Skip to main content

Direct Alcohol Fuel Cells: Nanostructured Materials for the Electrooxidation of Alcohols in Alkaline Media

  • Chapter
  • First Online:
Book cover Nanomaterials for Fuel Cell Catalysis

Abstract

The exploitation of biomass derived alcohols in direct fuel cells is an attractive and simple way to transform their chemical energy into electrical power. Renewable alcohols such as ethanol, ethylene glycol and glycerol could replace methanol in traditional direct methanol fuel cells (DMFCs) due to their high energy densities, low vapor pressure, low toxicity and well established distribution infrastructure. For these devices to be practical alternatives, fast anode electrode kinetics of alcohol electrooxidation are required together with complete oxidation to CO2. To date the most successful exploitation of such alcohols in direct fuel cells have been under alkaline conditions. This is because alcohol electrooxidation kinetics under acidic conditions such as those of DMFCs are very sluggish. This combined with the highly corrosive conditions of the acidic electrolyte limits the choice of electrocatalyst materials to high concentrations of platinum alloys. In alkaline media, platinum can be replaced by more abundant transition metal based materials, either nanoparticles or molecular complexes, that show significantly higher activity and selectivity. This chapter provides an overview of recent developments in the preparation of electrocatalytic materials for alcohol electrooxidation in alkaline media. In addition to maximizing electrical power output these materials can be tuned to optimize the selectivity of oxidation thus leading to the co-production of partially oxidized industrially relevant intermediates. A discussion of recent work on exploiting SMSIs (Strong Metal Support Interactions) to improve activity, fuel efficiency and stability of electrocatalyst materials is also included.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brouzgou A, Podias A, Tsiakaras P (2013) PEMFCs and AEMFCs directly fed with ethanol: a current status comparative review. J Appl Electrochem 43(2):119–136. doi:10.1007/s10800-012-0513-2

    Article  CAS  Google Scholar 

  2. Yu EH, Krewer U, Scott K (2010) Principles and materials aspects of direct alkaline alcohol fuel cells. Energies 3(8):1499–1528. doi:10.3390/En3081499

    Article  CAS  Google Scholar 

  3. Scordia D, Cosentino SL, Jeffries TW (2013) Effectiveness of dilute oxalic acid pretreatment of Miscanthus × giganteus biomass for ethanol production. Biomass Bioenerg 59:540–548. doi:10.1016/j.biombioe.2013.09.011

    Article  CAS  Google Scholar 

  4. Shi AM, Du ZY, Ma XC, Cheng YL, Min M, Deng SB, Chen P, Li D, Ruan R (2013) Production and evaluation of biodiesel and bioethanol from high oil corn using three processing routes. Bioresour Technol 128:100–106. doi:10.1016/j.biortech.2012.10.007

    Article  CAS  Google Scholar 

  5. Livshits V, Philosoph A, Peled E (2008) Direct ethylene glycol fuel-cell stack—study of oxidation intermediate products. J Power Sources 178(2):687–691. doi:10.1016/j.jpowsour.2007.07.054

    Article  CAS  Google Scholar 

  6. Kaplan D, Burstein L, Rosenberg Y, Peled E (2011) Comparison of methanol and ethylene glycol oxidation by alloy and core-shell platinum based catalysts. J Power Sources 196(20):8286–8292. doi:10.1016/j.jpowsour.2011.06.023

    Article  CAS  Google Scholar 

  7. Xin L, Zhang ZY, Wang ZC, Li WZ (2012) Simultaneous generation of mesoxalic acid and electricity from glycerol on a gold anode catalyst in anion-exchange membrane fuel cells. Chemcatchem 4(8):1105–1114. doi:10.1002/cctc.201200017

    Article  CAS  Google Scholar 

  8. Marchionni A, Bevilacqua M, Bianchini C, Chen YX, Filippi J, Fornasiero P, Lavacchi A, Miller H, Wang LQ, Vizza F (2013) Electrooxidation in alkaline media of ethylene glycol and glycerol on Pd-(Ni-Zn)/C anodes in direct alcohol fuel cells. Chemsuschem 6(3):390–390. doi:10.1002/cssc.201300154

    Article  CAS  Google Scholar 

  9. Ji N, Zhang T, Zheng MY, Wang AQ, Wang H, Wang XD, Chen JGG (2008) Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts. Angew Chem Int Ed 47(44):8510–8513. doi:10.1002/anie.200803233

    Article  CAS  Google Scholar 

  10. Zheng MY, Wang AQ, Ji N, Pang JF, Wang XD, Zhang T (2010) Transition metal-tungsten bimetallic catalysts for the conversion of cellulose into ethylene glycol. Chemsuschem 3(1):63–66. doi:10.1002/cssc.200900197

    Article  CAS  Google Scholar 

  11. Van Gerpen J (2005) Biodiesel processing and production. Fuel Process Technol 86(10):1097–1107. doi:10.1016/j.fuproc.2004.11.005

    Article  CAS  Google Scholar 

  12. Pimentel D, Patzek T (2005) Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Nat Resour Res 14(1):65–76. doi:10.1007/s11053-005-4679-8

    Article  CAS  Google Scholar 

  13. Scordia D, Cosentino SL, Lee J-W, Jeffries TW (2011) Dilute oxalic acid pretreatment for biorefining giant reed (Arundo donax L.). Biomass Bioenergy 35(7):3018–3024. http://dx.doi.org/10.1016/j.biombioe.2011.03.046

    Google Scholar 

  14. Antolini E, Gonzalez ER (2010) Alkaline direct alcohol fuel cells. J Power Sources 195(11):3431–3450. doi:10.1016/j.jpowsour.2009.11.145

    Article  CAS  Google Scholar 

  15. Wang YJ, Qiao JL, Baker R, Zhang JJ (2013) Alkaline polymer electrolyte membranes for fuel cell applications. Chem Soc Rev 42(13):5768–5787. doi:10.1039/C3cs60053j

    Article  CAS  Google Scholar 

  16. Tarasevich MR, Korchagin OV, Kuzov AV (2013) Electrocatalysis of anodic oxidation of ethanol. Russ Chem Rev 82(11):1047–1065. doi:10.1070/Rc2013v082n11abeh004276

    Article  CAS  Google Scholar 

  17. Varcoe JR, Atanassov P, Dekel DR, Herring AM, Hickner MA, Kohl PA, Kucernak AR, Mustain WE, Nijmeijer K, Scott K, Xu TW, Zhuang L (2014) Anion-exchange membranes in electrochemical energy systems. Energy Environ Sci 7(10):3135–3191. doi:10.1039/C4ee01303d

    Article  CAS  Google Scholar 

  18. Bambagioni V, Bianchini C, Filippi J, Lavacchi A, Oberhauser W, Marchionni A, Moneti S, Vizza F, Psaro R, Dal Santo V, Gallo A, Recchia S, Sordelli L (2011) Single-site and nanosized Fe-Co electrocatalysts for oxygen reduction: synthesis, characterization and catalytic performance. J Power Sources 196(5):2519–2529. doi:10.1016/j.jpowsour.2010.11.030

