Skip to main content

Epigenetic Risk Factors for Diseases: A Transgenerational Perspective

  • Chapter
  • First Online:

Part of the book series: Epigenetics and Human Health ((EHH))

Abstract

Each individual is determined by a combination of genetic and non-genetic factors that together shape physiological and biological functions during development and adulthood. While genetic features are embedded in the DNA sequence inherited from parents, non-genetic features (which include epigenetic modifications) are acquired through experiences and environmental exposure across life. However, it is now acknowledged that non-genetic features can also be inherited from parents and propagate across generations. This chapter discusses the concept of non-genetic germline inheritance in mammals and examines possible routes of transmission of non-genetic information involving germline-dependent and germline-independent modes of transfer. It reviews current evidence that environmental factors can induce non-genetic alterations in the germline that can impact behavioral and physiological features in the offspring. This chapter also addresses the underlying molecular mechanisms, provides initial insight into the implication of epigenetic marks and non-coding RNAs in male germ cells, and questions the way non-genetic modifications can be induced and maintained in germ cells. It highlights promising areas of current research and reflects on evolutionary perspectives and future challenges.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adalsteinsson B, Ferguson-Smith A (2014) Epigenetic control of the genome – lessons from genomic imprinting. Genes (Basel) 5:635–655

    Google Scholar 

  • Adeoya-Osiguwa SA, Gibbons R, Fraser LR (2006) Identification of functional alpha2- and beta-adrenergic receptors in mammalian spermatozoa. Hum Reprod 21:1555–1563

    Article  CAS  PubMed  Google Scholar 

  • Aitken RJ, Koopman P, Lewis SEM (2004) Seeds of concern. Nature 432:48–52

    Article  CAS  PubMed  Google Scholar 

  • Arai JA, Li S, Hartley DM, Feig LA (2009) Transgenerational rescue of a genetic defect in long-term potentiation and memory formation by juvenile enrichment. J Neurosci 29:1496–1502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aravin AA, Sachidanandam R, Girard A et al (2007) Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316:744–747

    Article  CAS  PubMed  Google Scholar 

  • Aravin AA, Sachidanandam R, Bourc’his D et al (2008) A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell 31:785–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arpanahi A, Brinkworth M, Iles D et al (2009) Endonuclease-sensitive regions of human spermatozoal chromatin are highly enriched in promoter and CTCF binding sequences. Genome Res 19:1338–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arroyo JD, Chevillet JR, Kroh EM et al (2011) Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci U S A 108:5003–5008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Babb JA, Carini LM, Spears SL, Nephew BC (2014) Transgenerational effects of social stress on social behavior, corticosterone, oxytocin, and prolactin in rats. Horm Behav 65:386–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartolomei MS (2009) Genomic imprinting: employing and avoiding epigenetic processes. Genes Dev 23:2124–2133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaujean N (2014) Histone post-translational modifications in preimplantation mouse embryos and their role in nuclear architecture. Mol Reprod Dev 81:100–112

    Article  CAS  PubMed  Google Scholar 

  • Behrman JR, Calderon MC, Preston SH et al (2009) Nutritional supplementation in girls influences the growth of their children: prospective study in Guatemala. Am J Clin Nutr 90:1372–1379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett-Baker PE, Wilkowski J, Burke DT (2003) Age-associated activation of epigenetically repressed genes in the mouse. Genetics 165:2055–2062

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bohacek J, Mansuy IM (2013) Epigenetic inheritance of disease and disease risk. Neuropsychopharmacology 38:220–236

    Article  CAS  PubMed  Google Scholar 

  • Bohacek J, Mansuy IM (2015) Molecular insights into transgenerational non-genetic inheritance of acquired behaviours. Nat Rev Genet 16:641–652

    Article  CAS  PubMed  Google Scholar 

  • Bohacek J, Gapp K, Saab BJ, Mansuy IM (2012) Transgenerational epigenetic effects on brain functions. Biol Psychiatry 73:313–320

    Article  PubMed  Google Scholar 

  • Bohacek J, Farinelli M, Mirante O et al (2015) Pathological brain plasticity and cognition in the offspring of males subjected to postnatal traumatic stress. Mol Psychiatry 20:621–631

    Article  CAS  PubMed  Google Scholar 

  • Bohacek J, von Werdt S, Mansuy IM (2016) Probing the germline-dependence of epigenetic inheritance using artificial insemination in mice. Environmental Epigenetics 2:1–10

    Google Scholar 

  • Borgel J, Guibert S, Li Y et al (2010) Targets and dynamics of promoter DNA methylation during early mouse development. Nat Genet 42:1093–1100

    Article  CAS  PubMed  Google Scholar 

  • Bostick M, Kim JK, Estève P-O et al (2007) UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317:1760–1764

