Isolation and Identification of Campylobacter spp. in Poultry

  • Omar A. Oyarzabal
  • Heriberto Fernández


Poultry products, especially chicken meat, continue to be important sources of campylobacteriosis in humans. This chapter reviews the current methods used for the isolation and identification of Campylobacter spp. from chicken products. Emphasis is placed on the enrichment protocols, plate media, and most used, practical confirmation methods. The incorporation of molecular techniques and some of the methodologies used in some Latin American countries to detect Campylobacter spp. from poultry are summarized. Finally, some perspectives in future trends are provided.


Isolation Identification Culture media Rapid methods Molecular methods Poultry Food samples 


  1. Ahmed R, Leon-Velarde CG, Odumeru JA (2012) Evaluation of novel agars for the enumeration of Campylobacter spp. in poultry retail samples. J Microbiol Methods 28:304–310CrossRefGoogle Scholar
  2. Ailes E, Scallan E, Berkelman RL, Kleinbaum DG, Tauxe RV, Moe CL (2012) Do differences in risk factors, medical care seeking, or medical practices explain the geographic variation in campylobacteriosis in foodborne diseases active surveillance network (FoodNet) sites? Clin Infect Dis 54:S464–S471CrossRefPubMedGoogle Scholar
  3. Anonymous (2013) Isolation, identification, and enumeration of method for the enumeration of Campylobacter jejuni/coli/lari from poultry rinse, sponge and raw poultry product samples. USDA FSIS Microbiology Laboratory Guidebook, Chapter 41.02. Available at
  4. Anonymous (2014) National Notifiable Disease Surveillance System. Canberra, Australian Government Department of Health and Ageing. Available at
  5. Baggerman WI, Koster T (1992) A comparison of enrichment and membrane filtration methods for the isolation of Campylobacter from fresh and frozen foods. Food Microbiol 9:87–94CrossRefGoogle Scholar
  6. Bahrndorff S, Rangstrup-Christensen L, Nordentoft S, Hald B (2013) Foodborne disease prevention and broiler chickens with reduced Campylobacter infection. Emerg Infect Dis 19:425–428CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bi S (2013) Comparison of various culture methods (Skirrow medium, a blood-free medium and a filtration system enriched in Bolton and Preston broths) for isolation of Campylobacter spp. from raw meat samples. Ann Microbiol 63:179–185CrossRefGoogle Scholar
  8. Bolton FJ, Coates D (1983) Development of a blood-free Campylobacter medium: screening tests on basal media and supplements, and the ability of selected supplement to facilitate aerotolerance. J Appl Bacteriol 54:115–125CrossRefPubMedGoogle Scholar
  9. Bolton FJ, Robertson L (1982) A selective medium for isolating Campylobacter jejuni/coli. J Clin Pathol 35:462–467CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chon JW, Hyeon JY, Park JH, Song KY, Seo KH (2012) Comparison of 2 types of broths and 3 selective agars for the detection of Campylobacter species in whole-chicken carcass-rinse samples. Poult Sci 91:2382–2385CrossRefPubMedGoogle Scholar
  11. Cloak OM, Fratamico PM (2002) A multiplex PCR for the differentiation of Campylobacter jejuni and C. coli from a swine processing facility and characterization of isolates by PFGE and antibiotic resistance profiles. J Food Prot 65:266–273PubMedGoogle Scholar
  12. Fernández H (1992) Increase of Campylobacter isolation rates using an enrichment medium. Rev Microbiol São Paulo 23:5–7Google Scholar
  13. Fernández H (2011) Campylobacter and Campylobacteriosis: a view from South America. Rev Peru Med Exp Salud Publica 28:121–127CrossRefPubMedGoogle Scholar
  14. Fernández H, Salazar R, Landskron E (1993) Occurrence of thermotolerant species of Campylobacter in three groups of hens maintained under different environmental conditions. Rev Microbiol São Paulo 24:265–268Google Scholar