    Article  CAS  Google Scholar 

  19. Miller HA, Bevilacqua M, Filippi J, Lavacchi A, Marchionni A, Marelli M, Moneti S, Oberhauser W, Vesselli E, Innocenti M, Vizza F (2013) Nanostructured Fe-Ag electrocatalysts for the oxygen reduction reaction in alkaline media. J Mater Chem A 1(42):13337–13347. doi:10.1039/C3ta12757e

    Article  CAS  Google Scholar 

  20. Kruusenberg I, Matisen L, Shah Q, Kannan AM, Tammeveski K (2012) Non-platinum cathode catalysts for alkaline membrane fuel cells. Int J Hydrogen Energy 37(5):4406–4412. doi:10.1016/j.ijhydene.2011.11.143

    Article  CAS  Google Scholar 

  21. Shen SY, Zhao TS, Wu QX (2012) Product analysis of the ethanol oxidation reaction on palladium-based catalysts in an anion-exchange membrane fuel cell environment. Int J Hydrogen Energy 37(1):575–582. doi:10.1016/j.ijhydene.2011.09.077

    Article  CAS  Google Scholar 

  22. He QG, Shyam B, Macounova K, Krtil P, Ramaker D, Mukerjee S (2012) Dramatically enhanced cleavage of the C-C bond using an electrocatalytically coupled reaction. J Am Chem Soc 134(20):8655–8661. doi:10.1021/Ja301992h

    Article  CAS  Google Scholar 

  23. Fang X, Wang LQ, Shen PK, Cui GF, Bianchini C (2010) An in situ Fourier transform infrared spectroelectrochemical study on ethanol electrooxidation on Pd in alkaline solution. J Power Sources 195(5):1375–1378. doi:10.1016/j.jpowsour.2009.09.025

    Article  CAS  Google Scholar 

  24. Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C, Leger JM (2002) Recent advances in the development of direct alcohol fuel cells (DAFC). J Power Sources 105(2):283–296. doi:10.1016/S0378-7753(01)00954-5, Pii: S0378-7753(01)00954-5

    Google Scholar 

  25. Gasteiger HA, Markovic N, Ross PN, Cairns EJ (1993) Methanol electrooxidation on well-characterized Pt-Rn alloys. J Phys Chem 97(46):12020–12029. doi:10.1021/J100148a030

    Article  CAS  Google Scholar 

  26. Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C, Léger J-M (2002) Recent advances in the development of direct alcohol fuel cells (DAFC). J Power Sources 105(2):283–296. doi:10.1016/S0378-7753(01)00954-5

    Article  CAS  Google Scholar 

  27. Liang ZX, Zhao TS, Xu JB, Zhu LD (2009) Mechanism study of the ethanol oxidation reaction on palladium in alkaline media. Electrochim Acta 54(8):2203–2208. doi:10.1016/j.electacta.2008.10.034

    Article  CAS  Google Scholar 

  28. Bevilacqua M, Bianchini C, Marchionni A, Filippi J, Lavacchi A, Miller H, Oberhauser W, Vizza F, Granozzi G, Artiglia L, Annen SP, Krumeich F, Grutzmacher H (2012) Improvement in the efficiency of an organometallic fuel cell by tuning the molecular architecture of the anode electrocatalyst and the nature of the carbon support. Energy Environ Sci 5(9):8608–8620. doi:10.1039/C2ee22055e

    Article  CAS  Google Scholar 

  29. Sheng T, Lin WF, Hardacre C, Hu P (2014) Role of water and adsorbed hydroxyls on ethanol electrochemistry on Pd: new mechanism, active centers, and energetics for direct ethanol fuel cell running in alkaline medium. J Phys Chem C 118(11):5762–5772. doi:10.1021/Jp407978h

    Article  CAS  Google Scholar 

  30. Yang YY, Ren J, Li QX, Zhou ZY, Sun SG, Cai WB (2014) Electrocatalysis of ethanol on a Pd electrode in alkaline media: an in situ attenuated total reflection surface-enhanced infrared absorption spectroscopy study. ACS Catal 4(3):798–803. doi:10.1021/Cs401198t

    Article  CAS  Google Scholar 

  31. Bellini M, Bevilacqua M, Filippi J, Lavacchi A, Marchionni A, Miller HA, Oberhauser W, Vizza F, Annen SP, Grutzmacher H (2014) Energy and chemicals from the selective electrooxidation of renewable diols by organometallic fuel cells. Chemsuschem 7(9):2432–2435. doi:10.1002/cssc.201402316

    Article  CAS  Google Scholar 

  32. Marchionni A, Bevilacqua M, Bianchini C, Chen Y-X, Filippi J, Fornasiero P, Lavacchi A, Miller H, Wang L, Vizza F (2013) Electrooxidation of ethylene glycol and glycerol on Pd-(Ni-Zn)/C anodes in direct alcohol fuel cells. Chemsuschem 6(3):518–528. doi:10.1002/cssc.201200866

    Article  CAS  Google Scholar 

  33. Kwon Y, Schouten KJP, Koper MTM (2011) Mechanism of the catalytic oxidation of glycerol on polycrystalline gold and platinum electrodes. Chemcatchem 3(7):1176–1185. doi:10.1002/cctc.201100023

    Article  CAS  Google Scholar 

  34. Bambagioni V, Bevilacqua M, Bianchini C, Filippi J, Marchionni A, Vizza F, Wang LQ, Shen PK (2010) Ethylene glycol electrooxidation on smooth and nanostructured Pd electrodes in alkaline media. Fuel Cells 10(4):582–590. doi:10.1002/fuce.200900120

    Article  CAS  Google Scholar 

  35. Bambagioni V, Bianchini C, Filippi J, Oberhauser W, Marchionni A, Vizza F, Psaro R, Sordelli L, Foresti ML, Innocenti M (2009) Ethanol oxidation on electrocatalysts obtained by spontaneous deposition of palladium onto nickel-zinc materials. Chemsuschem 2(1):99–112. doi:10.1002/cssc.200800188

    Article  CAS  Google Scholar 

  36. Bianchini C, Shen PK (2009) Palladium-based electrocatalysts for alcohol oxidation in half cells and in direct alcohol fuel cells. Chem Rev 109(9):4183–4206. doi:10.1021/cr9000995

    Article  CAS  Google Scholar 

  37. Christensen PA, Hamnett A (1989) The oxidation of ethylene glycol at a platinum electrode in acid and base: an in situ FTIR study. J Electroanal Chem Interfacial Electrochem 260(2):347–359. http://dx.doi.org/10.1016/0022-0728(89)87149-9

    Google Scholar 

  38. Hahn F, Beden B, Kadirgan F, Lamy C (1987) Electrocatalytic oxidation of ethylene glycol: Part III. In-situ infrared reflectance spectroscopic study of the strongly bound species resulting from its chemisorption at a platinum electrode in aqueous medium. J Electroanal Chem Interfacial Electrochem 216(1–2):169–180. http://dx.doi.org/10.1016/0022-0728(87)80205-X

