Sonoelectrochemical Production of Fuel Cell Nanomaterials

  • Bruno G. PolletEmail author
  • Petros M. Sakkas
Part of the Nanostructure Science and Technology book series (NST)


This chapter highlights the use of sonoelectrochemistry for the synthesis of fuel cell nanomaterials which is currently an emerging research area. The chapter also focuses on recent studies of sonoelectrochemical production of noble metals and electrocatalysts for Proton Exchange Membrane Fuel Cells, Solid Oxide Fuel Cells and other Fuel Cells.


Fuel Cell Solid Oxide Fuel Cell Microbial Fuel Cell Cavitation Bubble Proton Exchange Membrane Fuel Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Sammes N (ed) (2006) Fuel cell technology: reaching towards commercialization. Springer, LondonGoogle Scholar
  2. 2.
    Blomen LJMJ, Mugerwa MN (1993) Fuel cell systems. Plenum Press, New YorkCrossRefGoogle Scholar
  3. 3.
    Mench MM (2008) Fuel cell engines. Wiley, LondonCrossRefGoogle Scholar
  4. 4.
    O’Hayre R, Colella W, Cha S-W, Prinz FB (2009) Fuel cell fundamentals. Wiley, LondonGoogle Scholar
  5. 5.
    Srinivasan S (2006) Fuel cells: from fundamentals to applications. Springer, LondonGoogle Scholar
  6. 6.
    Pollet BG (ed) (2012) Power ultrasound in electrochemistry: from versatile laboratory tool to engineering solution. Wiley, ChichesterGoogle Scholar
  7. 7.
    Mason TJ, Lorimer JP (1998) Sonochemistry, theory, applications and uses of ultrasound in chemistry. Ellis Horwood, ChichesterGoogle Scholar
  8. 8.
    Thorneycroft J, Barnaby SW (1895) Torpedo-boat destroyers. Inst Civ Eng 122Google Scholar
  9. 9.
    Rayleigh L (1917) On the pressure developed in a liquid during the collapse of a spherical cavity. Philos Mag 34(199-04):94–98CrossRefGoogle Scholar
  10. 10.
    Richards WT, Loomis AL (1927) Chemical effects of high frequency sound waves I. A preliminary survey. J Am Chem Soc 49:3086–3100CrossRefGoogle Scholar
  11. 11.
    Pollet BG (1998) The effect of ultrasound upon electrochemical processes. Dissertation, Coventry University, England, UKGoogle Scholar
  12. 12.
    Noltingk BE, Neppiras EA (1950) Cavitation produced by ultrasonics. Proc Phys Soc B 63:674CrossRefGoogle Scholar
  13. 13.
    Pollet BG, Hihn J-Y, Doche M-L, Lorimer JP, Mandroyan A, Mason TJ (2007) Transport limited currents close to an ultrasonic horn equivalent flow velocity determination. J Electrochem Soc 154:E131–E138CrossRefGoogle Scholar
  14. 14.
    Moriguchi N (1934) The influence of supersonic waves on chemical phenomena. III. The influence on the concentration polarisation. J Chem Soc Jpn 55:749–750Google Scholar
  15. 15.
    Schmid G, Ehret L (1937) Beeinflussung der Metallpassivität durch Ultraschall. Z Elektrochem 43:408–415Google Scholar
  16. 16.
    Schmid G, Ehret L (1937) Beeinflussung der Elektrolytischen Abscheidungspotentiale von Gasen durch Ultraschall. Z Elektrochem 43:597–608Google Scholar
  17. 17.
    Kolb J, Nyborg W (1956) Small‐scale acoustic streaming in liquids. J Acoust Soc Am 28:1237–1242CrossRefGoogle Scholar
  18. 18.
    Penn R, Yager E, Hovorka F (1959) Effect of ultrasonic waves on concentration gradients. J Acoust Soc Am 31:1372CrossRefGoogle Scholar
  19. 19.
    Bard A (1965) High speed controlled potential coulometry. Anal Chem 35:1125–1128CrossRefGoogle Scholar
  20. 20.
