Skip to main content

Design

  • Chapter
  • First Online:
Particulate Composites
  • 1231 Accesses

Abstract

To satisfy the needs of an application, the engineering design concept encompasses decisions on the appropriate combinations of geometry, composition, and processing. Design specifications point to acceptable materials and possibly even which powders to employ. In some situations the fabrication route is specified to ensure delivery of a properly functioning component.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Friedrich (ed.), Composite Tribology (Elsevier Science, Amsterdam, 1993)

    Google Scholar 

  2. J. Konstanty, Powder Metallurgy Diamond Tools (Elsevier, Amsterdam, 2005)

    Google Scholar 

  3. M.F. Ashby, Y.J.M. Brechet, Designing hybrid materials. Acta Mater. 51, 5801–5821 (2003)

    Article  Google Scholar 

  4. E.J. Barbero, Introduction to Composite Materials Design (CRC Press, Boca Raton, 2011)

    Google Scholar 

  5. D.M. Bryce, Plastic Injection Molding: Manufacturing Process Fundamentals, vol. 1 (SME, Dearborn, 1996)

    Google Scholar 

  6. G.E. Dieter (ed.), Materials Selection and Design. ASM Handbook, vol. 20 (ASM International, Materials Park, 1997)

    Google Scholar 

  7. P. Dewhurst, C.C. Reynolds, A novel procedure for selection of materials in concept design. J. Mater. Eng. Perform. 6, 359–364 (1997)

    Article  Google Scholar 

  8. A. Fujiki, Present state and future prospects of powder metallurgy parts for automotive applications. Mater. Chem. Phys. 67, 298–306 (2001)

    Article  Google Scholar 

  9. R.M. German, A. Bose, Injection Molding of Metals and Ceramics (Metal Powder Industries Federation, Princeton, 1997)

    Google Scholar 

  10. A. Mortensen, J. Llorca, Metal matrix composites. Annu. Rev. Mater. Res. 40, 243–270 (2010)

    Article  Google Scholar 

  11. D. Shetty, Design for Product Success (SME, Dearborn, 2002)

    Google Scholar 

  12. A.I. Taub, Automotive materials: technology trends and challenges in the 21st century. Mater. Res. Soc. Bull. 31, 336–343 (2006)

    Article  Google Scholar 

  13. S. Torquato, Optimal design of heterogeneous materials. Annu. Rev. Mater. Res. 40, 101–129 (2010)

    Article  Google Scholar 

  14. M.P. Groover, Fundamentals of Modern Manufacturing, 4th edn. (Wiley, Hoboken, 2010)

    Google Scholar 

  15. G. Boothroyd, P. Dewhurst, W. Knight, Product Design for Manufacture and Assembly, 3rd edn. (CRC Press, Boca Raton, 2010)

    Google Scholar 

  16. D. Belnap, A. Griffo, Homogeneous and structured PCD.WC-Co materials for drilling. Diam. Relat. Mater. 13, 1914–1922 (2004)

    Article  Google Scholar 

  17. B.S. Zlatkov, H. Danninger, O.S. Aleksic, Cooling performance of Tube X-Cooler shaped by MIM Technology. Powder Injection Moulding Int. 2(1), 51–54 (2007)

    Google Scholar 

  18. S.J. Park, Y.S. Kwon, S. Lee, J.L. Johnson, R.M. German, Thermal management application of nano tungsten - copper composite powder, in Proceedings PM 2010 World Congress on Powder Metallurgy, Florence Italy October, European Powder Metallurgy Association, Florence, Italy, 2010

    Google Scholar 

  19. M.F. Ashby, Materials Selection in Mechanical Design, 4th edn. (Butterworth-Heinemann, Burlington, 2011)

    Google Scholar 

  20. T.W. Clyne, P.J. Withers, An Introduction to Metal Matrix Composites (Cambridge University Press, Cambridge, 1993)

    Book  Google Scholar 

  21. J.R. Davis (ed.), Metals Handbook Desk Edition, 2nd edn. (ASM International, Materials Park, 1998)

    Google Scholar 

  22. R. Warren (ed.), Ceramic-Matrix Composites (Blackie, Glasgow, 1992)

    Google Scholar 

  23. J.L. Johnson, Opportunities for PM processing of metal matrix composites. Int. J. Powder Metall. 47(2), 19–28 (2011)

    Google Scholar 

  24. M.A. Meyers, P.Y. Chen, Biological Materials Science: Biological Materials, Bioinspired Materials, Biomaterials (Cambridge University Press, Cambridge, 2014)

    Book  Google Scholar 

  25. K. Kondoh, Titanium metal matrix composites by powder metallurgy (PM) routes, in Titanium Powder Metallurgy, ed. by M.A. Qian, F.H. Froes (Elsevier, Oxford, 2015), pp. 277–297

    Google Scholar 

  26. C. Zweben, Advanced composites and other advanced materials for electronic packaging thermal management, in Proceedings International Symposium on Advanced Packaging Materials (IEEE, New York, 2001), pp. 360–365

    Google Scholar 

  27. J. Hafner, C. Wolverton, G. Ceder, Toward computational materials design: the impact of density functional theory on materials research. Mater. Res. Soc. Bull. 31, 659–665 (2006)

    Article  Google Scholar 

  28. R.M. German, Powder Metallurgy and Particulate Materials Processing (Metal Powder Industries Federation, Princeton, 2005)

    Google Scholar 

  29. J.D. Meadows, Geometric Dimensioning and Tolerancing (Marcel Dekker, New York, 1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

German, R.M. (2016). Design. In: Particulate Composites. Springer, Cham. https://doi.org/10.1007/978-3-319-29917-4_9

Download citation

Publish with us

Policies and ethics