    Article  CAS  PubMed  Google Scholar 

  • Bourguiba S, Genissel C, Lambard S et al (2003) Regulation of aromatase gene expression in Leydig cells and germ cells. J Steroid Biochem Mol Biol 86:335–343

    Article  CAS  PubMed  Google Scholar 

  • Boyko A, Kathiria P, Zemp FJ et al (2007) Transgenerational changes in the genome stability and methylation in pathogen-infected plants: (virus-induced plant genome instability). Nucleic Acids Res 35:1714–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunner AM, Nanni P, Mansuy IM (2014) Epigenetic marking of sperm by post-translational modification of histones and protamines. Epigenetics Chromatin 7:2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brykczynska U, Hisano M, Erkek S et al (2010) Repressive and active histone methylation mark distinct promoters in human and mouse spermatozoa. Nat Struct Mol Biol 17:679–687

    Article  CAS  PubMed  Google Scholar 

  • Byrnes JJ, Babb JA, Scanlan VF, Byrnes EM (2011) Adolescent opioid exposure in female rats: transgenerational effects on morphine analgesia and anxiety-like behavior in adult offspring. Behav Brain Res 218:200–205

    Article  CAS  PubMed  Google Scholar 

  • Byrnes JJ, Johnson NL, Carini LM, Byrnes EM (2013) Multigenerational effects of adolescent morphine exposure on dopamine D2 receptor function. Psychopharmacology 227:263–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cacciola G, Chioccarelli T, Altucci L et al (2013) Low 17beta-estradiol levels in CNR1 knock-out mice affect spermatid chromatin remodeling by interfering with chromatin reorganization. Biol Reprod 88:152

    Article  PubMed  Google Scholar 

  • Carmell MA, Girard A, van de Kant HJG et al (2007) MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev Cell 12:503–514

    Article  CAS  PubMed  Google Scholar 

  • Carone BR, Fauquier L, Habib N et al (2010) Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell 143:1084–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carone BR, Hung J-H, Hainer SJ et al (2014) High-resolution mapping of chromatin packaging in mouse embryonic stem cells and sperm. Dev Cell 30:11–22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carr MS, Yevtodiyenko A, Schmidt CL, Schmidt JV (2007) Allele-specific histone modifications regulate expression of the Dlk1-Gtl2 imprinted domain. Genomics 89:280–290

    Article  CAS  PubMed  Google Scholar 

  • Casas E, Vavouri T (2014) Sperm epigenomics: challenges and opportunities. Front Genet 5:1–7

    Article  CAS  Google Scholar 

  • Champagne FA (2008) Epigenetic mechanisms and the transgenerational effects of maternal care. Front Neuroendocrinol 29:386–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen TH-H, Chiu Y-H, Boucher BJ (2006) Transgenerational effects of betel-quid chewing on the development of the metabolic syndrome in the Keelung Community-based Integrated Screening Program. Am J Clin Nutr 83:688–692

    CAS  PubMed  Google Scholar 

  • Cossetti C, Lugini L, Astrologo L et al (2014) Soma-to-germline transmission of RNA in mice xenografted with human tumour cells: possible transport by exosomes. PLoS One 9:e101629

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Court F, Tayama C, Romanelli V et al (2014) Genome-wide parent-of-origin DNA methylation analysis reveals the intricacies of human imprinting and suggests a germline methylation-independent mechanism of establishment. Genome Res 24:554–569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crean AJ, Kopps AM, Bonduriansky R (2014) Revisiting telegony: offspring inherit an acquired characteristic of their mother’s previous mate. Ecol Lett 17:1545–1552

    Article  PubMed  PubMed Central  Google Scholar 

  • Crews D, Gore AC, Hsu TS et al (2007) Transgenerational epigenetic imprints on mate preference. Proc Natl Acad Sci U S A 104:5942–5946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curley JP, Mashoodh R, Champagne FA (2011) Epigenetics and the origins of paternal effects. Horm Behav 59:306–314

    Article  PubMed  Google Scholar 

  • Das S, Bryan K, Buckley PG et al (2013) Modulation of neuroblastoma disease pathogenesis by an extensive network of epigenetically regulated microRNAs. Oncogene 32:2927–2936

    Article  CAS  PubMed  Google Scholar 

  • Daxinger L, Whitelaw E (2012) Understanding transgenerational epigenetic inheritance via the gametes in mammals. Nat Rev Genet 13:153–162

    Article  CAS  PubMed  Google Scholar 

  • De Kloet ER, Karst H, Joëls M (2008) Corticosteroid hormones in the central stress response: quick-and-slow. Front Neuroendocrinol 29:268–272

    Article  PubMed  CAS  Google Scholar 

  • Debiec J, Sullivan RM (2014) Intergenerational transmission of emotional trauma through amygdala-dependent mother-to-infant transfer of specific fear. Proc Natl Acad Sci 111:12222–12227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Denomme MM, Mann MRW (2012) Genomic imprints as a model for the analysis of epigenetic stability during assisted reproductive technologies. Reproduction 144:393–409

