Skip to main content

Direct Ethanol Fuel Cell on Carbon Supported Pt Based Nanocatalysts

  • Chapter
  • First Online:
Nanomaterials for Fuel Cell Catalysis

Abstract

Ethanol is a molecule of considerable interest because of its potential renewable use in fuel cells without reforming. Therefore, bifunctional electrocatalysts were proposed to decrease the precious noble metal content in the catalyst composition and to promote the conversion of this fuel, leading to the preparation of Pt-based materials containing oxophilic co-catalysts such as tin, osmium, iridium and ruthenium. They allow the ethanol oxidation to occur at low potentials, and also remove CO-like adsorbed species from the electrode surface. The knowledge of the mechanism is important to propose new materials and design that are able to promote the cleavage of the C-C bond in large extent. This chapter discusses the performances obtained in a single direct ethanol fuel cell (DEFC) using various Pt-based anode nanomaterials for oxidizing ethanol in acidic environment. It shows the recent progress in catalyst preparation, particularly the thermal decomposition and microwave heating methods. The activity of the electrocatalysts is discussed by examining their capability of converting ethanol to different reaction products. Great attention is paid to the identification of the reaction intermediate species and those in the bulk by using in situ infrared spectroscopy and other analytical techniques. Performance in a DEFC is a direct measurement between the anodic and cathodic potentials which depends on the ethanol oxidation occurring at low overpotentials and also on the oxygen reduction reaction (ORR) at higher ones. Determination of the kinetic parameters for the ORR and quantitative detection of hydrogen peroxide formation with rotating ring disk electrode technique are herein proposed as an overview of the electrode kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wu J, Yuan XZ, Martin JJ, Wang H, Zhang J, Shen J, Wu S, Merida W (2008) A review of PEM fuel cell durability: degradation mechanisms and mitigation strategies. J Power Sources 184:104–119

    Article  CAS  Google Scholar 

  2. Wendt H, Götz M, Linardi M (2000) Tecnologia de células a combustível. Quím Nova 23:538–546

    Article  CAS  Google Scholar 

  3. Wang CY (2004) Fundamental models for fuel cell engineering. Chem Rev 104:4727–4765

    Article  CAS  Google Scholar 

  4. Song SQ, Tsiakaras P (2006) Recent progress in direct ethanol proton exchange membrane fuel cells (DE-PEMFCs). Appl Catal B Environ 63:187–193

    Article  CAS  Google Scholar 

  5. Perna A (2007) Hydrogen from ethanol: theoretical optimization of a PEMFC system integrated with a steam reforming processor. Int J Hydrogen Energy 32:1811–1819

    Article  CAS  Google Scholar 

  6. Chutichai B, Authayanun S, Assabumrungrat S, Arpornwichanop A (2013) Performance analysis of an integrated biomass gasification and PEMFC (proton exchange membrane fuel cell) system: hydrogen and power generation. Energy 55:98–106

    Article  CAS  Google Scholar 

  7. Ströbel R, Oszcipok M, Fasil M, Rohland B, Jörissen L, Garche J (2002) The compression of hydrogen in an electrochemical cell based on a PE fuel cell design. J Power Sources 105:208–215

    Article  Google Scholar 

  8. Takeichi N, Senoh H, Yokota T, Tsuruta H, Hamada K, Takeshita HT, Tanaka H, Kiyobayashi T, Takano T, Kuriyama N (2003) “Hybrid hydrogen storage vessel”, a novel high-pressure hydrogen storage vessel combined with hydrogen storage material. Int J Hydrogen Energy 28:1121–1129

    CAS  Google Scholar 

  9. Lamy C, Lima A, LeRhun V, Delime F, Coutanceau C, Léger J-M (2002) Recent advances in the development of direct alcohol fuel cells (DAFC). J Power Sources 105:283–296

    Article  CAS  Google Scholar 

  10. Antolini E (2007) Catalysts for direct ethanol fuel cells. J Power Sources 170:1–12

    Article  CAS  Google Scholar 

  11. Calegaro ML, Suffredini HB, Machado SAS, Avaca LA (2006) Preparation, characterization and utilization of a new electrocatalyst for ethanol oxidation obtained by the sol-gel method. J Power Sources 156:300–305

    Article  CAS  Google Scholar 

  12. Lamy C, Rousseau S, Belgsir EM, Coutanceau C, Léger J-M (2004) Recent progress in the direct ethanol fuel cell: development of new platinum–tin electrocatalysts. Electrochim Acta 49:3901–3908

    Article  CAS  Google Scholar 

  13. Neto AO, Dias RR, Tusi MM, Linardi M, Spinacé EV (2007) Electro-oxidation of methanol and ethanol using PtRu/C, PtSn/C and PtSnRu/C electrocatalysts prepared by an alcohol-reduction process. J Power Sources 166:87–91

    Article  CAS  Google Scholar 

  14. Antolini E, Colmati F, Gonzalez ER (2007) Effect of Ru addition on the structural characteristics and the electrochemical activity for ethanol oxidation of carbon supported Pt-Sn alloy catalysts. Electrochem Commun 9:398–404

    Article  CAS  Google Scholar 

  15. Tripkovic AV, Lovic JD, Popovic KD (2010) Comparative study of ethanol oxidation at Pt-based nanoalloys and UPD-modified Pt nanoparticles. J Serb Chem Soc 75:1559–1574

    Article  CAS  Google Scholar 

  16. Watanabe M, Motoo S (1975) Electrocatalysis by ad-atoms. 2. Enhancement of oxidation of methanol on platinum by ruthenium ad-atoms. J Electroanal Chem 60:267–273

    Article  CAS  Google Scholar 

  17. Watanabe M, Motoo S (1975) Electrocatalysis by ad-atoms. 3. Enhancement of oxidation of carbon-monoxide on platinum by ruthenium ad-atoms. J Electroanal Chem 60:275–283