    Google Scholar 

  39. Santasalo-Aarnio A, Kwon Y, Ahlberg E, Kontturi K, Kallio T, Koper MTM (2011) Comparison of methanol, ethanol and iso-propanol oxidation on Pt and Pd electrodes in alkaline media studied by HPLC. Electrochem Commun 13(5):466–469. doi:10.1016/j.elecom.2011.02.022

    Article  CAS  Google Scholar 

  40. An L, Zhao TS, Wu QX, Zeng L (2012) Comparison of different types of membrane in alkaline direct ethanol fuel cells. Int J Hydrogen Energy 37(19):14536–14542. http://dx.doi.org/10.1016/j.ijhydene.2012.06.105

    Google Scholar 

  41. An L, Zhao TS, Shen SY, Wu QX, Chen R (2010) Performance of a direct ethylene glycol fuel cell with an anion-exchange membrane. Int J Hydrogen Energy 35(9):4329–4335. http://dx.doi.org/10.1016/j.ijhydene.2010.02.009

    Google Scholar 

  42. An L, Zhao TS, Chen R, Wu QX (2011) A novel direct ethanol fuel cell with high power density. J Power Sources 196(15):6219–6222. http://dx.doi.org/10.1016/j.jpowsour.2011.03.040

    Google Scholar 

  43. Li YS, Zhao TS, Liang ZX (2009) Performance of alkaline electrolyte-membrane-based direct ethanol fuel cells. J Power Sources 187(2):387–392. http://dx.doi.org/10.1016/j.jpowsour.2008.10.132

    Google Scholar 

  44. Lee J, Jeong B, Ocon JD (2013) Oxygen electrocatalysis in chemical energy conversion and storage technologies. Curr Appl Phys 13(2):309–321. doi:10.1016/j.cap.2012.08.008

    Article  Google Scholar 

  45. Othman R, Dicks AL, Zhu ZH (2012) Non precious metal catalysts for the PEM fuel cell cathode. Int J Hydrogen Energ 37(1):357–372. doi:10.1016/j.ijhydene.2011.08.095

    Article  CAS  Google Scholar 

  46. Brouzgou A, Song SQ, Tsiakaras P (2012) Low and non-platinum electrocatalysts for PEMFCs: current status, challenges and prospects. Appl Catal B Environ 127:371–388. doi:10.1016/j.apcatb.2012.08.031

    Article  CAS  Google Scholar 

  47. Jaouen F, Proietti E, Lefevre M, Chenitz R, Dodelet JP, Wu G, Chung HT, Johnston CM, Zelenay P (2011) Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ Sci 4(1):114–130. doi:10.1039/C0ee00011f

    Article  CAS  Google Scholar 

  48. Guo JS, Zhou J, Chu D, Chen RR (2013) Tuning the electrochemical interface of Ag/C electrodes in alkaline media with metallophthalocyanine molecules. J Phys Chem C 117(8):4006–4017. doi:10.1021/Jp310655y

    Article  CAS  Google Scholar 

  49. Ding L, Xin Q, Zhou XJ, Qiao JL, Li H, Wang HJ (2013) Electrochemical behavior of nanostructured nickel phthalocyanine (NiPc/C) for oxygen reduction reaction in alkaline media. J Appl Electrochem 43(1):43–51. doi:10.1007/s10800-012-0503-4

    Article  CAS  Google Scholar 

  50. Lalande G, Faubert G, Cote R, Guay D, Dodelet JP, Weng LT, Bertrand P (1996) Catalytic activity and stability of heat-treated iron phthalocyanines for the electroreduction of oxygen in polymer electrolyte fuel cells. J Power Sources 61(1–2):227–237. doi:10.1016/S0378-7753(96)02356-7

    Article  CAS  Google Scholar 

  51. Ding L, Qiao JL, Dai XF, Zhang J, Zhang JJ, Tian BL (2012) Highly active electrocatalysts for oxygen reduction from carbon-supported copper-phthalocyanine synthesized by high temperature treatment. Int J Hydrogen Energy 37(19):14103–14113. doi:10.1016/j.ijhydene.2012.07.046

    Article  CAS  Google Scholar 

  52. He QG, Yang XF, Ren XM, Koel BE, Ramaswamy N, Mukerjee S, Kostecki R (2011) A novel CuFe-based catalyst for the oxygen reduction reaction in alkaline media. J Power Sources 196(18):7404–7410. doi:10.1016/j.jpowsour.2011.04.016

    Article  CAS  Google Scholar 

  53. He QG, Yang XF, He RH, Bueno-Lopez A, Miller H, Ren XM, Yang WL, Koel BE (2012) Electrochemical and spectroscopic study of novel Cu and Fe-based catalysts for oxygen reduction in alkaline media. J Power Sources 213:169–179. doi:10.1016/j.jpowsour.2012.04.029

    Article  CAS  Google Scholar 

  54. Piana M, Boccia M, Filpi A, Flammia E, Miller HA, Orsini M, Salusti F, Santiccioli S, Ciardelli F, Pucci A (2010) H-2/air alkaline membrane fuel cell performance and durability, using novel ionomer and non-platinum group metal cathode catalyst. J Power Sources 195(18):5875–5881. doi:10.1016/j.jpowsour.2009.12.085

    Article  CAS  Google Scholar 

  55. Lefevre M, Proietti E, Jaouen F, Dodelet JP (2009) Iron-based catalysts with improved oxygen reduction activity in polymer electrolyte fuel cells. Science 324(5923):71–74. doi:10.1126/science.1170051

    Article  CAS  Google Scholar 

  56. Proietti E, Jaouen F, Lefevre M, Larouche N, Tian J, Herranz J, Dodelet JP (2011) Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat Commun 2:416. doi:10.1038/Ncomms1427

    Article  CAS  Google Scholar 

  57. Trogadas P, Fuller TF, Strasser P (2014) Carbon as catalyst and support for electrochemical energy conversion. Carbon 75:5–42. doi:10.1016/j.carbon.2014.04.005

    Article  CAS  Google Scholar 

  58. Yang Z, Nie HG, Chen X, Chen XH, Huang SM (2013) Recent progress in doped carbon nanomaterials as effective cathode catalysts for fuel cell oxygen reduction reaction. J Power Sources 236:238–249. doi:10.1016/j.jpowsour.2013.02.057

    Article  CAS  Google Scholar 

  59. Gong KP, Du F, Xia ZH, Durstock M, Dai LM (2009) Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323(5915):760–764. doi:10.1126/science.1168049

    Article  CAS  Google Scholar 

  60. Bambagioni V, Bianchini C, Chen YX, Filippi J, Fornasiero P, Innocenti M, Lavacchi A, Marchionni A, Oberhauser W, Vizza F (2012) Energy efficiency enhancement of ethanol electrooxidation on Pd-CeO2/C in passive and active polymer electrolyte-membrane fuel cells. Chemsuschem 5(7):1266–1273. doi:10.1002/cssc.201100738

