1142/S1088424612501027

    Article  CAS  Google Scholar 

  21. Kumar GG, Awan Z, Nahm KS, Xavier JS (2014) Nanotubular MnO2/graphene oxide composites for the application of open air-breathing cathode microbial fuel cells. Biosensors Bioelectron 53:528–534. doi:10.1016/j.bios.2013.10.012

    Article  Google Scholar 

  22. Mehdinia A, Ziaei E, Jabbari A (2014) Multi-walled carbon nanotube/SnO2 nanocomposite: a novel anode material for microbial fuel cells. Electrochim Acta 130:512–518. doi:10.1016/j.electacta.2014.03.011

    Article  CAS  Google Scholar 

  23. Rinaldi A, Mecheri B, Garavaglia V, Licoccia S, Di Nardo P, Traversa E (2008) Review—engineering materials and biology to boost performance of microbial fuel cells: a critical review. Energy Environ Sci 1:417–429. doi:10.1039/b806498a

    Article  CAS  Google Scholar 

  24. Ghasemi M, Daud WRW, Hassan SHA, Oh S-E, Ismail M, Rahimnejad M, Jahim JM (2013) Review—nano-structured carbon as electrode material in microbial fuel cells: a comprehensive review. J Alloys Compd 580:245–255. doi:10.1016/j.jallcom.2013.05.094

    Article  CAS  Google Scholar 

  25. Gadhamshetty V, Koratkar N (2012) Nano-engineered biocatalyst-electrode structures for next generation microbial fuel cells. Nano Energy 1:3–5. doi:10.1016/j.nanoen.2011.11.003

    Article  CAS  Google Scholar 

  26. Baranton S, Coutanceau C, Léger J-M, Roux C, Capron P (2005) Alternative cathodes based on iron phthalocyanine catalysts for mini- or micro-DMFC working at room temperature. Electrochim Acta 51:517–525. doi:10.1016/j.electacta.2005.05.010

    Article  CAS  Google Scholar 

  27. Garret RH, Grisham CM (1999) Electron transport and oxidative phosphorylation. In: Garret RH, Grisham CM (eds) Biochemistry, 2nd edn. Saunders College Publishing, Philadelphia, pp 673–689

    Google Scholar 

  28. Rismani-Yazdi H, Carver SM, Christy AD, Tuovinen OH (2008) Cathodic limitations in microbial fuel cells: an overview. J Power Sources 180:683–694. doi:10.1016/j.jpowsour.2008.02.074

    Article  CAS  Google Scholar 

  29. Chae KJ, Choi M, Ajayi FF, Park W, Chang IS, Kim IS (2008) Mass transport through a proton exchange membrane (nafion) in microbial fuel cells. Energy Fuel 22:169–176. doi:10.1021/ef700308u

    Article  CAS  Google Scholar 

  30. Zhang X, Cheng S, Wang X, Huang X, Logan BE (2009) Separator characteristics for increasing performance of microbial fuel cells. Environ Sci Technol 43:8456–8461. doi:10.1021/es901631p

    Article  CAS  Google Scholar 

  31. Huggins T, Wang H, Kearns J, Jenkins P, Ren ZJ (2014) Biochar as a sustainable electrode material for electricity production in microbial fuel cells. Bioresour Technol 157:114–119. doi:10.1016/j.biortech.2014.01.058

    Article  CAS  Google Scholar 

  32. Kumar GG, Sarathi VGS, Nahm KS (2013) Recent advances and challenges in the anode architecture and their modifications for the applications of microbial fuel cells. Biosensors Bioelectron 43:461–475. doi:10.1016/j.bios.2012.12.048

    Article  CAS  Google Scholar 

  33. Peng X, Yu H, Lina A, Li N, Wang X (2013) Time behavior and capacitance analysis of nano-Fe3O4 added microbial fuel cells. Bioresour Technol 114:689–692. doi:10.1016/j.biortech.2013.07.037

    Article  Google Scholar 

  34. Sevilla M, Sanchís C, Valdés-Solís T, Morallón E, Fuertes AB (2007) Synthesis of graphitic carbon nanostructures from sawdust and their application as electrocatalyst supports. J Phys Chem C 111:9749–9756. doi:10.1021/jp072246x

    Article  CAS  Google Scholar 

  35. Vix-Guterl C, Couzi M, Dentzer J, Trinquecoste M, Delhaes P (2004) Surface characterizations of carbon multiwall nanotubes: comparison between surface active sites and raman spectroscopy. J Phys Chem B 108:19361–19367. doi:10.1021/jp047237s

    Article  CAS  Google Scholar 

  36. Paulus UA, Schmidt TJ, Gasteiger HA, Behm RJ (2001) Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. J Electroanal Chem 495:134–145. doi:10.1016/S0022-0728(00)00407-1

    Article  CAS  Google Scholar 

  37. Kelly PT, He Z (2014) Nutrients removal and recovery in bioelectrochemical systems: a review. Bioresour Technol 153:351–360. doi:10.1016/j.biortech.2013.12.046