    Article  CAS  Google Scholar 

  18. Grant JL, Fryberger TB, Stair PC (1985) Charge-transfer electronic effects on chemically modified Mo(100) surfaces. Surf Sci 159:333–352

    Article  CAS  Google Scholar 

  19. Lima FHB, Gonzalez ER (2008) Ethanol electro-oxidation on carbon-supported Pt-Ru, Pt-Rh and Pt-Ru-Rh nanoparticles. Electrochim Acta 53:2963–2971

    Article  CAS  Google Scholar 

  20. Li H, Sun G, Cao L, Jiang L, Xin Q (2007) Comparison of different promotion effect of PtRu/C and PtSn/C electrocatalysts for ethanol electro-oxidation. Electrochim Acta 52:6622–6629

    Article  CAS  Google Scholar 

  21. Godoi DRM, Perez J, Villullas HM (2010) Alloys and oxides on carbon-supported Pt-Sn electrocatalysts for ethanol oxidation. J Power Sources 195:3394–3401

    Article  CAS  Google Scholar 

  22. Almeida TS, Kokoh KB, De Andrade AR (2011) Effect of Ni on Pt/C and PtSn/C prepared by the Pechini method. Int J Hydrogen Energy 36:3803–3810

    Article  CAS  Google Scholar 

  23. Spinacé EV, Dias RR, Brandalise M, Linardi M, Neto AO (2010) Electro-oxidation of ethanol using PtSnRh/C electrocatalysts prepared by an alcohol-reduction process. Ionics 16:91–95

    Article  CAS  Google Scholar 

  24. Garcia-Rodriguez S, Rojas S, Pena MA, Fierro JL, Baranton S, Léger J-M (2011) An FTIR study of Rh-PtSn/C catalysts for ethanol electrooxidation: effect of surface composition. Appl Catal B Environ 106:520–528

    Article  CAS  Google Scholar 

  25. Ribeiro J, dos Anjos DM, Léger J-M, Hahn F, Olivi P, de Andrade AR, Tremiliosi-Filho G, Kokoh KB (2008) Effect of W on PtSn/C catalysts for ethanol electrooxidation. J Appl Electrochem 38:653–662

    Article  CAS  Google Scholar 

  26. Dos Anjos DM, Hahn F, Léger J-M, Kokoh KB, Tremiliosi-Filho G (2008) Ethanol electrooxidation on Pt-Sn and Pt-Sn-W bulk alloys. J Braz Chem Soc 19:795–802

    Article  Google Scholar 

  27. Shen PK, Xu C (2006) Alcohol oxidation on nanocrystalline oxide Pd/C promoted electrocatalysts. Electrochem Commun 8:184–188

    Article  CAS  Google Scholar 

  28. Xu C, Shen PK, Liu Y (2007) Ethanol electrooxidation on Pt/C and Pd/C catalysts promoted with oxide. J Power Sources 164:527–531

    Article  CAS  Google Scholar 

  29. Xu C, Tian Z, Shen P, Jiang SP (2008) Oxide (CeO2, NiO, Co(3)O(4) and Mn3O4)-promoted Pd/C electrocatalysts for alcohol electrooxidation in alkaline media. Electrochim Acta 53:2610–2618

    Article  CAS  Google Scholar 

  30. Purgato FLS, Olivi P, Léger J-M, de Andrade AR, Tremiliosi-Filho G, Gonzalez ER, Lamy C, Kokoh KB (2009) Activity of platinum-tin catalysts prepared by the Pechini-Adams method for the electrooxidation of ethanol. J Electroanal Chem 628:81–89

    Article  CAS  Google Scholar 

  31. Purgato FLS, Pronier S, Olivi P, de Andrade AR, Léger J-M, Tremiliosi-Filho G, Kokoh KB (2012) Direct ethanol fuel cell: electrochemical performance at 90 °C on Pt and PtSn/C electrocatalysts. J Power Sources 198:95–99

    Article  CAS  Google Scholar 

  32. Palma LM, Almeida TS, De Andrade AR (2013) high catalytic activity for glycerol electrooxidation by binary Pd-based nanoparticles in alkaline media. ECS Trans 58:651–661

    Article  CAS  Google Scholar 

  33. Su BJ, Wang KWE, Tseng CJE, Wang CHA, Hsueh YU (2012) Synthesis and catalytic property of PtSn/C toward the ethanol oxidation reaction. Int J Electrochem Sci 7:5246–5255

    CAS  Google Scholar 

  34. Arenz M, Stamenkovic V, Blizanac BB, Mayrhofer KJ, Markovic NM, Ross PN (2005) Carbon-supported Pt–Sn electrocatalysts for the anodic oxidation of H2, CO, and H2/CO mixtures: Part II: The structure–activity relationship. J Catal 232:402–410

    Article  CAS  Google Scholar 

  35. Koper MTM (2004) Electrocatalysis on bimetallic and alloy surfaces. Surf Sci 548:1–3

    Article  CAS  Google Scholar 

  36. Cunha EM, Ribeiro J, Kokoh KB, de Andrade AR (2011) Preparation, characterization and application of Pt–Ru–Sn/C trimetallic electrocatalysts for ethanol oxidation in direct fuel cell. Int J Hydrogen Energy 36:11034–11042

    Article  CAS  Google Scholar 

  37. Moghaddam RB, Pickup PG (2012) Support effects on the oxidation of ethanol at Pt nanoparticles. Electrochim Acta 65:210–215

    Article  CAS  Google Scholar 

  38. Balakrishnan K, Schwank J (1992) FTIR study of bimetallic Pt-Sn/Al2O3 catalysts. J Catal 138:491–499

    Article  CAS  Google Scholar 

  39. Liu ZL, Ling XY, Su XD, Lee JY, Gan LM (2005) Preparation and characterization of Pt/C and Pt-Ru/C electrocatalysts for direct ethanol fuel cells. J Power Sources 149:1–7