    Article  CAS  Google Scholar 

  61. Chen Y, Bellini M, Bevilacqua M, Fornasiero P, Lavacchi A, Miller HA, Wang L, Vizza F (2014) Direct alcohol fuel cells: toward the power densities of hydrogen-fed proton exchange membrane fuel cells. Chemsuschem 8(3):524–533. doi:10.1002/cssc.201402999

    Article  CAS  Google Scholar 

  62. Li YS, He YL (2014) Layer reduction method for fabricating Pd-coated Ni foams as high-performance ethanol electrode for anion-exchange membrane fuel cells. RSC Adv 4(32):16879–16884. doi:10.1039/C4ra01399a

    Article  CAS  Google Scholar 

  63. Li YS, Zhao TS (2011) A high-performance integrated electrode for anion-exchange membrane direct ethanol fuel cells. Int J Hydrogen Energy 36(13):7707–7713. doi:10.1016/j.ijhydene.2011.03.090

    Article  CAS  Google Scholar 

  64. Shen SY, Zhao TS, Xu JB, Li YS (2011) High performance of a carbon supported ternary PdIrNi catalyst for ethanol electro-oxidation in anion-exchange membrane direct ethanol fuel cells. Energy Environ Sci 4(4):1428–1433. doi:10.1039/C0ee00579g

    Article  CAS  Google Scholar 

  65. Ma L, He H, Hsu A, Chen RR (2013) PdRu/C catalysts for ethanol oxidation in anion-exchange membrane direct ethanol fuel cells. J Power Sources 241:696–702. doi:10.1016/j.jpowsour.2013.04.051

    Article  CAS  Google Scholar 

  66. Xin L, Zhang ZY, Qi J, Chadderdon D, Li WZ (2012) Electrocatalytic oxidation of ethylene glycol (EG) on supported Pt and Au catalysts in alkaline media: reaction pathway investigation in three-electrode cell and fuel cell reactors. Appl Catal B Environ 125:85–94. doi:10.1016/j.apcatb.2012.05.024

    Article  CAS  Google Scholar 

  67. An L, Zeng L, Zhao TS (2013) An alkaline direct ethylene glycol fuel cell with an alkali-doped polybenzimidazole membrane. Int J Hydrogen Energy 38(25):10602–10606. doi:10.1016/j.ijhydene.2013.06.042

    Article  CAS  Google Scholar 

  68. Qi J, Xin L, Zhang ZY, Sun K, He HY, Wang F, Chadderdon D, Qiu Y, Liang CH, Li WZ (2013) Surface dealloyed PtCo nanoparticles supported on carbon nanotube: facile synthesis and promising application for anion exchange membrane direct crude glycerol fuel cell. Green Chem 15(5):1133–1137. doi:10.1039/C3gc36955b

    Article  CAS  Google Scholar 

  69. Suleimanov NM, Khantimerov SM, Kukovitsky EF, Matukhin VL (2008) Electrooxidation of ethanol on carbon nanotubes-nickel nanoparticles composites in alkaline media. J Solid State Electrochem 12(7–8):1021–1023. doi:10.1007/s10008-008-0519-1

    Article  CAS  Google Scholar 

  70. Xu CW, Hu YH, Rong JH, Jiang SP, Liu YL (2007) Ni hollow spheres as catalysts for methanol and ethanol electrooxidation. Electrochem Commun 9(8):2009–2012. doi:10.1016/j.elecom.2007.05.028

    Article  CAS  Google Scholar 

  71. Jin GP, Baron R, Xiao L, Compton RG (2009) Ultrasonic synthesis of nickel nanostructures on glassy carbon microspheres and their application for ethanol electrooxidation. J Nanosci Nanotechnol 9(4):2719–2725. doi:10.1166/Jnn.2009.462

    Article  CAS  Google Scholar 

  72. Yi Y, Uhm S, Lee J (2010) Electrocatalytic oxidation of ethanol on nanoporous Ni electrode in alkaline media. Electrocatalysis 1(2–3):104–107. doi:10.1007/s12678-010-0015-0

    Article  CAS  Google Scholar 

  73. Wang ZH, Du YL, Zhang FY, Zheng ZX, Zhang YZ, Wang CM (2013) High electrocatalytic activity of non-noble Ni-Co/graphene catalyst for direct ethanol fuel cells. J Solid State Electrochem 17(1):99–107. doi:10.1007/s10008-012-1855-8

    Article  CAS  Google Scholar 

  74. Muench F, Oezaslan M, Rauber M, Kaserer S, Fuchs A, Mankel E, Brotz J, Strasser P, Roth C, Ensinger W (2013) Electroless synthesis of nanostructured nickel and nickel-boron tubes and their performance as unsupported ethanol electrooxidation catalysts. J Power Sources 222:243–252. doi:10.1016/j.jpowsour.2012.08.067

    Article  CAS  Google Scholar 

  75. Ma L, Chu D, Chen RR (2012) Comparison of ethanol electro-oxidation on Pt/C and Pd/C catalysts in alkaline media. Int J Hydrogen Energy 37(15):11185–11194. doi:10.1016/j.ijhydene.2012.04.132

    Article  CAS  Google Scholar 

  76. Bianchini C, Bambagioni V, Filippi J, Marchionni A, Vizza F, Bert P, Tampucci A (2009) Selective oxidation of ethanol to acetic acid in highly efficient polymer electrolyte membrane-direct ethanol fuel cells. Electrochem Commun 11(5):1077–1080. doi:10.1016/j.elecom.2009.03.022

    Article  CAS  Google Scholar 

  77. Shen SY, Zhao TS, Xu JB, Li YS (2010) Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells. J Power Sources 195(4):1001–1006. doi:10.1016/j.jpowsour.2009.08.079

    Article  CAS  Google Scholar 

  78. Liu XY, Zhang Y, Gong MX, Tang YW, Lu TH, Chen Y, Lee JM (2014) Facile synthesis of corallite-like Pt-Pd alloy nanostructures and their enhanced catalytic activity and stability for ethanol oxidation. J Mater Chem A 2(34):13840–13844. doi:10.1039/C4ta02522a

    Article  CAS  Google Scholar 

  79. Jiang RZ, Tran DT, McClure JP, Chu D (2014) A class of (Pd-Ni-P) electrocatalysts for the ethanol oxidation reaction in alkaline media. ACS Catal 4(8):2577–2586. doi:10.1021/Cs500462z

    Article  CAS  Google Scholar 

  80. Hong W, Wang J, Wang EK (2014) Facile synthesis of highly active PdAu nanowire networks as self-supported electrocatalyst for ethanol electrooxidation. ACS Appl Mater Interfaces 6(12):9481–9487. doi:10.1021/Am501859k

    Article  CAS  Google Scholar 

  81. Geraldes AN, da Silva DF, Pino ES, da Silva JCM, de Souza RFB, Hammer P, Spinace EV, Neto AO, Linardi M, dos Santos MC (2013) Ethanol electro-oxidation in an alkaline medium using Pd/C, Au/C and PdAu/C electrocatalysts prepared by electron beam irradiation. Electrochim Acta 111:455–465. doi:10.1016/j.electacta.2013.08.021