    Article  CAS  Google Scholar 

  38. Xu F (2000) Applications of oxidoreductases: recent progress. Ind Biotechnol 1:38–50. doi:10.1089/ind.2005.1.38

    Article  Google Scholar 

  39. Read ST, Dutta P, Bond PL, Keller J, Rabaey K (2010) Initial development and structure of biofilms on microbial fuel cell anodes. BMC Microbiol 10:98. doi:10.1186/1471-2180-10-98

    Article  Google Scholar 

  40. Wu Y, Liu T, Li X, Li F (2014) Exogenous electron shuttle-mediated extracellular electron transfer of Shewanella putrefaciens 200: electrochemical parameters and thermodynamics. Environ Sci Technol 48:9306–9314. doi:10.1021/es5017312

    Article  CAS  Google Scholar 

  41. Biffinger JC, Pietron J, Bretschger O, Nadeau LJ, Johnson GR, Williams CC, Nealson KH, Ringeisen BR (2008) The influence of acidity on microbial fuel cells containing Shewanella oneidensis. Biosensors Bioelectron 24:900–905. doi:10.1016/j.bios.2008.07.034

    Article  CAS  Google Scholar 

  42. Pham TH, Boon N, De Maeyer K, Höfte M, Rabaey K, Verstraete W (2008) Use of Pseudomonas species producing phenazine-based metabolites in the anodes of microbial fuel cells to improve electricity generation. Appl Microbiol Biotechnol 80:985–993. doi:10.1007/s00253-008-1619-7

    Article  CAS  Google Scholar 

  43. Jayapriya J, Ramamurthy V (2014) The role of electrode material in capturing power generated in Pseudomonas catalysed fuel cells. Can J Chem Eng 92:610–614. doi:10.1002/cjce.21895

    Article  CAS  Google Scholar 

  44. Chalenko Y, Shumyantseva V, Ermolaeva S, Archakov A (2012) Electrochemistry of Escherichia coli JM109: direct electron transfer and antibiotic resistance. Biosensors Bioelectron 31:219–223. doi:10.1016/j.bios.2011.12.015

    Article  Google Scholar 

  45. Park HS, Kim BH, Kim HS, Kim HJ, Kim GT, Kim M, Cahn IS, Park YK, Chang HI (2001) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7:297–306. doi:10.1006/anae.2001.0399

    Article  CAS  Google Scholar 

  46. Feng C, Li J, Qin D, Chen L, Zhao F, Chen S, Hongbo H, Yu C-P (2014) Characterization of exoelectrogenic bacteria enterobacter strains isolated from a microbial fuel cell exposed to copper shock load. PLoS One 9:e11379. doi:10.1371/journal.pone.0113379

    Google Scholar 

  47. Juang DF, Yang PC, Lee CH, Hsueh SC, Kuo TH (2011) Electrogenic capabilities of Gram negative and Gram positive bacteria in microbial fuel cell combined with biological wastewater treatment. Int J Environ Sci Technol 8:781–792. doi:10.1007/BF03326261

    Article  CAS  Google Scholar 

  48. Yang Y, Xu M, Guo J, Sun G (2012) Bacterial extracellular electron transfer in bioelectrochemical systems. Process Biochem 47:1707–1714. doi:10.1016/j.procbio.2012.07.032

    Article  CAS  Google Scholar 

  49. Du J, Catania C, Bazan GC (2014) Modification of abiotic−biotic interfaces with small molecules and nanomaterials for improved bioelectronics. Chem Mater 26:686–697. doi:10.1021/cm401912j

    Article  CAS  Google Scholar 

  50. Devi UV, Puri P, Sharma NN, Ananthasubramanian M (2014) Electrokinetics of cells in dielectrophoretic separation: a biological perspective. BioNanoScience 4:276–287. doi:10.1007/s12668-014-0140-y

    Article  Google Scholar 

  51. Kato S, Watanebe K (2010) Ecological and evolutionary interactions in syntrophic methanogenic consortia. Microbes Environ 25:145–151. doi:10.1264/jsme2.ME10122

    Article  Google Scholar 

  52. Inoue S, Parra EA, Higa A, Jiang Y, Wang P, Buie CR, Coates JD, Lin L (2012) Structural optimization of contact electrodes in microbial fuel cells for current density enhancements. Sensor Actuat A Phys 177:30–36. doi:10.1016/j.sna.2011.09.023

    Article  CAS  Google Scholar 

  53. Park IH, Christy M, Kim P, Nahm KS (2014) Enhanced electrical contact of microbes using Fe3O4/CNT nanocomposite anode in mediator-less microbial fuel cell. Biosensors Bioelectron 58:75–80. doi:10.1016/j.bios.2014.02.044

    Article  CAS  Google Scholar 

  54. Xu S, Liu H, Fan Y, Schaller R, Jia J, Chaplen F (2012) Enhanced performance and mechanism study of microbial electrolysis cells using Fe nanoparticle-decorated anodes. Appl Microbiol Biotechnol 93:871–880. doi:10.1007/s00253-011-3643-2