    Article  CAS  PubMed  Google Scholar 

  • Dias BG, Ressler KJ (2014) Parental olfactory experience influences behavior and neural structure in subsequent generations. Nat Neurosci 17:89–96

    Article  CAS  PubMed  Google Scholar 

  • Dietz DM, Laplant Q, Watts EL et al (2011) Paternal transmission of stress-induced pathologies. Biol Psychiatry 70:408–414

    Article  PubMed  PubMed Central  Google Scholar 

  • Dunn GA, Bale TL (2009) Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice. Endocrinology 150:4999–5009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dunn GA, Bale TL (2011) Maternal high-fat diet effects on third-generation female body size via the paternal lineage. Endocrinology 152:2228–2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eichler EE, Flint J, Gibson G et al (2010) Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 11:446–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Engel SM, Berkowitz GS, Wolff MS, Yehuda R (2005) Psychological trauma associated with the World Trade Center attacks and its effect on pregnancy outcome. Paediatr Perinat Epidemiol 19:334–341

    Article  PubMed  Google Scholar 

  • Erkek S, Hisano M, Liang C-Y et al (2013) Molecular determinants of nucleosome retention at CpG-rich sequences in mouse spermatozoa. Nat Struct Mol Biol 20:868–875

    Article  CAS  PubMed  Google Scholar 

  • Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7:21–33

    Article  CAS  PubMed  Google Scholar 

  • Finegersh A, Homanics GE (2014) Paternal alcohol exposure reduces alcohol drinking and increases behavioral sensitivity to alcohol selectively in male offspring. PLoS One 9:e99078

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Franklin TB, Russig H, Weiss IC et al (2010) Epigenetic transmission of the impact of early stress across generations. Biol Psychiatry 68:408–415

    Article  PubMed  Google Scholar 

  • Franklin TB, Linder N, Russig H et al (2011) Influence of early stress on social abilities and serotonergic functions across generations in mice. PLoS One 6:e21842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frésard L, Morisson M, Brun J-M et al (2013) Epigenetics and phenotypic variability: some interesting insights from birds. Genet Sel Evol 45:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Fullston T, Ohlsson Teague EMC, Palmer NO et al (2013) Paternal obesity initiates metabolic disturbances in two generations of mice with incomplete penetrance to the F2 generation and alters the transcriptional profile of testis and sperm microRNA content. FASEB J 27:4226–4243

    Article  CAS  PubMed  Google Scholar 

  • Galler JR (1980) Home-orienting behavior in rat pups surviving postnatal or intergenerational malnutrition. Dev Psychobiol 13:563–572

    Article  CAS  PubMed  Google Scholar 

  • Galler JR (1981) Visual discrimination in rats: the effects of rehabilitation following intergenerational malnutrition. Dev Psychobiol 14:229–236

    Article  CAS  PubMed  Google Scholar 

  • Galler JR, Seelig C (1981) Home-orienting behavior in rat pups: the effect of 2 and 3 generations of rehabilitation following intergenerational malnutrition. Dev Psychobiol 14:541–548

    Article  CAS  PubMed  Google Scholar 

  • Gapp K, Jawaid A, Sarkies P et al (2014a) Implication of sperm RNAs in transgenerational inheritance of the effects of early trauma in mice. Nat Neurosci 17:667–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gapp K, Soldado-Magraner S, Alvarez-Sánchez M et al (2014b) Early life stress in fathers improves behavioural flexibility in their offspring. Nat Commun 5:5466

    Article  PubMed  Google Scholar 

  • Gapp K, von Ziegler L, Tweedie-Cullen RY, Mansuy IM (2014c) Early life epigenetic programming and transmission of stress-induced traits in mammals: how and when can environmental factors influence traits and their transgenerational inheritance? Bioessays 36:491–502

    Article  PubMed  Google Scholar 

  • Ghildiyal M, Zamore PD (2009) Small silencing RNAs: an expanding universe. Nat Rev Genet 10:94–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillette R, Miller-Crews I, Nilsson EE et al (2014) Sexually dimorphic effects of ancestral exposure to vinclozolin on stress reactivity in rats. Endocrinology 155:3853–3866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Girardot M, Feil R, Llères D (2013) Epigenetic deregulation of genomic imprinting in humans: causal mechanisms and clinical implications. Epigenomics 5:715–728

    Article  CAS  PubMed  Google Scholar 

  • Govorko D, Bekdash RA, Zhang C, Sarkar DK (2012) Male germline transmits fetal alcohol adverse effect on hypothalamic proopiomelanocortin gene across generations. Biol Psychiatry 72:378–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grandjean V, Gounon P, Wagner N et al (2009) The miR-124-Sox9 paramutation: RNA-mediated epigenetic control of embryonic and adult growth. Development 136:3647–3655