    Article  CAS  Google Scholar 

  82. Feng YY, Liu ZH, Xu Y, Wang P, Wang WH, Kong DS (2013) Highly active PdAu alloy catalysts for ethanol electro-oxidation. J Power Sources 232:99–105. doi:10.1016/j.jpowsour.2013.01.013

    Article  CAS  Google Scholar 

  83. Chen LY, Chen N, Hou Y, Wang ZC, Lv SH, Fujita T, Jiang JH, Hirata A, Chen MW (2013) Geometrically controlled nanoporous PdAu bimetallic catalysts with tunable Pd/Au ratio for direct ethanol fuel cells. ACS Catal 3(6):1220–1230. doi:10.1021/Cs400135k

    Article  CAS  Google Scholar 

  84. Huang ZY, Zhou HH, Li CH, Zeng FY, Fu CP, Kuang YF (2012) Preparation of well-dispersed PdAu bimetallic nanoparticles on reduced graphene oxide sheets with excellent electrochemical activity for ethanol oxidation in alkaline media. J Mater Chem 22(5):1781–1785. doi:10.1039/C1jm13024b

    Article  CAS  Google Scholar 

  85. Nguyen ST, Law HM, Nguyen HT, Kristian N, Wang SY, Chan SH, Wang X (2009) Enhancement effect of Ag for Pd/C towards the ethanol electro-oxidation in alkaline media. Appl Catal B Environ 91(1-2):507–515. doi:10.1016/j.apcatb.2009.06.021

    Article  CAS  Google Scholar 

  86. Hammer B, Norskov JK (2000) Theoretical surface science and catalysis—calculations and concepts. Adv Catal 45:71–129

    CAS  Google Scholar 

  87. Greeley J, Norskov JK (2005) A general scheme for the estimation of oxygen binding energies on binary transition metal surface alloys. Surf Sci 592(1-3):104–111. doi:10.1016/j.susc.2005.07.018

    Article  CAS  Google Scholar 

  88. Greeley J, Norskov JK, Mavrikakis M (2002) Electronic structure and catalysis on metal surfaces. Annu Rev Phys Chem 53:319–348. doi:10.1146/annurev.physchem.53.100301.131630

    Article  CAS  Google Scholar 

  89. Stamenkovic V, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM, Rossmeisl J, Greeley J, Norskov JK (2006) Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew Chem Int Ed 45(18):2897–2901. doi:10.1002/anie.200504386

    Article  CAS  Google Scholar 

  90. Ruban A, Hammer B, Stoltze P, Skriver HL, Norskov JK (1997) Surface electronic structure and reactivity of transition and noble metals. J Mol Catal A Chem 115(3):421–429. doi:10.1016/S1381-1169(96)00348-2

    Article  CAS  Google Scholar 

  91. He QG, Chen W, Mukerjee S, Chen SW, Laufek F (2009) Carbon-supported PdM (M = Au and Sn) nanocatalysts for the electrooxidation of ethanol in high pH media. J Power Sources 187(2):298–304. doi:10.1016/j.jpowsour.2008.11.065

    Article  CAS  Google Scholar 

  92. Xia YN, Yang PD, Sun YG, Wu YY, Mayers B, Gates B, Yin YD, Kim F, Yan YQ (2003) One-dimensional nanostructures: synthesis, characterization, and applications. Adv Mater 15(5):353–389. doi:10.1002/adma.200390087

    Article  CAS  Google Scholar 

  93. Zhang LG, Li N, Gao FM, Hou L, Xu ZM (2012) Insulin amyloid fibrils: an excellent platform for controlled synthesis of ultrathin superlong platinum nanowires with high electrocatalytic activity. J Am Chem Soc 134(28):11326–11329. doi:10.1021/Ja302959e

    Article  CAS  Google Scholar 

  94. Wang YJ, Wilkinson DP, Zhang JJ (2011) Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts. Chem Rev 111(12):7625–7651. doi:10.1021/Cr100060r

    Article  CAS  Google Scholar 

  95. Lavacchi A, Miller H, Vizza F (2013) Other support nanomaterials. Nanotechnol Electrocatal Energy 170:145–187. doi:10.1007/978-1-4899-8059-5_6

    Article  Google Scholar 

  96. Du WX, Mackenzie KE, Milano DF, Deskins NA, Su D, Teng XW (2012) Palladium-tin alloyed catalysts for the ethanol oxidation reaction in an alkaline medium. ACS Catal 2(2):287–297. doi:10.1021/Cs2005955

    Article  CAS  Google Scholar 

  97. Wang H, Liu ZY, Ji S, Wang KL, Zhou TB, Wang RF (2013) Ethanol oxidation activity and structure of carbon-supported Pt-modified PdSn-SnO2 influenced by different stabilizers. Electrochim Acta 108:833–840. doi:10.1016/j.electacta.2013.07.061

    Article  CAS  Google Scholar 

  98. Mao HM, Wang LL, Zhu PP, Xu QJ, Li QX (2014) Carbon-supported PdSn SnO2 catalyst for ethanol electro-oxidation in alkaline media. Int J Hydrogen Energy 39(31):17583–17588. doi:10.1016/j.ijhydene.2014.08.079

    Article  CAS  Google Scholar 

  99. Wang RF, Liu ZY, Ma YJ, Wang H, Linkov V, Ji S (2013) Heterostructure core PdSn-SnO2 decorated by Pt as efficient electrocatalysts for ethanol oxidation. Int J Hydrogen Energy 38(31):13604–13610. doi:10.1016/j.lihydene.2013.08.044

    Article  CAS  Google Scholar 

  100. Martinez U, Serov A, Padilla M, Atanassov P (2014) Mechanistic insight into oxide-promoted palladium catalysts for the electro-oxidation of ethanol. Chemsuschem 7(8):2351–2357. doi:10.1002/cssc.201402062

    Article  CAS  Google Scholar 

  101. Zhang QL, Zheng JN, Xu TQ, Wang AJ, Wei J, Chen JR, Feng JJ (2014) Simple one-pot preparation of Pd-on-Cu nanocrystals supported on reduced graphene oxide for enhanced ethanol electrooxidation. Electrochim Acta 132:551–560. doi:10.1016/j.electacta.2014.03.159

    Article  CAS  Google Scholar 

  102. Zhang MM, Xie JM, Sun Q, Yan ZX, Chen M, Jing JJ, Hossain AMS (2013) In situ synthesis of palladium nanoparticle on functionalized graphene sheets at improved performance for ethanol oxidation in alkaline media. Electrochim Acta 111:855–861. doi:10.1016/j.electacta.2013.08.135

    Article  CAS  Google Scholar 

  103. Gao LN, Yue WB, Tao SS, Fan LZ (2013) Novel strategy for preparation of graphene-Pd, Pt composite, and its enhanced electrocatalytic activity for alcohol oxidation. Langmuir 29(3):957–964. doi:10.1021/La303663x