    Article  CAS  Google Scholar 

  40. Ribadeneira E, Hoyos BA (2008) Evaluation of Pt–Ru–Ni and Pt–Sn–Ni catalysts as anodes in direct ethanol fuel cells. J Power Sources 180:238–242

    Article  CAS  Google Scholar 

  41. Bonesi A, Garaventa G, Triaca WE, Castro Luna AM (2008) Synthesis and characterization of new electrocatalysts for ethanol oxidation. Int J Hydrogen Energy 33:3499–3501

    Article  CAS  Google Scholar 

  42. De Souza JPI, Queiroz SL, Bergamaski K, Gonzalez ER, Nart FC (2002) Electro-oxidation of ethanol on Pt, Rh, and PtRh electrodes. A study using DEMS and in-situ FTIR techniques. J Phys Chem B 106:9825–9830

    Article  CAS  Google Scholar 

  43. Sen Gupta S, Datta J (2006) A comparative study on ethanol oxidation behavior at Pt and PtRh electrodeposits. J Electroanal Chem 594:65–72

    Article  CAS  Google Scholar 

  44. Kowal A, Li M, Shao M, Sasaki K, Vukmirovic MB, Zhang J, Marinkovic NS, Liu P, Frenkel AI, Adzic RR (2009) Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat Mater 8:325–330

    Article  CAS  Google Scholar 

  45. Kowal A, Gojkovic SL, Lee KS, Olszewski P, Sung YE (2009) Synthesis, characterization and electrocatalytic activity for ethanol oxidation of carbon supported Pt, Pt-Rh, Pt-SnO2 and Pt-Rh-SnO2 nanoclusters. Electrochem Commun 11:724–727

    Article  CAS  Google Scholar 

  46. Maillard F, Peyrelade E, Soldo-Olivier Y, Chatenet M, Chainet E, Faure R (2007) Is carbon-supported Pt-WOx composite a CO-tolerant material? Electrochim Acta 52:1958–1967

    Article  CAS  Google Scholar 

  47. Nores-Pondal FJ, Vilella IMJ, Troiani H, Granada M, De Miguel SR, Scelza OA, Corti HR (2009) Catalytic activity vs. size correlation in platinum catalysts of PEM fuel cells prepared on carbon black by different methods. Int J Hydrogen Energy 34:8193–8203

    Article  CAS  Google Scholar 

  48. Liu ZL, Ling XY, Su XD, Lee JY (2004) Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell. J Phys Chem B 108:8234–8240

    Article  CAS  Google Scholar 

  49. Lim D-H, Choi D-H, Lee W-D, Lee H-I (2009) A new synthesis of a highly dispersed and CO tolerant PtSn/C electrocatalyst for low-temperature fuel cell; its electrocatalytic activity and long-term durability. Appl Catal B Environ 89:484–493

    Article  CAS  Google Scholar 

  50. Spinacé EV, Farias LA, Linardi M, Neto AO (2008) Preparation of PtSn/C and PtSnNi/C electrocatalysts using the alcohol-reduction process. Mater Lett 62:2099–2102

    Article  CAS  Google Scholar 

  51. Vidal-Iglesias FJ, Al-Akl A, Watson DJ, Attard GA (2006) A new method for the preparation of PtPd alloy single crystal surfaces. Electrochem Commun 8:1147–1150

    Article  CAS  Google Scholar 

  52. Colmati F, Antolini E, Gonzalez ER (2007) Ethanol oxidation on a carbon-supported Pt75Sn25 electrocatalyst prepared by reduction with formic acid: effect of thermal treatment. Appl Catal B Environ 73:106–115

    Article  CAS  Google Scholar 

  53. Zhao J, Chen W, Zheng Y, Li X, Xu Z (2006) Microwave polyol synthesis of Pt/C catalysts with size-controlled Pt particles for methanol electrocatalytic oxidation. J Mater Sci 41:5514–5518

    Article  CAS  Google Scholar 

  54. Cushing BL, Kolesnichenko VL, O'Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946

    Article  CAS  Google Scholar 

  55. Coutanceau C, Brimaud S, Lamy C, Léger J-M, Dubau L, Rousseau S, Vigier F (2008) Review of different methods for developing nanoelectrocatalysts for the oxidation of organic compounds. Electrochim Acta 53:6865–6880

    Article  CAS  Google Scholar 

  56. Wang Z-B, Yin G-P, Zhang J, Sun Y-C, Shi P-F (2006) Investigation of ethanol electrooxidation on a Pt-Ru-Ni/C catalyst for a direct ethanol fuel cell. J Power Sources 160:37–43

    Article  CAS  Google Scholar 

  57. Toshima N, Yonezawa T (1998) Bimetallic nanoparticles-novel materials for chemical and physical applications. New J Chem 22:1179–1201

    Article  CAS  Google Scholar 

  58. Antolini E, Colmati F, Gonzalez ER (2009) Ethanol oxidation on carbon supported (PtSn)alloy/SnO2 and (PtSnPd)alloy/SnO2 catalysts with a fixed Pt/SnO2 atomic ratio: effect of the alloy phase characteristics. J Power Sources 193:555–561

    Article  CAS  Google Scholar 

  59. Franco EG, Neto AO, Linardi M, Aricó E (2002) Synthesis of electrocatalysts by the Bönnemann method for the oxidation of methanol and the mixture H2/CO in a proton exchange membrane fuel cell. J Braz Chem Soc 13:516–521

    Article  CAS  Google Scholar 

  60. Jeon MK, Zhang Y, McGinn PJ (2010) A comparative study of PtCo, PtCr, and PtCoCr catalysts for oxygen electro-reduction reaction. Electrochim Acta 55:5318–5325