    Article  CAS  PubMed  Google Scholar 

  • Guerrero-Bosagna C, Skinner MK (2012) Environmentally induced epigenetic transgenerational inheritance of phenotype and disease. Mol Cell Endocrinol 354:3–8

    Article  CAS  PubMed  Google Scholar 

  • Guerrero-Bosagna C, Settles M, Lucker B, Skinner MK (2010) Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PLoS One 5:e13100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Guerrero-Bosagna C, Savenkova M, Haque MM et al (2013) Environmentally induced epigenetic transgenerational inheritance of altered Sertoli cell transcriptome and epigenome: molecular etiology of male infertility. PLoS One 8:e59922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerrero-Bosagna C, Weeks S, Skinner MK (2014) Identification of genomic features in environmentally induced epigenetic transgenerational inherited sperm epimutations. PLoS One 9:e100194

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hackett JA, Sengupta R, Zylicz JJ et al (2013) Germline DNA demethylation dynamics and imprint erasure through 5-hydroxymethylcytosine. Science 339:448–452

    Article  CAS  PubMed  Google Scholar 

  • Haddad JJ (2004) Alcoholism and neuro-immune-endocrine interactions: physiochemical aspects. Biochem Biophys Res Commun 323:361–371

    Article  CAS  PubMed  Google Scholar 

  • Haeussler S, Claus R (2007) Expression of the glucocorticoid receptor and 11β-hydroxysteroid dehydrogenase 2 in pig testes cells along fetal development. Reprod Fertil Dev 19:664

    Article  CAS  PubMed  Google Scholar 

  • Hammoud SS, Nix DA, Zhang H et al (2009) Distinctive chromatin in human sperm packages genes for embryo development. Nature 460:473–478

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harper LV (2005) Epigenetic inheritance and the intergenerational transfer of experience. Psychol Bull 131:340–360

    Article  PubMed  Google Scholar 

  • Hazra R, Upton D, Jimenez M et al (2014) In vivo actions of the Sertoli cell glucocorticoid receptor. Endocrinology 155:1120–1130

    Article  PubMed  CAS  Google Scholar 

  • Heijmans BT, Tobi EW, Stein AD et al (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A 105:17046–17049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heller EA, Cates HM, Peña CJ et al (2014) Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors. Nat Neurosci 17:1720–1727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hergenreider E, Heydt S, Tréguer K et al (2012) Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol 14:249–256

    Article  CAS  PubMed  Google Scholar 

  • Hermo L, Pelletier R-M, Cyr DG, Smith CE (2010) Surfing the wave, cycle, life history, and genes/proteins expressed by testicular germ cells. Part 1: background to spermatogenesis, spermatogonia, and spermatocytes. Microsc Res Tech 73:241–278

    Article  PubMed  CAS  Google Scholar 

  • Hess RA, Renato de Franca L (2008) Spermatogenesis and cycle of the seminiferous epithelium. Adv Exp Med Biol 636:1–15

    Article  PubMed  Google Scholar 

  • Hilton IB, D’Ippolito AM, Vockley CM et al (2015) Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol. doi:10.1038/nbt.3199

    PubMed  PubMed Central  Google Scholar 

  • Hoeffer CA, Wong H, Cain P et al (2013) Regulator of calcineurin 1 modulates expression of innate anxiety and anxiogenic responses to selective serotonin reuptake inhibitor treatment. J Neurosci 33:16930–16944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holland ML, Rakyan VK (2013) Transgenerational inheritance of non-genetically determined phenotypes. Biochem Soc Trans 41:769–776

    Article  CAS  PubMed  Google Scholar 

  • Holliday R (1987) Epigenetic defects. Science 238:163–170

    Article  CAS  PubMed  Google Scholar 

  • Hulf T, Sibbritt T, Wiklund ED et al (2013) Epigenetic-induced repression of microRNA-205 is associated with MED1 activation and a poorer prognosis in localized prostate cancer. Oncogene 32:2891–2899

    Article  CAS  PubMed  Google Scholar 

  • Jablonka E (2012) Epigenetic variations in heredity and evolution. Clin Pharmacol Ther 92:683–688

    Article  CAS  PubMed  Google Scholar 

  • Jablonka E, Raz G (2009) Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q Rev Biol 84:131–176

    Article  PubMed  Google Scholar 

  • Jenkins TG, Carrell DT (2012) The sperm epigenome and potential implications for the developing embryo. Reproduction 143:727–734

    Article  CAS  PubMed  Google Scholar 

  • Jia H, Morris CD, Williams RM et al (2014) HDAC inhibition imparts beneficial transgenerational effects in Huntington’s disease mice via altered DNA and histone methylation. Proc Natl Acad Sci U S A 112:E56–E64