  15. Fernández-Riquelme A (2011) Detection of Campylobacter in poultry meat for human consumption and antimicrobial susceptibility. Dissertation, Universidad Austral de ChileGoogle Scholar
  16. Fernández H, Torres N (2000) Occurrence of Campylobacter jejuni and Campylobacter coli in three groups of hens of different geographic origin in Southern Chile. Arch Med Vet 32:241–244CrossRefGoogle Scholar
  17. Gharst GA, Oyarzabal OA, Hussain SK (2013) Review of current methodologies to isolate and identify Campylobacter spp. from foods. J Microbiol Meth 95:84–92CrossRefGoogle Scholar
  18. Gilliss D, Cronquist AB, Cartter M et al (2013) Incidence and trends of infection with pathogens transmitted commonly through food - foodborne diseases active surveillance network, 10 U.S. sites, 1996-2012. MMWR Morb Mortal Wkly Rep 62:283–287Google Scholar
  19. Gomes FR, Curcio BR, Ladeira SRL, Fernández H, Meireles MCA (2006) Campylobacter jejuni occurrence in chicken fecal samples from small properties in Pelotas, Southern of Brazil. Braz J Microbiol 37:375–378CrossRefGoogle Scholar
  20. Habib I, Sampers I, Uyttendaele M, Berkvens D, De Zutter L (2008) Performance characteristics and estimation of measurement uncertainty of three plating procedures for Campylobacter enumeration in chicken meat. Food Microbiol 25:65–74CrossRefPubMedGoogle Scholar
  21. Habib I, Uyttendaele M, De Zutter L (2011) Evaluation of ISO 10272:2006 standard versus alternative enrichment and plating combinations for enumeration and detection of Campylobacter in chicken meat. Food Microbiol 28:1117–1123CrossRefPubMedGoogle Scholar
  22. Kuana SL, Santos LR, Rodrigues LB, Borsoi A, Moraes HL, Salle CT, Nascimento VP (2008) Occurrence and characterization of Campylobacter in the Brazilian production and processing of broilers. Av Dis 52:680–684CrossRefGoogle Scholar
  23. Lastovica AJ (2006) Emerging Campylobacter spp.: the tip of the iceberg. Clin Microbiol News 28:49–55CrossRefGoogle Scholar
  24. Linton D, Lawson AJ, Owen RJ, Stanley J (1997) PCR detection, identification to species level, and fingerprinting of Campylobacter jejuni and Campylobacter coli direct from diarrheic samples. J Clin Microbiol 35:2568–2572PubMedPubMedCentralGoogle Scholar
  25. Liu L, Hussain SK, Miller RS, Oyarzabal OA (2009) Efficacy of mini VIDAS for the detection of Campylobacter spp. from retail broiler meat enriched in Bolton broth with or without the supplementation of blood. J Food Prot 72:2428–2432PubMedGoogle Scholar
  26. López C, Agostini A, Giacoboni G, Cornero F, Tellechea D, Trinidad JJ (2003) Campylobacteriosis in a low-income community in Buenos Aires, Argentina. Rev Sci Tech Off Int Epi 22:1013–1020CrossRefGoogle Scholar
  27. Man SM (2011) The clinical importance of emerging Campylobacter species. Nat Rev Gastroenterol Hepatol 8:669–685CrossRefPubMedGoogle Scholar
  28. M’ikanatha NM, Dettinger LA, Perry A, Rogers P, Reynolds SM, Nachamkin I (2012) Culturing stool specimens for Campylobacter spp., Pennsylvania, USA. Emerg Infect Dis 18:484–487CrossRefPubMedPubMedCentralGoogle Scholar
  29. Miller RS, Speegle I, Oyarzabal O, Lastoica AJ (2008) Evaluation of three commercial latex agglutination tests for the identification of Campylobacter spp. J Clin Microbiol 46:3546–3547CrossRefPubMedPubMedCentralGoogle Scholar
  30. Oyarzabal OA, Backert S, Nagaraj M, Miller RS, Hussain SK, Oyarzabal EA (2007) Efficacy of supplemented buffered peptone water for the isolation of Campylobacter jejuni and C. coli from broiler retail products. J Microbiol Methods 69:129–136CrossRefPubMedGoogle Scholar
  31. Oyarzabal OA, Macklin KS, Barbaree JM, Miller RS (2005) Evaluation of agar plates for direct enumeration of Campylobacter spp. from poultry carcass rinses. Appl Environ Microbiol 71:3351–3354Google Scholar
  32. Oyarzabal OA, Williams A, Zhou P, Samadpour M (2013) Improved protocol for isolation of Campylobacter spp. from retail broiler meat and use of pulsed field gel electrophoresis for the typing of isolates. J Microbiol Meth 95:76–83CrossRefGoogle Scholar