    Article  CAS  Google Scholar 

  61. Pechini MP (1967) USA Patent 3,330,697

    Google Scholar 

  62. Simoes FC, dos Anjos DM, Vigier F, Léger J-M, Hahn F, Coutanceau C, Gonzalez ER, Tremiliosi-Filho G, de Andrade AR, Olivi P, Kokoh KB (2007) Electroactivity of tin modified platinum electrodes for ethanol electrooxidation. J Power Sources 167:1–10

    Article  CAS  Google Scholar 

  63. Galceran M, Pujol MC, Aguiló M, Díaz F (2007) Sol-gel modified Pechini method for obtaining nanocrystalline KRE(WO4)2 (RE = Gd and Yb). J Sol-Gel Sci Technol 42:79–88

    Article  CAS  Google Scholar 

  64. Laberty-Robert C, Ansart F, Deloget C, Gaudon M, Rousset A (2001) Powder synthesis of nanocrystalline ZrO2–8%Y2O3 via a polymerization route. Mater Res Bull 36:2083–2101

    Article  CAS  Google Scholar 

  65. Kwon SW, Park SB, Seo G, Hwang ST (1998) Preparation of lithium aluminate via polymeric precursor routes. J Nucl Mater 257:172–179

    Article  CAS  Google Scholar 

  66. Li X, Chen WX, Zhao J, Xing W, Xu ZD (2005) Microwave polyol synthesis of Pt/CNTs catalysts: effects of pH on particle size and electrocatalytic activity for methanol electrooxidization. Carbon 43:2168–2174

    Article  CAS  Google Scholar 

  67. Kadirgan F, Beyhan S, Atilan T (2009) Preparation and characterization of nano-sized Pt-Pd/C catalysts and comparison of their electro-activity toward methanol and ethanol oxidation. Int J Hydrogen Energy 34:4312–4320

    Article  CAS  Google Scholar 

  68. Tsuji M, Hashimoto M, Nishizawa Y, Kubokawa M, Tsuji T (2005) Microwave-assisted synthesis of metallic nanostructures in solution. Chem Eur J 11:440–452

    Article  CAS  Google Scholar 

  69. Bock C, Paquet C, Couillard M, Botton GA, MacDougall BR (2004) Size-selected synthesis of PtRu nano-catalysts: reaction and size control mechanism. J Am Chem Soc 126:8028–8037

    Article  CAS  Google Scholar 

  70. Yang J, Deivaraj TC, Too HP, Lee JY (2004) Acetate stabilization of metal nanoparticles and its role in the preparation of metal nanoparticles in ethylene glycol. Langmuir 20:4241–4245

    Article  CAS  Google Scholar 

  71. Yu WY, Tu WX, Liu HF (1999) Synthesis of nanoscale platinum colloids by microwave dielectric heating. Langmuir 15:6–9

    Article  CAS  Google Scholar 

  72. Tsujino T, Ohigashi S, Sugiyama S, Kawashiro K, Hayashi H (1992) Oxidation of propylene glycol and lactic acid to pyruvic acid in aqueous phase catalyzed by lead-modified palladium-on-carbon and related systems. J Mol Catal 71:25–35

    Article  CAS  Google Scholar 

  73. Pinxt H, Kuster BFM, Marin GB (2000) Promoter effects in the Pt-catalysed oxidation of propylene glycol. Appl Catal A Gen 191:45–54

    Article  CAS  Google Scholar 

  74. Zhao J, Wang P, Chen W, Liu R, Li X, Nie Q (2006) Microwave synthesis and characterization of acetate-stabilized Pt nanoparticles supported on carbon for methanol electro-oxidation. J Power Sources 160:563–569

    Article  CAS  Google Scholar 

  75. Neto AO, Verjulio-Silva RWR, Linardi M, Spinacé EV (2009) Preparation of PtRu/C electrocatalysts using citric acid as reducing agent and OH ions as stabilizing agent for direct alcohol fuel cell (DAFC). Int J Electrochem Sci 4:954–961

    Google Scholar 

  76. Tu WX, Liu HF (2000) Rapid synthesis of nanoscale colloidal metal clusters by microwave irradiation. J Mater Chem 10:2207–2211

    Article  CAS  Google Scholar 

  77. Viau G, Brayner R, Poul L, Chakroune N, Lacaze E, Fievet-Vincent F, Fievet F (2003) Ruthenium nanoparticles: size, shape, and self-assemblies. Chem Mater 15:486–494

    Article  CAS  Google Scholar 

  78. Ozkar S, Finke RG (2002) Nanocluster formation and stabilization fundamental studies: ranking commonly employed anionic stabilizers via the development, then application, of five comparative criteria. J Am Chem Soc 124:5796–5810

    Article  CAS  Google Scholar 

  79. Spinacé EV, Linardi M, Neto AO (2005) Co-catalytic effect of nickel in the electro-oxidation of ethanol on binary Pt–Sn electrocatalysts. Electrochem Commun 7:365–369

    Article  CAS  Google Scholar 

  80. Colmati F, Antolini E, Gonzalez ER (2008) Preparation, structural characterization and activity for ethanol oxidation of carbon supported ternary Pt–Sn–Rh catalysts. J Alloys Compd 456:264–270

    Article  CAS  Google Scholar 

  81. Parreira LS, da Silva JCM, D’Villa -Silva M, Simões FC, Garcia S, Gaubeur I, Cordeiro MAL, Leite ER, dosSantos MC (2013) PtSnNi/C nanoparticle electrocatalysts for the ethanol oxidation reaction: Ni stability study. Electrochim Acta 96:243–252

    Google Scholar 

  82. Almeida TS, Palma LM, Leonello PH, Morais C, Kokoh KB, De Andrade AR (2012) An optimization study of PtSn/C catalysts applied to direct ethanol fuel cell: effect of the preparation method on the electrocatalytic activity of the catalysts. J Power Sources 215:53–62

    Article  CAS  Google Scholar 

  83. Stonehart P, Ross PN Jr (1976) The use of porous electrodes to obtain kinetic rate constants for rapid reactions and adsorption isotherms of poisons. Electrochim Acta 21:441–445