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jimenez-Chillaron JC, Isganaitis E, Charalambous M et al (2009) Intergenerational transmission of glucose intolerance and obesity by in utero undernutrition in mice. Diabetes 58:460–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jodar M, Selvaraju S, Sendler E et al (2013) The presence, role and clinical use of spermatozoal RNAs. Hum Reprod Update 19:604–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson GD, Lalancette C, Linnemann AK et al (2011) The sperm nucleus: chromatin, RNA, and the nuclear matrix. Reproduction 141:21–36

    Article  CAS  PubMed  Google Scholar 

  • Kaati G, Bygren LO, Pembrey M, Sjostrom M (2007) Transgenerational response to nutrition, early life circumstances and longevity. Eur J Hum Genet 15:784–790

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann SH, Wright WW, Okret S et al (1992) Evidence that rodent epididymal sperm contain the Mr approximately 94,000 glucocorticoid receptor but lack the Mr approximately 90,000 heat shock protein. Endocrinology 130:3074–3084

    CAS  PubMed  Google Scholar 

  • Kiani J, Grandjean V, Liebers R et al (2013) RNA-mediated epigenetic heredity requires the cytosine methyltransferase Dnmt2. PLoS Genet 9:e1003498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DH, Saetrom P, Snove O Jr, Rossi JJ (2008) MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci U S A 105:16230–16235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinnally EL, Feinberg C, Kim D et al (2013) Transgenerational effects of variable foraging demand stress in female bonnet macaques. Am J Primatol 75:509–517

    Article  PubMed  PubMed Central  Google Scholar 

  • Krawetz SA, Kruger A, Lalancette C et al (2011) A survey of small RNAs in human sperm. Hum Reprod 26:3401–3412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kyle UG, Pichard C (2006) The Dutch Famine of 1944–1945: a pathophysiological model of long-term consequences of wasting disease. Curr Opin Clin Nutr Metab Care 9:388–394

    Article  PubMed  Google Scholar 

  • Lane N, Dean W, Erhardt S, Hajkova P, Surani A, Walter J, Reik W (2003) Resistance of IAPs to methylation reprogramming may provide a mechanism for epigenetic inheritance in the mouse. Genesis 35:88–93

    Google Scholar 

  • Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JS, Smith E, Shilatifard A (2010) The language of histone crosstalk. Cell 142:682–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee HJ, Hore TA, Reik W (2014) Reprogramming the methylome: erasing memory and creating diversity. Cell Stem Cell 14:710–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leshem M, Schulkin J (2012) Transgenerational effects of infantile adversity and enrichment in male and female rats. Dev Psychobiol 54:169–186

    Article  PubMed  Google Scholar 

  • Li Y-F, Langholz B, Salam MT, Gilliland FD (2005) Maternal and grandmaternal smoking patterns are associated with early childhood asthma. Chest 127:1232–1241

    PubMed  Google Scholar 

  • Li C-Q, Luo Y-W, Bi F-F et al (2014) Development of anxiety-like behavior via Hippocampal IGF-2 signaling in the offspring of parental morphine exposure: effect of enriched environment. Neuropsychopharmacology 39:1–11

    Article  CAS  Google Scholar 

  • Liu W-M, Pang RTK, Chiu PCN et al (2012) Sperm-borne microRNA-34c is required for the first cleavage division in mouse. Proc Natl Acad Sci 109:490–494

    Article  CAS  PubMed  Google Scholar 

  • Liu B, Zupan B, Laird E et al (2014) Maternal hematopoietic TNF, via milk chemokines, programs hippocampal development and memory. Nat Neurosci 17:97–105

    Article  CAS  PubMed  Google Scholar 

  • Llamas B, Holland ML, Chen K et al (2012) High-resolution analysis of cytosine methylation in ancient DNA. PLoS One 7:e30226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lumey LH, Stein AD (1997) Offspring birth weights after maternal intrauterine undernutrition: a comparison within sibships. Am J Epidemiol 146:810–819

    Article  CAS  PubMed  Google Scholar 

  • Lumey LH, Stein AD, Susser E (2011) Prenatal famine and adult health. Annu Rev Public Health 32:237–262

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Flemr M, Stein P et al (2010) MicroRNA activity is suppressed in mouse oocytes. Curr Biol 20:265–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Majdic G, Millar MR, Saunders PT (1995) Immunolocalisation of androgen receptor to interstitial cells in fetal rat testes and to mesenchymal and epithelial cells of associated ducts. J Endocrinol 147:285–293

    Article  CAS  PubMed  Google Scholar 

  • Manikkam M, Guerrero-Bosagna C, Tracey R et al (2012) Transgenerational actions of environmental compounds on reproductive disease and identification of epigenetic biomarkers of ancestral exposures. PLoS One 7:e31901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manikkam M, Tracey R, Guerrero-Bosagna C, Skinner MK (2013) Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS One 8:e55387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manolio TA, Collins FS, Cox NJ et al (2009) Finding the missing heritability of complex diseases. Nature 461:747–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markel AL, Trut LN (2011) Behavior, stress, and evolution in light of the Novosibirsk selection experiments. In: Jablonka E, Gissis SB (eds) Transformations of Lamarckism: from subtle fluids to molecular biology. The MIT Press, Cambridge, MA, pp 171–180