    Article  CAS  Google Scholar 

  104. Wang Y, Zhao Y, Yin J, Liu MC, Dong Q, Su YQ (2014) Synthesis and electrocatalytic alcohol oxidation performance of Pd-Co bimetallic nanoparticles supported on graphene. Int J Hydrogen Energy 39(3):1325–1335. doi:10.1016/j.ijhydene.2013.11.002

    Article  CAS  Google Scholar 

  105. Dong Q, Zhao Y, Han X, Wang Y, Liu MC, Li Y (2014) Pd/Cu bimetallic nanoparticles supported on graphene nanosheets: facile synthesis and application as novel electrocatalyst for ethanol oxidation in alkaline media. Int J Hydrogen Energy 39(27):14669–14679. doi:10.1016/j.ijhydene.2014.06.139

    Article  CAS  Google Scholar 

  106. Ahmed MS, Jeon S (2014) Highly active graphene-supported NixPd100-x binary alloyed catalysts for electro-oxidation of ethanol in an alkaline media. ACS Catal 4(6):1830–1837. doi:10.1021/Cs500103a

    Article  CAS  Google Scholar 

  107. Zhang MM, Yan ZX, Sun Q, Xie JM, Jing JJ (2012) Synthetic core-shell Ni@Pd nanoparticles supported on graphene and used as an advanced nanoelectrocatalyst for methanol oxidation. New J Chem 36(12):2533–2540. doi:10.1039/C2nj40651a

    Article  CAS  Google Scholar 

  108. Cui Q, Chao SJ, Bai ZY, Yan HY, Wang K, Yang L (2014) Based on a new support for synthesis of highly efficient palladium/hydroxyapatite catalyst for ethanol electrooxidation. Electrochim Acta 132:31–36. doi:10.1016/j.electacta.2014.03.129

    Article  CAS  Google Scholar 

  109. Bambagioni V, Bianchini C, Marchionni A, Filippi J, Vizza F, Teddy J, Serp P, Zhiani M (2009) Pd and Pt-Ru anode electrocatalysts supported on multi-walled carbon nanotubes and their use in passive and active direct alcohol fuel cells with an anion-exchange membrane (alcohol = methanol, ethanol, glycerol). J Power Sources 190(2):241–251. doi:10.1016/j.jpowsour.2009.01.044

    Article  CAS  Google Scholar 

  110. Machado BF, Marchionni A, Bacsa RR, Bellini M, Beausoleil J, Oberhauser W, Vizza F, Serp P (2013) Synergistic effect between few layer graphene and carbon nanotube supports for palladium catalyzing electrochemical oxidation of alcohols. J Energy Chem 22(2):296–304

    Article  CAS  Google Scholar 

  111. Serov A, Martinez U, Atanassov P (2013) Novel Pd-In catalysts for alcohols electrooxidation in alkaline media. Electrochem Commun 34:185–188. doi:10.1016/j.elecom.2013.06.003

    Article  CAS  Google Scholar 

  112. Zalineeva A, Serov A, Padilla M, Martinez U, Artyushkova K, Baranton S, Coutanceau C, Atanassov PB (2014) Self-supported PdxBi Catalysts for the electrooxidation of glycerol in alkaline media. J Am Chem Soc 136(10):3937–3945. doi:10.1021/Ja412429f

    Article  CAS  Google Scholar 

  113. Cheng FL, Dai XC, Wang H, Jiang SP, Zhang M, Xu CW (2010) Synergistic effect of Pd-Au bimetallic surfaces in Au-covered Pd nanowires studied for ethanol oxidation. Electrochim Acta 55(7):2295–2298. doi:10.1016/j.electacta.2009.11.076

    Article  CAS  Google Scholar 

  114. Cherevko S, Xing XL, Chung CH (2011) Pt and Pd decorated Au nanowires: extremely high activity of ethanol oxidation in alkaline media. Electrochim Acta 56(16):5771–5775. doi:10.1016/j.electacta.2011.04.052

    Article  CAS  Google Scholar 

  115. Rodriguez P, Koper MTM (2014) Electrocatalysis on gold. Phys Chem Chem Phys 16(27):13583–13594. doi:10.1039/C4cp00394b

    Article  CAS  Google Scholar 

  116. de Lima RB, Varela H (2008) Catalytic oxidation of ethanol on gold electrode in alkaline media. Gold Bull 41(1):15–22

    Article  Google Scholar 

  117. Beyhan S, Uosaki K, Feliu JM, Herrero E (2013) Electrochemical and in situ FTIR studies of ethanol adsorption and oxidation on gold single crystal electrodes in alkaline. J Electroanal Chem 707:89–94. doi:10.1016/j.jelechem.2013.08.034

    Article  CAS  Google Scholar 

  118. Pandey RK, Lakshminarayanan V (2012) Ethanol electrocatalysis on gold and conducting polymer nanocomposites: a study of the kinetic parameters. Appl Catal B Environ 125:271–281. doi:10.1016/j.apcatb.2012.06.002

    Article  CAS  Google Scholar 

  119. Kumar VL, Siddhardha RSS, Kaniyoor A, Podila R, Molli M, Kumar VSM, Venkataramaniah K, Ramaprabhu S, Rao AM, Ramamurthy SS (2014) Gold decorated graphene by laser ablation for efficient electrocatalytic oxidation of methanol and ethanol. Electroanalysis 26(8):1850–1857. doi:10.1002/elan.201400244

    Article  CAS  Google Scholar 

  120. Simoes M, Baranton S, Coutanceau C (2012) Electrochemical valorisation of glycerol. Chemsuschem 5(11):2106–2124. doi:10.1002/cssc.201200335

    Article  CAS  Google Scholar 

  121. Zhang ZY, Xin L, Qi J, Wang ZC, Li WZ (2012) Selective electro-conversion of glycerol to glycolate on carbon nanotube supported gold catalyst. Green Chem 14(8):2150–2152. doi:10.1039/C2gc35505a

    Article  CAS  Google Scholar 

  122. Zhang ZY, Xin L, Qi J, Wang ZC, Chadderdon D, Li WZ (2012) Simultaneous generation of valuable chemicals and electricity from selective electrocatalytic oxidation of glycerol in anion exchange membrane fuel cell reactors. Abstr Pap Am Chem S 244

    Google Scholar 

  123. Zhang ZY, Xin L, Qi J, Chadderdon DJ, Sun K, Warsko KM, Li WZ (2014) Selective electro-oxidation of glycerol to tartronate or mesoxalate on Au nanoparticle catalyst via electrode potential tuning in anion-exchange membrane electro-catalytic flow reactor. Appl Catal B Environ 147:871–878. doi:10.1016/j.apcatb.2013.10.018

    Article  CAS  Google Scholar 

  124. Zhang ZY, Xin L, Qi J, Chadderdon DJ, Li WZ (2013) Supported Pt, Pd and Au nanoparticle anode catalysts for anion-exchange membrane fuel cells with glycerol and crude glycerol fuels. Appl Catal B Environ 136:29–39. doi:10.1016/j.apcatb.2013.01.045