    Article  CAS  Google Scholar 

  84. Schmidt TJ, Gasteiger HA, Stäb GD, Urban PM, Kolb DM, Behm RJ (1998) Characterization of high surface area electrocatalysts using a rotating disk electrode configuration. J Electrochem Soc 145:2354–2358

    Article  CAS  Google Scholar 

  85. Vesovic V, Anastasijevic N, Adzic RR (1987) Rotating disk electrode: a re-examination of some kinetic criteria with a special reference to oxygen reduction. J Electroanal Chem Interfacial Electrochem 218:53–63

    Article  CAS  Google Scholar 

  86. Hsueh KL, Chin DT, Srinivasan S (1983) Electrode kinetics of oxygen reduction: a theoretical and experimental analysis of the rotating ring-disc electrode method. J Electroanal Chem Interfacial Electrochem 153:79–95

    Article  CAS  Google Scholar 

  87. Jakobs RCM, Janssen LJJ, Barendrecht E (1985) Oxygen reduction at polypyrrole electrodes—I. Theory and evaluation of the rrde experiments. Electrochim Acta 30:1085–1091

    Article  CAS  Google Scholar 

  88. Anastasijević NA, Vesović V, Adžić RR (1987) Determination of the kinetic parameters of the oxygen reduction reaction using the rotating ring-disk electrode: Part I. Theory. J Electroanal Chem Interfacial Electrochem 229:305–316

    Article  Google Scholar 

  89. Anastasijević NA, Vesović V, Adžić RR (1987) Determination of the kinetic parameters of the oxygen reduction reaction using the rotating ring-disk electrode: Part II. Applications. J Electroanal Chem Interfacial Electrochem 229:317–325

    Article  Google Scholar 

  90. Zečević S, Dražić DM, Gojković S (1989) Oxygen reduction on iron: Part III. An analysis of the rotating disk-ring electrode measurements in near neutral solutions. J Electroanal Chem Interfacial Electrochem 265:179–193

    Article  Google Scholar 

  91. Maruyama J, Inaba M, Ogumi Z (1998) Rotating ring-disk electrode study on the cathodic oxygen reduction at Nafion®-coated gold electrodes. J Electroanal Chem 458:175–182

    Article  CAS  Google Scholar 

  92. Anastasijević NA, Dimitrijević ZM, Adžić RR (1986) Oxygen reduction on a ruthenium electrode in acid electrolytes. Electrochim Acta 31:1125–1130

    Article  Google Scholar 

  93. Jiang T, Brisard GM (2007) Determination of the kinetic parameters of oxygen reduction on copper using a rotating ring single crystal disk assembly (RRDCu(hkl)E). Electrochim Acta 52:4487–4496

    Article  CAS  Google Scholar 

  94. Damjanovic A, Genshaw MA, Bockris JOM (1967) The mechanism of oxygen reduction at platinum in alkaline solutions with special reference to H2O2. J Electrochem Soc 114:1107–1112

    Article  CAS  Google Scholar 

  95. Appel M, Appleby AJ (1978) A ring-disk electrode study of the reduction of oxygen on active carbon in alkaline solution. Electrochim Acta 23:1243–1246

    Article  CAS  Google Scholar 

  96. Markovic N (2002) Surface science studies of model fuel cell electrocatalysts. Surf Sci Rep 45:117–229

    Article  CAS  Google Scholar 

  97. Yeager E (1984) Electrocatalysts for O2 reduction. Electrochim Acta 29:1527–1537

    Article  CAS  Google Scholar 

  98. Antoine O, Durand R (2000) RRDE study of oxygen reduction on Pt nanoparticles inside Nafion®: H2O2 production in PEMFC cathode conditions. J Appl Electrochem 30:839–844

    Article  CAS  Google Scholar 

  99. Ke K, Hatanaka T, Morimoto Y (2011) Reconsideration of the quantitative characterization of the reaction intermediate on electrocatalysts by a rotating ring-disk electrode: The intrinsic yield of H2O2 on Pt/C. Electrochim Acta 56:2098–2104

    Article  CAS  Google Scholar 

  100. Damjanovic A, Genshaw MA, Bockris JOM (1966) Distinction between intermediates produced in main and side electrodic reactions. J Chem Phys 45:4057–4059

    Article  CAS  Google Scholar 

  101. Wroblowa HS, Yen Chi P, Razumney G (1976) Electroreduction of oxygen: a new mechanistic criterion. J Electroanal Chem Interfacial Electrochem 69:195–201

    Article  CAS  Google Scholar 

  102. Appleby AJ, Savy M (1978) Kinetics of oxygen reduction reactions involving catalytic decomposition of hydrogen peroxide: application to porous and rotating ring-disk electrodes. J Electroanal Chem Interfacial Electrochem 92:15–30

    Article  CAS  Google Scholar 

  103. Zurilla RW, Sen RK, Yeager E (1978) The kinetics of the oxygen reduction reaction on gold in alkaline solution. J Electrochem Soc 125:1103–1109

    Article  CAS  Google Scholar 

  104. Sánchez-Sánchez CM, Bard AJ (2009) Hydrogen peroxide production in the oxygen reduction reaction at different electrocatalysts as quantified by scanning electrochemical microscopy. Anal Chem 81:8094–8100

    Article  CAS  Google Scholar 

  105. Olson TS, Pylypenko S, Fulghum JE, Atanassov P (2010) Bifunctional oxygen reduction reaction mechanism on non-platinum catalysts derived from pyrolyzed porphyrins. J Electrochem Soc 157:B54–B63

    Article  CAS  Google Scholar 

  106. Nørskov JK, Rossmeisl J, Logadottir A, Lindqvist L, Kitchin JR, Bligaard T, Jónsson H (2004) Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J Phys Chem B 108:17886–17892