    Chapter  Google Scholar 

  • Market-Velker BA, Zhang L, Magri LS et al (2009) Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner. Hum Mol Genet 19:36–51

    Article  CAS  Google Scholar 

  • Marques CJ, João Pinho M, Carvalho F et al (2011) DNA methylation imprinting marks and DNA methyltransferase expression in human spermatogenic cell stages. Epigenetics 6:1354–1361

    Article  CAS  PubMed  Google Scholar 

  • Martínez D, Pentinat T, Ribó S et al (2014) In utero undernutrition in male mice programs liver lipid metabolism in the second-generation offspring involving altered lxra DNA methylation. Cell Metab 19:941–951

    Article  PubMed  CAS  Google Scholar 

  • Mashoodh R, Franks B, Curley JP, Champagne FA (2012) Paternal social enrichment effects on maternal behavior and offspring growth. Proc Natl Acad Sci U S A 109(Suppl):17232–17238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maze I, Noh K-M, Soshnev AA, Allis CD (2014) Every amino acid matters: essential contributions of histone variants to mammalian development and disease. Nat Rev Genet 15:259–271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meikar O, Da Ros M, Korhonen H, Kotaja N (2011) Chromatoid body and small RNAs in male germ cells. Reproduction 142:195–209

    Article  CAS  PubMed  Google Scholar 

  • Merikangas KR, Stolar M, Stevens DE et al (1998) Familial transmission of substance use disorders. Arch Gen Psychiatry 55:973–979

    Article  CAS  PubMed  Google Scholar 

  • Mital P, Hinton BT, Dufour JM (2011) The blood-testis and blood-epididymis barriers are more than just their tight junctions. Biol Reprod 84:851–858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moisiadis VG, Matthews SG (2014) Glucocorticoids and fetal programming part 1: outcomes. Nat Rev Endocrinol 10:391–402

    Article  CAS  PubMed  Google Scholar 

  • Morgan CP, Bale TL (2011) Early prenatal stress epigenetically programs dysmasculinization in second-generation offspring via the paternal lineage. J Neurosci 31:11748–11755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan HD, Sutherland HG, Martin DI, Whitelaw E (1999) Epigenetic inheritance at the agouti locus in the mouse. Nat Genet 23:314–318

    Article  CAS  PubMed  Google Scholar 

  • Mueller BR, Bale TL (2008) Sex-specific programming of offspring emotionality after stress early in pregnancy. J Neurosci 28:9055–9065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura T, Liu Y-J, Nakashima H et al (2012) PGC7 binds histone H3K9me2 to protect against conversion of 5mC to 5hmC in early embryos. Nature 486:415–419

    CAS  PubMed  Google Scholar 

  • Nätt D, Rubin C-J, Wright D et al (2012) Heritable genome-wide variation of gene expression and promoter methylation between wild and domesticated chickens. BMC Genomics 13:59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Naz RK, Sellamuthu R (2006) Receptors in spermatozoa: are they real? J Androl 27:627–636

    Article  CAS  PubMed  Google Scholar 

  • Nebel BR, Amarose AP, Hacket EM (1961) Calendar of gametogenic development in the prepuberal male mouse. Science 134:832–833

    Article  CAS  PubMed  Google Scholar 

  • Ng S-FF, Lin RCY, Laybutt DR et al (2010) Chronic high-fat diet in fathers programs beta-cell dysfunction in female rat offspring. Nature 467:963–966

    Article  CAS  PubMed  Google Scholar 

  • Nguyen-Chi M, Morello D (2011) RNA-binding proteins, RNA granules, and gametes: is unity strength? Reproduction 142:803–817

    Article  CAS  PubMed  Google Scholar 

  • Nilsson EE, Skinner MK (2014) Environmentally induced epigenetic transgenerational inheritance of disease susceptibility. Transl Res. doi:10.1016/j.trsl.2014.02.003

    PubMed  PubMed Central  Google Scholar 

  • Oakes CC, La Salle S, Smiraglia DJ et al (2007) Developmental acquisition of genome-wide DNA methylation occurs prior to meiosis in male germ cells. Dev Biol 307:368–379

    Article  CAS  PubMed  Google Scholar 

  • Ong ZY, Muhlhausler BS (2011) Maternal “junk-food” feeding of rat dams alters food choices and development of the mesolimbic reward pathway in the offspring. FASEB J 25:2167–2179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Painter R, Osmond C, Gluckman P et al (2008) Transgenerational effects of prenatal exposure to the Dutch famine on neonatal adiposity and health in later life. BJOG 115:1243–1249