    Mason TJ, Lorimer JP, Walton DJ (1990) Sonoelectrochemistry. Ultrasonics 28:333–337CrossRefGoogle Scholar
  21. 21.
    Shen Q, Jiang L, Zhang H, Min Q, Hou W, Zhu J-J (2008) Three-dimensional dendritic Pt nanostructures: sonoelectrochemical synthesis and electrochemical applications. J Phys Chem C 112:16385–16392CrossRefGoogle Scholar
  22. 22.
    Zin V, Pollet BG, Dabalá M (2009) Sonoelectrochemical (20 kHz) production of platinum nanoparticles from aqueous solutions. Electrochim Acta 54:7201–7206CrossRefGoogle Scholar
  23. 23.
    Shen Q, Min Q, Shi J, Jiang L, Zhang J-R, Hou W, Zhu J-J (2009) Morphology-controlled synthesis of palladium nanostructures by sonoelectrochemical method and their application in direct alcohol oxidation. J Phys Chem C 113:1267–1273CrossRefGoogle Scholar
  24. 24.
    Qiu X-F, Xu J-Z, Zhu J-M, Zhu J-J, Xu S, Chen HY (2003) Controllable synthesis of palladium nanoparticles via a simple sonoelectrochemical method. J Mater Res 18:1399–1404CrossRefGoogle Scholar
  25. 25.
    Steele BCH (1999) Fuel cell technology: running on natural gas. Nature 400:619–620CrossRefGoogle Scholar
  26. 26.
    Bessler WG, Vogler M, Störmer H, Gerthsen D, Utz A, Weber A, Ivers-Tiffée E (2010) Model anodes and anode models for understanding the mechanism of hydrogen oxidation in solid oxide fuel cells. Phys Chem Chem Phys 12:13888–13903CrossRefGoogle Scholar
  27. 27.
    Park S, Vohs JM, Gorte RJ (2000) Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature 404:265–267CrossRefGoogle Scholar
  28. 28.
    Trovarelli A (1996) Catalytic properties of ceria and ceria-containing materials. Catal Rev Sci Eng 38:439–520CrossRefGoogle Scholar
  29. 29.
    Tsipis EV, Kharton VV (2008) Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review—I.Performance-determining factors. J Solid State Electrochem 12:1039–1060CrossRefGoogle Scholar
  30. 30.
    Minh NQ, Takahashi T (1995) Science and technology of ceramic fuel cells. Elsevier, AmsterdamGoogle Scholar
  31. 31.
    Ford DC, Nilekar AU, Xu Y, Mavrikakis M (2010) Partial and complete reduction of O2 by hydrogen on transition metal surfaces. Surf Sci 604:1565CrossRefGoogle Scholar
  32. 32.
    Peng G, Mavrikakis M (2015) Adsorbate diffusion on transition metal nanoparticles. Nano Lett 15:629CrossRefGoogle Scholar
  33. 33.
    Presvytes D, Vayenas CG (2007) Mathematical modeling of the operation of SOFC Nickel-cermet anodes. Ionics 13:9–18CrossRefGoogle Scholar
  34. 34.
    Qu NS, Zhu D, Chan KC (2006) Fabrication of Ni–CeO2 nanocomposite by electrodeposition. Scr Mater 54:1421–1425CrossRefGoogle Scholar
  35. 35.
    Faes A, Hessler-Wyser A, Presvytes D, Vayenas CG, Van herle J (2009) Nickel-zirconia anode degradation and triple phase boundary quantification from microstructural analysis. Fuel Cells 9:841–851CrossRefGoogle Scholar
  36. 36.
    Gong M, Liu X, Trembly J, Johnson C (2007) Sulfur-tolerant anode materials for solid oxide fuel cell application. J Power Sources 168:289–298CrossRefGoogle Scholar
  37. 37.
    Mark Ormerod R (2003) Solid oxide fuel cells. Chem Soc Rev 32:17–28CrossRefGoogle Scholar
  38. 38.