  33. Persson S, Olsen KEP (2005) Multiplex PCR for identification of Campylobacter coli and Campylobacter jejuni from pure cultures and directly on stool samples. J Med Microbiol 54:1043–1047CrossRefPubMedGoogle Scholar
  34. Plumer GL, Duvall WC, Shepler VM (1962) A preliminary report on a new technique for isolation of Vibrio fetus from carrier bulls. Gen Vet 52:110–122Google Scholar
  35. Potturi-Venkata LP, Backert S, Lastovica AJ, Vieira SL, Norton RA, Miller RS, Pierce S, Oyarzabal OA (2007) Evaluation of different plate media for direct cultivation of Campylobacter spp. from live broilers. Poultry Sci 86:1304–1311CrossRefGoogle Scholar
  36. Quinlan JJ (2013) Foodborne illness incidence rates and food safety risks for populations of low socioeconomic status and minority race/ethnicity: A review of the literature. Int J Environ Res Publ Hlth 10:3634–3652CrossRefGoogle Scholar
  37. Reiter MG, López C, Jordano R, Medina LM (2010) Comparative study of alternative methods for food safety control in poultry slaughterhouses. Food Anal Meth 3:253–260CrossRefGoogle Scholar
  38. Rivera FN, Bustos BR, Montenegro HS, Sandoval MM, Castillo NJ, Fernández JH, Maturana RM, Delgado RL, Contreras SA, Chávez ND, Quevedo LI (2011) Genotyping and antibacterial resistance of Campylobacter spp strains isolated in children and in free range poultry. Rev Chilena Infectol 28:555–562CrossRefGoogle Scholar
  39. Seliwiorstow T, Baré J, Verhaegen B, Uyttendaele M, de Zutter L (2014) Evaluation of a new chromogenic medium for direct enumeration of Campylobacter in poultry meat samples. J Food Prot 77:2111–2114CrossRefPubMedGoogle Scholar
  40. Silva DT, Tejada TS, Cunha CC (2014) Occurrence of Campylobacter in poultry, meat chicken and human feces, and cdt genes research. Arq Bras Med Vet Zootec 66:297–304CrossRefGoogle Scholar
  41. Simaluiza RJ, Toledo Z, Ochoa S, Fernández H (2015) The prevalence and antimicrobial resistance of Campylobacter jejuni and Campylobacter coli in chicken livers used for human consumption in Ecuador. J Animal Vet Adv 14:6–9Google Scholar
  42. Smith S, Meade J, McGill K, Gibbons J, Bolton D, Whyte P (2015) Restoring the selectivity of modified charcoal cefoperazone deoxycholate agar for the isolation of Campylobacter species using tazobactam, a beta-lactamase inhibitor. Int J Food Microbiol 210:131–135CrossRefPubMedGoogle Scholar
  43. Speegle L, Miller ME, Backert S, Oyarzabal OA (2009) Use of cellulose filters to isolate Campylobacter spp. from naturally contaminated retail broiler meat. J Food Prot 72:2592–2596PubMedGoogle Scholar
  44. Steele TW, McDermott S (1978) Campylobacter enteritidis in South Australia. Med J Aust 2:404–406PubMedGoogle Scholar
  45. Teramura H, Iwasaki M, Ogihara H (2015) Development of a novel chromogenic medium for improved Campylobacter detection from poultry samples. J Food Prot 78:1624–1769CrossRefGoogle Scholar
  46. Williams A, Oyarzabal OA (2012) Prevalence of Campylobacter spp. in skinless, boneless retail broiler meat from 2005 through 2011 in Alabama, USA. BMC Microbiol 12:184CrossRefPubMedPubMedCentralGoogle Scholar
  47. Zhou P, Hussain SK, Liles MR, Arias CR, Backert S, Kieninger J, Oyarzabal OA (2011) A simplified and cost-effective enrichment protocol for the isolation of Campylobacter spp. from retail broiler meat without microaerobic incubation. BMC Microbiol 11:175CrossRefPubMedPubMedCentralGoogle Scholar
  48. Zumbado-Gutiérrez L, Arévalo-Madrigal A, Donado-Godoy M, Romero-Zúniga JJ (2014) Molecular diagnosis of Campylobacter in poultry chain intended for human consumption in Costa Rica. Agron Mesoam 25:357–363CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of Vermont ExtensionSt. AlbansUSA
  2. 2.Institute of Clinical MicrobiologyUniversidad Austral de ChileValdiviaChile

Personalised recommendations