    Article  CAS  Google Scholar 

  125. Zhang ZY, Xin L, Li WZ (2012) Supported gold nanoparticles as anode catalyst for anion-exchange membrane-direct glycerol fuel cell (AEM-DGFC). Int J Hydrogen Energy 37(11):9393–9401. doi:10.1016/j.ijhydene.2012.03.019

    Article  CAS  Google Scholar 

  126. Qi J, Xin L, Chadderdon DJ, Qiu Y, Jiang YB, Benipal N, Liang CH, Li WZ (2014) Electrocatalytic selective oxidation of glycerol to tartronate on Au/C anode catalysts in anion exchange membrane fuel cells with electricity cogeneration. Appl Catal B Environ 154:360–368. doi:10.1016/j.apcatb.2014.02.040

    Article  CAS  Google Scholar 

  127. Wang Q, Sun GQ, Jiang LH, Xin Q, Sun SG, Jiang YX, Chen SP, Jusys Z, Behm RJ (2007) Adsorption and oxidation of ethanol on colloid-based Pt/C, PtRu/C and Pt3Sn/C catalysts: In situ FTIR spectroscopy and on-line DEMS studies. Phys Chem Chem Phys 9(21):2686–2696. doi:10.1039/B700676b

    Article  CAS  Google Scholar 

  128. James DD, Pickup PG (2012) Measurement of carbon dioxide yields for ethanol oxidation by operation of a direct ethanol fuel cell in crossover mode. Electrochim Acta 78:274–278. doi:10.1016/j.electacta.2012.05.120

    Article  CAS  Google Scholar 

  129. Tarnowski DJ, Korzeniewski C (1997) Effects of surface step density on the electrochemical oxidation of ethanol to acetic acid. J Phys Chem B 101(2):253–258. doi:10.1021/Jp962450c

    Article  CAS  Google Scholar 

  130. Sun SG, Lin Y (1998) Kinetics of isopropanol oxidation on Pt(111), Pt(110), Pt(100), Pt(610) and Pt(211) single crystal electrodes—studies of in situ time-resolved FTIR spectroscopy. Electrochim Acta 44(6–7):1153–1162. doi:10.1016/S0013-4686(98)00218-7

    Article  CAS  Google Scholar 

  131. Zhang ZC, Nosheen F, Zhang JC, Yang Y, Wang PP, Zhuang J, Wang X (2013) Growth of concave polyhedral Pd nanocrystals with 32 facets through in situ facet-selective etching. Chemsuschem 6(10):1893–1897. doi:10.1002/cssc.201300346

    Article  CAS  Google Scholar 

  132. Lee YW, Kim D, Hong JW, Kang SW, Lee SB, Han SW (2013) Kinetically controlled growth of polyhedral bimetallic alloy nanocrystals exclusively bound by high-index facets: AuPd hexoctahedra. Small 9(5):660–665. doi:10.1002/smll.201201813

    Article  CAS  Google Scholar 

  133. Bell AT (2003) The impact of nanoscience on heterogeneous catalysis. Science 299(5613):1688–1691. doi:10.1126/science.1083671

    Article  CAS  Google Scholar 

  134. Shao MH, Peles A, Shoemaker K (2011) Electrocatalysis on platinum nanoparticles: particle size effect on oxygen reduction reaction activity. Nano Lett 11(9):3714–3719. doi:10.1021/Nl2017459

    Article  CAS  Google Scholar 

  135. Henning AM, Watt J, Miedziak PJ, Cheong S, Santonastaso M, Song MH, Takeda Y, Kirkland AI, Taylor SH, Tilley RD (2013) Gold-palladium core-shell nanocrystals with size and shape control optimized for catalytic performance. Angew Chem Int Ed 52(5):1477–1480. doi:10.1002/anie.201207824

    Article  CAS  Google Scholar 

  136. Fashedemi OO, Julies B, Ozoemena KI (2013) Synthesis of Pd-coated FeCo@Fe/C core–shell nanoparticles: microwave-induced ‘top-down’ nanostructuring and decoration. Chem Commun 49:2034–2036

    Article  CAS  Google Scholar 

  137. Fashedemi OO, Ozoemena KI (2014) Comparative electrocatalytic oxidation of ethanol, ethylene glycol and glycerol in alkaline medium at Pd-decorated FeCo@Fe/C core-shell nanocatalysts. Electrochim Acta 128:279–286. doi:10.1016/j.electacta.2013.10.194

    Article  CAS  Google Scholar 

  138. Tian N, Zhou ZY, Sun SG, Ding Y, Wang ZL (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316(5825):732–735. doi:10.1126/science.1140484

    Article  CAS  Google Scholar 

  139. Ding Y, Gao Y, Wanga ZL, Tian N, Zhou ZY, Sun SG (2007) Facets and surface relaxation of tetrahexahedral platinum nanocrystals. Appl Phys Lett 91(12):121901. doi:10.1063/1.2785953

    Article  CAS  Google Scholar 

  140. Zhou ZY, Huang ZZ, Chen DJ, Wang Q, Tian N, Sun SG (2010) High-index faceted platinum nanocrystals supported on carbon black as highly efficient catalysts for ethanol electrooxidation. Angew Chem Int Ed 49(2):411–414. doi:10.1002/anie.200905413

    Article  CAS  Google Scholar 

  141. Zhou ZY, Shang SJ, Tian N, Wu BH, Zheng NF, Xu BB, Chen C, Wang HH, Xiang DM, Sun SG (2012) Shape transformation from Pt nanocubes to tetrahexahedra with size near 10 nm. Electrochem Commun 22:61–64. doi:10.1016/j.elecom.2012.05.023

    Article  CAS  Google Scholar 

  142. Tian N, Zhou ZY, Yu NF, Wang LY, Sun SG (2010) Direct electrodeposition of tetrahexahedral Pd nanocrystals with high-index facets and high catalytic activity for ethanol electrooxidation. J Am Chem Soc 132(22):7580–7581. doi:10.1021/Ja102177r

    Article  CAS  Google Scholar 

  143. Chen YX, Lavacchi A, Chen SP, di Benedetto F, Bevilacqua M, Bianchini C, Fornasiero P, Innocenti M, Marelli M, Oberhauser W, Sun SG, Vizza F (2012) Electrochemical milling and faceting: size reduction and catalytic activation of palladium nanoparticles. Angew Chem Int Ed 51(34):8500–8504. doi:10.1002/anie.201203589

    Article  CAS  Google Scholar 

  144. Wang L, Bevilacqua M, Chen Y-X, Filippi J, Innocenti M, Lavacchi A, Marchionni A, Miller H, Vizza F (2013) Enhanced electro-oxidation of alcohols at electrochemically treated polycrystalline palladium surface. J Power Sources 242:872–876