    Brandon NP, Skinner S, Steele BCH (2003) Recent advances in materials for fuel cells. Annu Rev Mater Res 33:183–213CrossRefGoogle Scholar
  39. 39.
    Tao S, John Irvine JTS (2004) Catalytic properties of the perovskite oxide La0.75Sr0.25Cr0.5Fe0.5O3-δ in relation to its potential as a solid oxide fuel cell anode material. Chem Mater 16:4116–4121CrossRefGoogle Scholar
  40. 40.
    Myung J-H, Ko H-J, Lee J-J, Lee J-H, Hyun S-H (2012) Synthesis and characterization of NiO/GDC-GDC dual nano-composite powders for high performance methane fueled solid oxide fuel cells. Int J Hydrogen Energy 37:11351–11359CrossRefGoogle Scholar
  41. 41.
    Gavrielatos I, Drakopoulos V, Neophytides SG (2008) Carbon tolerant Ni-Au SOFC electrodes operating under internal steam reforming conditions. J Catal 259:75–84CrossRefGoogle Scholar
  42. 42.
    Bebelis S, Neophytides SG, Kotsionopoulos N, Triantafyllopoulos N, Colomer MT, Jurado J (2006) Methane oxidation on composite ruthenium electrodes in YSZ cells. Solid State Ion 177:2087–2091CrossRefGoogle Scholar
  43. 43.
    Tao S, Irvine JTS (2004) Synthesis and Characterization of (La0.75Sr0.25)Cr0.5Mn0.5O3-δ, a Redox-Stable, Efficient Perovskite Anode for SOFCs. J Electrochem Soc 151:A252CrossRefGoogle Scholar
  44. 44.
    Nikolla E, Schwank J, Linic S (2009) Comparative study of the kinetics of methane steam reforming on supported Ni and Sn/Ni alloy catalysts: the impact of the formation of Ni alloy on chemistry. J Catal 263:220–227CrossRefGoogle Scholar
  45. 45.
    Sasaki K, Susuki K, Iyoshi A, Uchimura M, Imamura N, Kusaba H, Teraoka Y, Fuchino H, Tsujimoto K, Uchida Y, Jingo N (2006) H2S poisoning of solid oxide fuel cells. J Electrochem Soc 153:A2023–A2029CrossRefGoogle Scholar
  46. 46.
    Matsuzaki Y, Yasuda I (2000) The poisoning effect of sulfur-containing impurity gas on a SOFC anode: Part I. Dependence on temperature, time, and impurity concentration. Solid State Ion 132:261–269CrossRefGoogle Scholar
  47. 47.
    Trembly JP, Marquez AI, Ohrn TR, Bayless DJ (2006) Effects of coal syngas and H2S on the performance of solid oxide fuel cells: single-cell tests. J Power Sources 158:263–273CrossRefGoogle Scholar
  48. 48.
    Liu M, Wei G, Luo J, Sanger AR, Chuang KT (2003) Use of metal sulfides as anode catalysts in H2S-Air SOFCs. J Electrochem Soc 150:A1025–A1029CrossRefGoogle Scholar
  49. 49.
    Hahn K, Mavrikakis M (2014) Atomic and molecular adsorption on Re(0001). Top Catal 57:54CrossRefGoogle Scholar
  50. 50.
    McEvoy AJ, Smith MJ (2007) Regeneration of anodes exposed to sulfur. ECS Trans 7:373–380CrossRefGoogle Scholar
  51. 51.
    Yentekakis IV, Vayenas CG (1989) Chemical cogeneration in solid electrolyte cells. The oxidation of formula to formula. J Electrochem Soc 136:996–1002CrossRefGoogle Scholar
  52. 52.
    Nilekar AU, Sasaki K, Farberow CA, Adzic RR, Mavrikakis M (2011) Mixed-metal Pt monolayer electrocatalysts with improved CO tolerance. J Am Chem Soc 133:18574CrossRefGoogle Scholar
  53. 53.