    Article  CAS  Google Scholar 

  107. Guo S, Zhang S, Sun S (2013) Tuning nanoparticle catalysis for the oxygen reduction reaction. Angew Chem Int Ed Engl 52:8526–8544

    Article  CAS  Google Scholar 

  108. Katsounaros I, Schneider WB, Meier JC, Benedikt U, Biedermann PU, Auer AA, Mayrhofer KJ (2012) Hydrogen peroxide electrochemistry on platinum: towards understanding the oxygen reduction reaction mechanism. Phys Chem Chem Phys 14:7384–7391

    Article  CAS  Google Scholar 

  109. Katsounaros I, Cherevko S, Zeradjanin AR, Mayrhofer KJ (2014) Oxygen electrochemistry as a cornerstone for sustainable energy conversion. Angew Chem Int Ed Engl 53:102–121

    Article  CAS  Google Scholar 

  110. Jiang R, Dong S (1990) Rotating ring disk electrode (RRDE) theory dealing with non stationary electrocatalysis: study of the electrocatalytic reduction of dioxygen at cobalt protoporphrin modified electrode. J Phys Chem 94:7471–7476

    Article  CAS  Google Scholar 

  111. Demarconnay L, Coutanceau C, Léger J-M (2004) Electroreduction of dioxygen (ORR) in alkaline medium on Ag/C and Pt/C nanostructured catalysts—effect of the presence of methanol. Electrochim Acta 49:4513–4521

    Article  CAS  Google Scholar 

  112. Paulus UA, Schmidt TJ, Gasteiger HA, Behm RJ (2001) Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. J Electroanal Chem 495:134–145

    Article  CAS  Google Scholar 

  113. Kawabata A (1996) Electronic properties of metallic fine particles. Surf Rev Lett 03:9–12

    Article  CAS  Google Scholar 

  114. Volokitin Y, Sinzig J, de Jongh LJ, Schmid G, Vargaftik MN, Moiseevi II (1996) Quantum-size effects in the thermodynamic properties of metallic nanoparticles. Nature 384:621–623

    Article  CAS  Google Scholar 

  115. Halperin WP (1986) Quantum size effects in metal particles. Rev Mod Phys 58:533–606

    Article  CAS  Google Scholar 

  116. Jalan V, Taylor EJ (1983) Importance of interatomic spacing in catalytic reduction of oxygen in phosphoric acid. J Electrochem Soc 130:2299–2302

    Article  CAS  Google Scholar 

  117. Toda T, Igarashi H, Uchida H, Watanabe M (1999) Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J Electrochem Soc 146:3750–3756

    Article  CAS  Google Scholar 

  118. Lim D-H, Wilcox J (2012) Mechanisms of the oxygen reduction reaction on defective graphene-supported Pt nanoparticles from first-principles. J Phys Chem C 116:3653–3660

    Article  CAS  Google Scholar 

  119. Rabis A, Rodriguez P, Schmidt TJ (2012) Electrocatalysis for polymer electrolyte fuel cells: recent achievements and future challenges. ACS Catal 2:864–890

    Article  CAS  Google Scholar 

  120. Angerstein-Kozlowska H, Conway BE, Sharp WBA (1973) The real condition of electrochemically oxidized platinum surfaces: Part I. Resolution of component processes. J Electroanal Chem Interfacial Electrochem 43:9–36

    Article  CAS  Google Scholar 

  121. Pozio A, De Francesco M, Cemmi A, Cardellini F, Giorgi L (2002) Comparison of high surface Pt/C catalysts by cyclic voltammetry. J Power Sources 105:13–19

    Article  CAS  Google Scholar 

  122. Grolleau C, Coutanceau C, Pierre F, Léger J-M (2010) Optimization of a surfactant free polyol method for the synthesis of platinum–cobalt electrocatalysts using Taguchi design of experiments. J Power Sources 195:1569–1576

    Article  CAS  Google Scholar 

  123. Chen W, Kim J, Sun S, Chen S (2008) Electrocatalytic reduction of oxygen by FePt alloy nanoparticles. J Phys Chem C 112:3891–3898

    Article  CAS  Google Scholar 

  124. Grolleau C, Coutanceau C, Pierre F, Léger J-M (2008) Effect of potential cycling on structure and activity of Pt nanoparticles dispersed on different carbon supports. Electrochim Acta 53:7157–7165

    Article  CAS  Google Scholar 

  125. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications. Wiley, New York

    Google Scholar 

  126. Choi SI, Lee SU, Kim WY, Choi R, Hong K, Nam KM, Han SW, Park JT (2012) Composition-controlled PtCo alloy nanocubes with tuned electrocatalytic activity for oxygen reduction. ACS Appl Mater Interfaces 4:6228–6234

    Article  CAS  Google Scholar 

  127. Lima FHB, Ticianelli EA (2004) Oxygen electrocatalysis on ultra-thin porous coating rotating ring/disk platinum and platinum–cobalt electrodes in alkaline media. Electrochim Acta 49:4091–4099

    Article  CAS  Google Scholar 

  128. Coutanceau C, Croissant MJ, Napporn T, Lamy C (2000) Electrocatalytic reduction of dioxygen at platinum particles dispersed in a polyaniline film. Electrochim Acta 46:579–588

    Article  CAS  Google Scholar 

  129. Wang JX, Markovic NM, Adzic RR (2004) Kinetic analysis of oxygen reduction on Pt(111) in acid solutions: intrinsic kinetic parameters and anion adsorption effects. J Phys Chem B 108:4127–4133

    Article  CAS  Google Scholar 

  130. Wang JX, Brankovic SR, Zhu Y, Hanson JC, Adz̆ić RR (2003) Kinetic characterization of PtRu fuel cell anode catalysts made by spontaneous Pt deposition on Ru nanoparticles. J Electrochem Soc 150:A1108–A1117