    Article  CAS  Google Scholar 

  55. Gai P-P, Zhao C-E, Wang Y, Abdel-Halim ES, Zhang J-R, Zhu J-J (2014) NADH dehydrogenase-like behaviour of nitrogen-doped graphene and its application in NAD+-dependent dehydrogenase biosensing. Biosensors Bioelectron 62:170–176. doi:10.1016/j.bios.2014.06.043

    Article  CAS  Google Scholar 

  56. Yehezkeli O, Tel-Vered R, Raichlin S, Willner I (2011) Nano-engineered flavin-dependent glucose dehydrogenase/gold nanoparticle-modified electrodes for glucose sensing and biofuel cell applications. ACS Nano 5:2385–2391. doi:10.1021/nn200313t

    Article  CAS  Google Scholar 

  57. Wang G, He X, Zhou F, Li Z, Fang B, Zhang X, Wang L (2012) Application of gold nanoparticles/TiO2 modified electrode for the electrooxidative determination of catechol in tea samples. Food Chem 135:446–451. doi:10.1016/j.foodchem.2012.04.139

    Article  CAS  Google Scholar 

  58. Harvey D (2000) Appendix 3D: standard reduction potentials. In: Harvey D (ed) Modern analytical chemistry, 1st edn. McGraw-Hill Higher Education, New York, pp 743–747

    Google Scholar 

  59. Bagotsky VS (2006) Reactions at nonconsumable electrodes. In: Bagotsky VS (ed), Fundamentals of electrochemistry, 2 edn. Wiley, New York, pp 261–296

    Google Scholar 

  60. Leong JX, Daud WRW, Ghasemi M, Liew KB, Ismail M (2013) Ion exchange membranes as separators in microbial fuel cells for bioenergy conversion: a comprehensive review. Renew Sustain Energy Rev 28:575–587. doi:10.1016/j.rser.2013.08.052

    Article  CAS  Google Scholar 

  61. Liew KB, Daud WRW, Ghasemi M, Leong JX, Lim SS, Ismail M (2014) Non-Pt catalyst as oxygen reduction reaction in microbial fuel cells: a review. Int J Hydrogen Energy 39:4870–4883. doi:10.1016/j.ijhydene.2014.01.062

    Article  Google Scholar 

  62. Patnaik P (2003) Platinum. In: Patnaik P (ed) Handbook of inorganic chemicals. McGraw-Hill Higher Education, New York, pp 719–722

    Google Scholar 

  63. Tarasevich MR, Korchagin OV (2013) Electrocatalysis and pH (a review). Russ J Electrochem 49:600–618. doi:10.1134/S102319351307015X

    Article  CAS  Google Scholar 

  64. Geniès L, Faure R, Durand R (1998) Electrochemical reduction of oxygen on platinum nanoparticles in alkaline media. Electrochim Acta 44:1317–1327. doi:10.1016/S0013-4686(98)00254-0

    Article  Google Scholar 

  65. Zagal JH, Griveau S, Silva JF, Nyokong T, Bedioui F (2010) Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions. Coord Chem Rev 251:2755–2791. doi:10.1016/j.ccr.2010.05.001

    Article  Google Scholar 

  66. Masa J, Zhao A, Xia W, Muhler M, Schuhmann W (2013) Metal-free catalysts for oxygen reduction in alkaline electrolytes: influence of the presence of Co, Fe, Mn and Ni inclusions. Electrochim Acta 128:271–278. doi:10.1016/j.electacta.2013.11.026

    Article  Google Scholar 

  67. Kobayashi M, Niwa H, Saito M, Harada Y, Masaharu O, Ofuchi H, Terakura K, Ikeda T, Koshigoe Y, Ozaki J, Miyata S (2012) Indirect contribution of transition metal towards oxygen reduction reaction activity in iron phthalocyanine-based carbon catalysts for polymer electrolyte fuel cells. Electrochim Acta 74:254–259. doi:10.1016/j.electacta.2012.04.075

    Article  CAS  Google Scholar 

  68. Qu L, Liu Y, Baek J-B, Dai L (2010) Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4:1321–1326. doi:10.1021/nn901850u

    Article  CAS  Google Scholar 

  69. Hu X, Xia D, Zhang L, Zhang J (2013) High crystallinity binuclear iron phthalocyanine catalyst with enhanced performance for oxygen reduction reaction. J Power Sources 231:91–96. doi:10.1016/j.jpowsour.2012.12.018

    Article  CAS  Google Scholar 

  70. Chen Y, Zhu H, Rasmussen M, Scherson D (2010) Rational design of electrocatalytic interfaces: the multielectron reduction of nitrate in aqueous electrolytes. J Phys Chem Lett 1:1907–1911. doi:10.1021/jz1005253

    Article  CAS  Google Scholar 

  71. Ghach W, Etienne M, Billard P, Jorand FPA, Walcarius A (2013) Electrochemically assisted bacteria encapsulation in thin hybrid sol-gel films. J Mater Chem B 1:1052–1059. doi:10.1039/C2TB00421F

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Limson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Fogel, R., Limson, J.L. (2016). Applications of Nanomaterials in Microbial Fuel Cells. In: Ozoemena, K., Chen, S. (eds) Nanomaterials for Fuel Cell Catalysis. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-29930-3_14

Download citation

Publish with us

Policies and ethics