    Article  CAS  Google Scholar 

  145. Wang LQ, Bevilacqua M, Filippi J, Fornasiero P, Innocenti M, Lavacchi A, Marchionni A, Miller HA, Vizza F (2015) Electrochemical growth of platinum nanostructures for enhanced ethanol oxidation. Appl Catal Environ 165:185–191. doi:10.1016/j.apcatb.2014.10.009

    Article  CAS  Google Scholar 

  146. Wang L, Bambagioni V, Bevilacqua M, Bianchini C, Filippi J, Lavacchi A, Marchionni A, Vizza F, Fang X, Shen PK (2010) Sodium borohydride as an additive to enhance the performance of direct ethanol fuel cells. J Power Sources 195(24):8036–8043. doi:10.1016/j.jpowsour.2010.06.101

    Article  CAS  Google Scholar 

  147. Kocha SS (2012) Electrochemical degradation: electrocatalyst and support durability. In: Polymer electrolyte fuel cell degradation. Academic, Boston, pp 89–214

    Google Scholar 

  148. Chen ZW, Waje M, Li WZ, Yan YS (2007) Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. Angew Chem Int Ed 46(22):4060–4063. doi:10.1002/anie.200700894

    Article  CAS  Google Scholar 

  149. Borup R, Meyers J, Pivovar B, Kim YS, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, Zelenay P, More K, Stroh K, Zawodzinski T, Boncella J, McGrath JE, Inaba M, Miyatake K, Hori M, Ota K, Ogumi Z, Miyata S, Nishikata A, Siroma Z, Uchimoto Y, Yasuda K, Kimijima KI, Iwashita N (2007) Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem Rev 107(10):3904–3951. doi:10.1021/Cr050182l

    Article  CAS  Google Scholar 

  150. Shao-Horn Y, Sheng WC, Chen S, Ferreira PJ, Holby EF, Morgan D (2007) Instability of supported platinum nanoparticles in low-temperature fuel cells. Top Catal 46(3-4):285–305. doi:10.1007/s11244-007-9000-0

    Article  CAS  Google Scholar 

  151. Cao MN, Wu DS, Cao R (2014) Recent advances in the stabilization of platinum electrocatalysts for fuel-cell reactions. Chemcatchem 6(1):26–45. doi:10.1002/cctc.201300647

    Article  CAS  Google Scholar 

  152. Nguyen ST, Yang YH, Wang X (2012) Ethanol electro-oxidation activity of Nb-doped-TiO2 supported PdAg catalysts in alkaline media. Appl Catal B Environ 113:261–270. doi:10.1016/j.apcatb.2011.11.046

    Article  CAS  Google Scholar 

  153. Wang AL, Xu H, Feng JX, Ding LX, Tong YX, Li GR (2013) Design of Pd/PANI/Pd sandwich-structured nanotube array catalysts with special shape effects and synergistic effects for ethanol electrooxidation. J Am Chem Soc 135(29):10703–10709. doi:10.1021/Ja403101r

    Article  CAS  Google Scholar 

  154. Chen YX, Lavacchi A, Miller HA, Bevilacqua M, Filippi J, Innocenti M, Marchionni A, Oberhauser W, Wang L, Vizza F (2014) Nanotechnology makes biomass electrolysis more energy efficient than water electrolysis. Nat Commun 5:4036. doi:10.1038/ncomms5036

    CAS  Google Scholar 

  155. Antolini E (2007) Catalysts for direct ethanol fuel cells. J Power Sources 170(1):1–12. doi:10.1016/j.jpowsour.2007.04.009

    Article  CAS  Google Scholar 

  156. Matsuoka K, Iriyama Y, Abe T, Matsuoka M, Ogumi Z (2005) Alkaline direct alcohol fuel cells using an anion exchange membrane. J Power Sources 150:27–31. doi:10.1016/j.jpowsour.2005.02.020

    Article  CAS  Google Scholar 

  157. Vigier F, Rousseau S, Coutanceau C, Leger JM, Lamy C (2006) Electrocatalysis for the direct alcohol fuel cell. Top Catal 40(1–4):111–121. doi:10.1007/s11244-006-0113-7

    Article  CAS  Google Scholar 

  158. Cracknell JA, Vincent KA, Armstrong FA (2008) Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. Chem Rev 108(7):2439–2461. doi:10.1021/cr0680639

    Article  CAS  Google Scholar 

  159. Vincent KA, Barton SC, Canters GW, Heering HA (2009) Electrocatalysis for fuel cell at enzyme-modified electrodes. In: Koper MTM (ed) Fuel cell catalysis. Wiley, New York. doi:10.1002/9780470463772.ch17

    Google Scholar 

  160. Yamazaki S, Yao M, Fujiwara N, Siroma Z, Yasuda K, Ioroi T (2012) Electrocatalytic oxidation of alcohols by a carbon-supported Rh porphyrin. Chem Commun 48(36):4353–4355. doi:10.1039/C2cc30888f

    Article  CAS  Google Scholar 

  161. Brownell KR, McCrory CCL, Chidsey CED, Perry RH, Zare RN, Waymouth RM (2013) Electrooxidation of alcohols catalyzed by amino alcohol ligated ruthenium complexes. J Am Chem Soc 135(38):14299–14305. doi:10.1021/Ja4055564

    Article  CAS  Google Scholar 

  162. Weiss CJ, Das P, Miller DL, Helm ML, Appel AM (2014) Catalytic oxidation of alcohol via nickel phosphine complexes with pendant amines. ACS Catal 4(9):2951–2958. doi:10.1021/Cs500853f

    Article  CAS  Google Scholar 

  163. Elouarzaki K, Haddad R, Holzinger M, Le Goff A, Thery J, Cosnier S (2014) MWCNT-supported phthalocyanine cobalt as air-breathing cathodic catalyst in glucose/O-2 fuel cells. J Power Sources 255:24–28. doi:10.1016/j.jpowsour.2013.12.109

    Article  CAS  Google Scholar 

  164. Elouarzaki K, Le Goff A, Holzinger M, Thery J, Cosnier S (2012) Electrocatalytic oxidation of glucose by rhodium porphyrin-functionalized MWCNT electrodes: application to a fully molecular catalyst-based glucose/O-2 fuel cell. J Am Chem Soc 134(34):14078–14085. doi:10.1021/Ja304589m

    Article  CAS  Google Scholar 

  165. Annen SP, Bambagioni V, Bevilacqua M, Filippi J, Marchionni A, Oberhauser W, Schonberg H, Vizza F, Bianchini C, Grutzmacher H (2010) A biologically inspired organometallic fuel cell (OMFC) that converts renewable alcohols into energy and chemicals. Angew Chem Int Ed 49(40):7229–7233. doi:10.1002/anie.201002234

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamish Andrew Miller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Miller, H.A., Vizza, F., Lavacchi, A. (2016). Direct Alcohol Fuel Cells: Nanostructured Materials for the Electrooxidation of Alcohols in Alkaline Media. In: Ozoemena, K., Chen, S. (eds) Nanomaterials for Fuel Cell Catalysis. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-29930-3_12

Download citation

Publish with us

Policies and ethics