    Article  CAS  Google Scholar 

  131. Jahn D, Vielstich W (1962) Rates of electrode processes by the rotating disk method. J Electrochem Soc 109:849–852

    Article  CAS  Google Scholar 

  132. Lebègue E, Baranton S, Coutanceau C (2011) Polyol synthesis of nanosized Pt/C electrocatalysts assisted by pulse microwave activation. J Power Sources 196:920–927

    Article  CAS  Google Scholar 

  133. Prakash J, Tryk DA, Yeager EB (1999) Kinetic investigations of oxygen reduction and evolution reactions on lead ruthenate catalysts. J Electrochem Soc 146:4145–4151

    Article  CAS  Google Scholar 

  134. Murthi VS, Urian RC, Mukerjee S (2004) Oxygen reduction kinetics in low and medium temperature acid environment: correlation of water activation and surface properties in supported Pt and Pt alloy electrocatalysts. J Phys Chem B 108:11011–11023

    Article  CAS  Google Scholar 

  135. Bakir ÇC, Şahin N, Polat R, Dursun Z (2011) Electrocatalytic reduction of oxygen on bimetallic copper–gold nanoparticles–multiwalled carbon nanotube modified glassy carbon electrode in alkaline solution. J Electroanal Chem 662:275–280

    Article  CAS  Google Scholar 

  136. Diabaté D, Napporn TW, Servat K, Habrioux A, Arrii-Clacens S, Trokourey A, Kokoh KB (2013) Kinetic study of oxygen reduction reaction on carbon supported Pd-based nanomaterials in alkaline medium. J Electrochem Soc 160:H302–H308

    Article  CAS  Google Scholar 

  137. Mayrhofer KJJ, Strmcnik D, Blizanac BB, Stamenkovic V, Arenz M, Markovic NM (2008) Measurement of oxygen reduction activities via the rotating disc electrode method: from Pt model surfaces to carbon-supported high surface area catalysts. Electrochim Acta 53:3181–3188

    Article  CAS  Google Scholar 

  138. Gojković SL, Gupta S, Savinell RF (1999) Heat-treated iron(III) tetramethoxyphenyl porphyrin chloride supported on high-area carbon as an electrocatalyst for oxygen reduction: Part III. Detection of hydrogen-peroxide during oxygen reduction. Electrochim Acta 45:889–897

    Article  Google Scholar 

  139. Maruyama J, Inaba M, Morita T, Ogumi Z (2001) Effects of the molecular structure of fluorinated additives on the kinetics of cathodic oxygen reduction. J Electroanal Chem 504:208–216

    Article  CAS  Google Scholar 

  140. Vogel W, Lundquist L, Ross P, Stonehart P (1975) Reaction pathways and poisons—II: The rate controlling step for electrochemical oxidation of hydrogen on Pt in acid and poisoning of the reaction by CO. Electrochim Acta 20:79–93

    Article  CAS  Google Scholar 

  141. Iwasita T, Pastor E (1994) A dems and FTir spectroscopic investigation of adsorbed ethanol on polycrystalline platinum. Electrochim Acta 39:531–537

    Article  CAS  Google Scholar 

  142. García G, Tsiouvaras N, Pastor E, Peña MA, Fierro JLG, Martínez-Huerta MV (2012) Ethanol oxidation on PtRuMo/C catalysts: in situ FTIR spectroscopy and DEMS studies. Int J Hydrogen Energy 37:7131–7140

    Article  CAS  Google Scholar 

  143. Schmiemann U, Müller U, Baltruschat H (1995) The influence of the surface structure on the adsorption of ethene, ethanol and cyclohexene as studied by DEMS. Electrochim Acta 40:99–107

    Article  CAS  Google Scholar 

  144. Ianniello R, Schmidt VM, Rodrıguez JL, Pastor E (1999) Electrochemical surface reactions of intermediates formed in the oxidative ethanol adsorption on porous Pt and PtRu. J Electroanal Chem 471:167–179

    Article  CAS  Google Scholar 

  145. Wang H, Jusys Z, Behm RJ (2006) Ethanol electro-oxidation on carbon-supported Pt, PtRu and Pt3Sn catalysts: a quantitative DEMS study. J Power Sources 154:351–359

    Article  CAS  Google Scholar 

  146. Sun S, Halseid MC, Heinen M, Jusys Z, Behm RJ (2009) Ethanol electrooxidation on a carbon-supported Pt catalyst at elevated temperature and pressure: a high-temperature/high-pressure DEMS study. J Power Sources 190:2–13

    Article  CAS  Google Scholar 

  147. Pastor E, Iwasita T (1994) D/H exchange of ethanol at platinum electrodes. Electrochim Acta 39:547–551

    Article  CAS  Google Scholar 

  148. Camara GA, de Lima RB, Iwasita T (2005) The influence of PtRu atomic composition on the yields of ethanol oxidation: a study by in situ FTIR spectroscopy. J Electroanal Chem 585:128–131

    Article  CAS  Google Scholar 

  149. Rousseau S, Coutanceau C, Lamy C, Léger J-M (2006) Direct ethanol fuel cell (DEFC): electrical performances and reaction products distribution under operating conditions with different platinum-based anodes. J Power Sources 158:18–24

    Article  CAS  Google Scholar 

  150. Palma LM, Almeida TS, de Andrade AR (2012) Development of plurimetallic electrocatalysts prepared by decomposition of polymeric precursors for EtOH/O2 fuel cell. J Braz Chem Soc 23:555–564

    Article  CAS  Google Scholar 

  151. Eneau-Innocent B, Pasquier D, Ropital F, Léger J-M, Kokoh KB (2010) Electroreduction of carbon dioxide at a lead electrode in propylene carbonate: a spectroscopic study. Appl Catal B Environ 98:65–71

    Article  CAS  Google Scholar 

  152. Bewick A, Kunimatsu K, Pons BS, Russell JW (1984) Electrochemically modulated infrared spectroscopy (EMIRS): experimental details. J Electroanal Chem Interfacial Electrochem 160:47–61