    Article  CAS  PubMed  Google Scholar 

  • Palmer NO, Fullston T, Mitchell M et al (2011) SIRT6 in mouse spermatogenesis is modulated by diet-induced obesity. Reprod Fertil Dev 23:929–939

    Article  CAS  PubMed  Google Scholar 

  • Pang RTK, Liu WM, Leung CON et al (2011) miR-135a regulates preimplantation embryo development through down-regulation of E3 ubiquitin ligase seven in absentia homolog 1A (SIAH1A) expression. PLoS One 6:e27878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pathak S, D’Souza R, Ankolkar M et al (2010) Potential role of estrogen in regulation of the insulin-like growth factor2-H19 locus in the rat testis. Mol Cell Endocrinol 314:110–117

    Article  CAS  PubMed  Google Scholar 

  • Pegtel DM, Cosmopoulos K, Thorley-Lawson DA et al (2010) Functional delivery of viral miRNAs via exosomes. Proc Natl Acad Sci U S A 107:6328–6333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pembrey ME (2010) Male-line transgenerational responses in humans. Hum Fertil 13:268–271

    Article  Google Scholar 

  • Pembrey ME, Bygren LO, Kaati G et al (2006) Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet 14:159–166

    Article  PubMed  Google Scholar 

  • Pentinat T, Ramon-Krauel M, Cebria J et al (2010) Transgenerational inheritance of glucose intolerance in a mouse model of neonatal overnutrition. Endocrinology 151:5617–5623

    Article  CAS  PubMed  Google Scholar 

  • Perry JC, Sirot L, Wigby S (2013) The seminal symphony: how to compose an ejaculate. Trends Ecol Evol 28:414–422

    Article  PubMed  Google Scholar 

  • Petropoulos S, Matthews SG, Szyf M (2014) Adult glucocorticoid exposure leads to transcriptional and DNA methylation changes in nuclear steroid receptors in the hippocampus and kidney of mouse male offspring. Biol Reprod 90:43

    Article  PubMed  CAS  Google Scholar 

  • Pigati L, Yaddanapudi SCS, Iyengar R et al (2010) Selective release of microRNA species from normal and malignant mammary epithelial cells. PLoS One 5:e13515

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Porsolt RD, Le Pichon M, Jalfre M (1977) Depression_a new animal model sensitive to antidepressant treatments. Nature 266:730–732

    Article  CAS  PubMed  Google Scholar 

  • Radford EJ, Ito M, Shi H et al (2014) In utero undernourishment perturbs the adult sperm methylome and intergenerational metabolism. Science. doi:10.1126/science.1255903

    PubMed  PubMed Central  Google Scholar 

  • Rakyan VK, Chong S, Champ ME et al (2003) Transgenerational inheritance of epigenetic states at the murine Axin(Fu) allele occurs after maternal and paternal transmission. Proc Natl Acad Sci U S A 100:2538–2543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rando TA, Chang HY (2012) Aging, rejuvenation, and epigenetic reprogramming: resetting the aging clock. Cell 148:46–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rassoulzadegan M, Grandjean V, Gounon P et al (2006) RNA-mediated non-mendelian inheritance of an epigenetic change in the mouse. Nature 441:469–474

    Article  CAS  PubMed  Google Scholar 

  • Rehan VK, Liu J, Sakurai R, Torday JS (2013) Perinatal nicotine-induced transgenerational asthma. Am J Physiol Lung Cell Mol Physiol 305:L501–L507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Remy JJ (2010) Stable inheritance of an acquired behavior in Caenorhabditis elegans. Curr Biol 20:R877–R878

    Article  CAS  PubMed  Google Scholar 

  • Rodgers AB, Morgan CP, Bronson SL et al (2013) Paternal stress exposure alters sperm microRNA content and reprograms offspring HPA stress axis regulation. J Neurosci 33:9003–9012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi P, Dolci S (2013) Paracrine mechanisms involved in the control of early stages of Mammalian spermatogenesis. Front Endocrinol (Lausanne) 4:181

    Google Scholar 

  • Saavedra-Rodriguez L, Feig LA (2013) Chronic social instability induces anxiety and defective social interactions across generations. Biol Psychiatry 73:44–53

    Article  PubMed  Google Scholar 

  • Samans B, Yang Y, Krebs S et al (2014) Uniformity of nucleosome preservation pattern in Mammalian sperm and its connection to repetitive DNA elements. Dev Cell 30:23–35

    Article  CAS  PubMed  Google Scholar 

  • Schaal B, Marlier L, Soussignan R et al (2000) Human foetuses learn odours from their pregnant mother’s diet. Chem Senses 22:729–737