    Wei GL, Liu M, Luo JL, Sanger AR, Chuang KT (2003) Influence of gas flow rate on performance of H2S/air solid oxide fuel cells with MoS2­NiS­Ag anode. J Electrochem Soc 150:A463–A469CrossRefGoogle Scholar
  54. 54.
    Reisse J, Caulier T, Deckerkheer C, Fabre O, Vandercamrnen J, Delplancke JL, Winand R (1996) Quantitative sonochemistry. Ultrason Sonochem 3:147–151CrossRefGoogle Scholar
  55. 55.
    Sáez V, Mason TJ (2009) Review—sonoelectrochemical synthesis of nanoparticles. Molecules 14:4284–4299CrossRefGoogle Scholar
  56. 56.
    González-García J, Esclapez MD, Bonete P, Hernández YV, Garretón LG, Sáez V (2010) Current topics on sonoelectrochemistry. Ultrasonics 50:318–322CrossRefGoogle Scholar
  57. 57.
    Pollet BG (2010) The use of ultrasound for the fabrication of fuel cell materials. Int J Hydrogen Energy 35:11986–12004CrossRefGoogle Scholar
  58. 58.
    Compton RG, Eklund JC, Marken F, Rebbitt TO, Akkermans RP, Waller DN (1997) Dual activation: coupling ultrasound to electrochemistry—an overview. Electrochim Acta 42:2919–2927CrossRefGoogle Scholar
  59. 59.
    Delplancke J-L, Di Bella V, Reisse J, Winand R (1994) Production of metal nanopowders by sonoelectrochemistry. MRS Proc 372:75CrossRefGoogle Scholar
  60. 60.
    Davis J, Vaughan DH, Stirling D, Nei L, Compton RG (2002) Cathodic stripping voltammetry of nickel: sonoelectrochemical exploitation of the Ni(III)/Ni(II) couple. Talanta 57:1045–1051CrossRefGoogle Scholar
  61. 61.
    Jia F, Hu Y, Tang Y, Zhang L (2007) A general nonaqueous sonoelectrochemical approach to nanoporous Zn and Ni particles. Powder Technol 176:130–136CrossRefGoogle Scholar
  62. 62.
    Liu Y-C, Lin L-H, Chiu W-H (2004) Size-controlled synthesis of gold nanoparticles from bulk gold substrates by sonoelectrochemical methods. J Phys Chem B 108:19237–19240CrossRefGoogle Scholar
  63. 63.
    Aqil A, Serwas H, Delplancke JL, Jérôme R, Jérôme C, Canet L (2008) Preparation of stable suspensions of gold nanoparticles in water by sonoelectrochemistry. Ultrason Chem 15:1055–1061Google Scholar
  64. 64.
    Shen Q, Min Q, Shi J, Jiang L, Hou W, Zhu J-J (2011) Synthesis of stabilizer-free gold nanoparticles by pulse sonoelectrochemical method. Ultrason Sonochem 18:231–237CrossRefGoogle Scholar
  65. 65.
    Sakkas P, Schneider O, Martens S, Thanou P, Sourkouni G, Argirusis C (2012) Fundamental studies of sonoelectrochemical nanomaterials preparation. J Appl Electrochem 42:763–777CrossRefGoogle Scholar
  66. 66.
    Rao CNR, Muller A, Cheetan AK (2008) The chemistry of nanomaterials synthesis, properties and applications, vol 1. Wiley-VCH Verlag GmbH & Co., Weinheim, p 151Google Scholar
  67. 67.
    Haas I, Shanmugam S, Gedanken A (2006) Pulsed sonoelectrochemical synthesis of size-controlled copper nanoparticles stabilized by poly(N-vinylpyrrolidone). J Phys Chem B 110:16947–16952CrossRefGoogle Scholar
  68. 68.
    Sáez V, Graves J, Paniwnyk L, Mason TJ (2010) Copper electrocrystallization on titanium electrodes: controlled growth of copper nuclei using a potential step technique. Phys Procedia 3:111–115CrossRefGoogle Scholar
  69. 69.