    Article  CAS  Google Scholar 

  153. Xia XH, Liess HD, Iwasita T (1997) Early stages in the oxidation of ethanol at low index single crystal platinum electrodes. J Electroanal Chem 437:233–240

    Article  CAS  Google Scholar 

  154. Rodes A, Pastor E, Iwasita T (1994) An FTIR study on the adsorption of acetate at the basal planes of platinum single-crystal electrodes. J Electroanal Chem 376:109–118

    Article  CAS  Google Scholar 

  155. Batista EA, Malpass GRP, Motheo AJ, Iwasita T (2004) New mechanistic aspects of methanol oxidation. J Electroanal Chem 571:273–282

    Article  CAS  Google Scholar 

  156. Vigier F, Coutanceau C, Hahn F, Belgsir EM, Lamy C (2004) On the mechanism of ethanol electro-oxidation on Pt and PtSn catalysts: electrochemical and in situ IR reflectance spectroscopy studies. J Electroanal Chem 563:81–89

    Article  CAS  Google Scholar 

  157. Corrigan DS, Krauskopf EK, Rice LM, Wieckowski A, Weaver MJ (1988) Adsorption of acetic acid at platinum and gold electrodes: a combined infrared spectroscopic and radiotracer study. J Phys Chem 92:1596–1601

    Article  CAS  Google Scholar 

  158. Leung LWH, Weaver MJ (1988) Real-time FTIR spectroscopy as a quantitative kinetic probe of competing electrooxidation pathways for small organic molecules. J Phys Chem 92:4019–4022

    Article  CAS  Google Scholar 

  159. Iwasita T, Rasch B, Cattaneo E, Vielstich W (1989) A sniftirs study of ethanol oxidation on platinum. Electrochim Acta 34:1073–1079

    Article  Google Scholar 

  160. Beden B, Lamy C, Bewick A, Kunimatsu K (1981) Electrosorption of methanol on a platinum electrode. IR spectroscopic evidence for adsorbed CO species. J Electroanal Chem 121:343–347

    Article  CAS  Google Scholar 

  161. Perez JM, Beden B, Hahn F, Aldaz A, Lamy C (1989) “In situ” infrared reflectance spectroscopic study of the early stages of ethanol adsorption at a platinum electrode in acid medium. J Electroanal Chem Interfacial Electrochem 262:251–261

    Article  CAS  Google Scholar 

  162. Léger J-M, Beden B, Lamy C, Bilmes S (1984) Carbon monoxide electrosorption on low index platinum single crystal electrodes. J Electroanal Chem Interfacial Electrochem 170:305–317

    Article  Google Scholar 

  163. Heysiattalab S, Shakeri M, Safari M, Keikha MM (2011) Investigation of key parameters influence on performance of direct ethanol fuel cell (DEFC). J Ind Eng Chem 17:727–729

    Article  CAS  Google Scholar 

  164. Zhu M, Sun G, Xin Q (2009) Effect of alloying degree in PtSn catalyst on the catalytic behavior for ethanol electro-oxidation. Electrochim Acta 54:1511–1518

    Article  CAS  Google Scholar 

  165. Crisafulli R, Antoniassi RM, Neto AO, Spinacé EV (2014) Acid-treated PtSn/C and PtSnCu/C electrocatalysts for ethanol electro-oxidation. Int J Hydrogen Energy 39:5671–5677

    Article  CAS  Google Scholar 

  166. Zhu M, Sun G, Li H, Cao L, Xin Q (2008) Effect of the Sn(II)/Sn(IV) redox couple on the activity of PtSn/C for ethanol electro-oxidation. Chin J Catal 29:765–770

    Article  CAS  Google Scholar 

  167. Jiang L, Sun G, Sun S, Liu J, Tang S, Li H, Zhou B, Xin Q (2005) Structure and chemical composition of supported Pt–Sn electrocatalysts for ethanol oxidation. Electrochim Acta 50:5384–5389

    Article  CAS  Google Scholar 

  168. Tsiakaras PE (2007) PtM/C (M = Sn, Ru, Pd, W) based anode direct ethanol–PEMFCs: structural characteristics and cell performance. J Power Sources 171:107–112

    Article  CAS  Google Scholar 

  169. Ribeiro J, dos Anjos DM, Kokoh KB, Coutanceau C, Léger J-M, Olivi P, de Andrade AR, Tremiliosi-Filho G (2007) Carbon-supported ternary PtSnIr catalysts for direct ethanol fuel cell. Electrochim Acta 52:6997–7006

    Article  CAS  Google Scholar 

  170. Almeida TS, Palma LM, Morais C, Kokoh KB, De Andrade AR (2013) Effect of adding a third metal to carbon-supported PtSn-based nanocatalysts for direct ethanol fuel cell in acidic medium. J Electrochem Soc 160:F965–F971

    Article  CAS  Google Scholar 

  171. Beyhan S, Coutanceau C, Léger J-M, Napporn TW, Kadırgan F (2013) Promising anode candidates for direct ethanol fuel cell: carbon supported PtSn-based trimetallic catalysts prepared by Bönnemann method. Int J Hydrogen Energy 38:6830–6841

    Article  CAS  Google Scholar 

  172. Beyhan S, Léger J-M, Kadırgan F (2013) Pronounced synergetic effect of the nano-sized PtSnNi/C catalyst for ethanol oxidation in direct ethanol fuel cell. Appl Catal B Environ 130–131:305–313

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. B. Kokoh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Almeida, T.S. et al. (2016). Direct Ethanol Fuel Cell on Carbon Supported Pt Based Nanocatalysts. In: Ozoemena, K., Chen, S. (eds) Nanomaterials for Fuel Cell Catalysis. Nanostructure Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-29930-3_11

Download citation

Publish with us

Policies and ethics