    Schneider O, Matić S, Argirusis C (2008) Application of the electrochemical quartz crystal microbalance technique to copper sonoelectrochemistry Part 1. Sulfate-based electrolytes. Electrochim Acta 53:5485–5495CrossRefGoogle Scholar
  70. 70.
    Zhu J, Liu S, Palchik O, Koltypin Y, Gedanken A (2000) Shape‐controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods tools. Langmuir 16:6396–6399CrossRefGoogle Scholar
  71. 71.
    Liu S, Huang W, Chen S, Avivi S, Gedanken A (2001) Synthesis of X-ray amorphous silver nanoparticles by the pulse sonoelectrochemical method. J Non Cryst Solids 283:231–236CrossRefGoogle Scholar
  72. 72.
    Liu YC, Lin L-H (2004) New pathway for the synthesis of ultrafine silver nanoparticles form bulk silver substrates in aqueous solutions by sonoelectrochemical methods. Electrochem Commun 6:1163–1168CrossRefGoogle Scholar
  73. 73.
    Jiang L-P, Wang A-N, Zhao Y, Zhang J-R, Zhu J-J (2004) Novel route for the preparation of monodisperse silver nanoparticles via a pulsed sonoelectrochemical technique. Inorg Chem Commun 7:506–509CrossRefGoogle Scholar
  74. 74.
    Vu LV, Long NN, Doanh SC, Trung BQ (2009) Preparation of silver nanoparticles by pulsed sonoelectrochemical method and studying their characteristics. J Phys Conf Ser 187:012077CrossRefGoogle Scholar
  75. 75.
    Lei H, Tang Y-J, Wei J-J, Li J, Li X-B, Shi H-L (2007) Synthesis of tungsten nanoparticles by sonoelectrochemistry. Ultrason Sonochem 14:81–83CrossRefGoogle Scholar
  76. 76.
    Argirusis C, Matić S, Schneider O (2008) An EQCM study of ultrasonically assisted electrodeposition of Co/CeO2 and Ni/CeO2 composites for fuel cell applications. Phys Status Solidi A 205:2400–2404CrossRefGoogle Scholar
  77. 77.
    Xue Y-J, Liu H-B, Lan M-M, Li J-S, Li H (2010) Effect of different electrodeposition methods on oxidation resistance of Ni-CeO2 nanocomposite coating. Surf Coat Technol 204:3539–3545CrossRefGoogle Scholar
  78. 78.
    Lee D, Gan YX, Chen X, Kysar JW (2007) Influence of ultrasonic irradiation on the microstructure of Cu/Al2O3, CeO2 nanocomposite thin films during electrocodeposition. Mater Sci Eng A 447:209–216CrossRefGoogle Scholar
  79. 79.
    Gedanken A (2007) Doping nanoparticles into polymers and ceramics using ultrasound radiation. Ultrason Sonochem 14:418–430CrossRefGoogle Scholar
  80. 80.
    Sakkas PM, Schneider O, Sourkouni G, Argirusis C (2014) Sonochemistry in the service of SOFC research. Ultrason Sonochem 21:1939–1947CrossRefGoogle Scholar
  81. 81.
    Brenscheidt T, Nitschke F, Söllner O, Wendt H (2001) Molten carbonate fuel cell research II. Comparing the solubility and the in-cell mobility of the nickel oxide cathode material in lithium: potassium and lithium: sodium carbonate melts. Electrochim Acta 46:783CrossRefGoogle Scholar
  82. 82.
    Kim MH, Hong MZ, Kim Y-S, Park E, Lee H, Ha H-W, Kim K (2006) Cobalt and cerium coated Ni powder as a new candidate cathode material for MCFC. Electrochim Acta 51:6145CrossRefGoogle Scholar
  83. 83.
    Dabalà M, Pollet BG, Zin V, Campadello E, Mason TJ (2008) Sonoelectrochemical (20 kHz) production of Co65Fe35 alloy nanoparticles from Aotani solutions. J Appl Electrochem 38:395–402CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Eau2EnergyNottinghamEngland, UK
  2. 2.School of Chemical EngineeringNational Technical University of AthensZografou CampusGreece

Personalised recommendations