    Google Scholar 

  • Schick M, Morina N, Klaghofer R et al (2013) Trauma, mental health, and intergenerational associations in Kosovar Families 11 years after the war. European Journal of Psychotraumatology. dio:10.3402/ejpt.v4i0.21060

  • Schulz LC (2010) The Dutch hunger winter and the developmental origins of health and disease. Proc Natl Acad Sci U S A 107:16757–16758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seisenberger S, Andrews S, Krueger F et al (2012) The dynamics of genome-wide DNA methylation reprogramming in mouse primordial germ cells. Mol Cell 48:849–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seisenberger S, Peat JR, Hore TA et al (2013) Reprogramming DNA methylation in the mammalian life cycle: building and breaking epigenetic barriers. Philos Trans R Soc Lond B Biol Sci 368:20110330

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sha K (2008) A mechanistic view of genomic imprinting. Annu Rev Genomics Hum Genet 9:197–216

    Article  CAS  PubMed  Google Scholar 

  • Sharif J, Muto M, Takebayashi S et al (2007) The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450:908–912

    Article  CAS  PubMed  Google Scholar 

  • Sharma RP (2012) Blood chromatin as a biosensor of the epigenetic milieu: a tool for studies in living psychiatric patients. Epigenomics 4:551–559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skinner MK (2014) Endocrine disruptor induction of epigenetic transgenerational inheritance of disease. Mol Cell Endocrinol 398(1):4–12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skinner MK, Anway MD, Savenkova MI et al (2008) Transgenerational epigenetic programming of the brain transcriptome and anxiety behavior. PLoS One 3:e3745

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Skinner MK, Haque CG, Nilsson E et al (2013) Environmentally induced transgenerational epigenetic reprogramming of primordial germ cells and the subsequent germ line. PLoS One 8:e66318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skinner MK, Gurerrero-Bosagna C, Haque MM et al (2014) Epigenetics and the evolution of Darwin’s finches. Genome Biol Evol. 6:1972–1989

    Google Scholar 

  • Smallwood SA, Tomizawa S-I, Krueger F et al (2011) Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat Genet 43:811–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith ZD, Chan MM, Mikkelsen TS et al (2012) A unique regulatory phase of DNA methylation in the early mammalian embryo. Nature 484:339–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stein AD, Lumey LH (2000) The relationship between maternal and offspring birth weights after maternal prenatal famine exposure: the Dutch Famine Birth Cohort Study. Hum Biol 72:641–654

    CAS  PubMed  Google Scholar 

  • Stewart RJ, Preece RF, Sheppard HG (1975) Twelve generations of marginal protein deficiency. Br J Nutr 33:233–253

    Article  CAS  PubMed  Google Scholar 

  • Stewart RJ, Sheppard H, Preece R, Waterlow JC (1980) The effect of rehabilitation at different stages of development of rats marginally malnourished for ten to twelve generations. Br J Nutr 43:403–412

    Article  CAS  PubMed  Google Scholar 

  • Stilling RM, Dinan TG, Cryan JF (2014) Microbial genes, brain & behaviour – epigenetic regulation of the gut-brain axis. Genes Brain Behav 13:69–86

    Article  CAS  PubMed  Google Scholar 

  • Stouder C, Paoloni-Giacobino A (2011) Specific transgenerational imprinting effects of the endocrine disruptor methoxychlor on male gametes. Reproduction 141:207–216

    Article  CAS  PubMed  Google Scholar 

  • Susser M, Stein Z (1994) Timing in prenatal nutrition: a reprise of the Dutch Famine Study. Nutr Rev 52:84–94

    Article  CAS  PubMed  Google Scholar 

  • Todrank J, Heth G, Restrepo D (2011) Effects of in utero odorant exposure on neuroanatomical development of the olfactory bulb and odour preferences. Proc R Soc Lond B Biol Sci 278:1949–1955

    Article  Google Scholar 

  • Uzumcu M, Suzuki H, Skinner MK (2004) Effect of the anti-androgenic endocrine disruptor vinclozolin on embryonic testis cord formation and postnatal testis development and function. Reprod Toxicol 18:765–774

    Article  CAS  PubMed  Google Scholar 

  • Vaage AB, Thomsen PH, Rousseau C et al (2011) Paternal predictors of the mental health of children of Vietnamese refugees. Child Adolesc Psychiatr Ment Health 5:2

    Article  Google Scholar 

  • Van Den Berg GJ, Pinger PR (2014) A validation study of transgenerational effects of childhood conditions on the third generation offspring’s economic and health outcomes potentially driven by epigenetic imprinting. IZA Discussion Paper, No. 7999

    Google Scholar 

  • Vassoler FM, White SL, Schmidt HD et al (2013) Epigenetic inheritance of a cocaine-resistance phenotype. Nat Neurosci 16:42–47

    Article  CAS  PubMed  Google Scholar 

  • Vavouri T, Lehner B (2011) Chromatin organization in sperm may be the major functional consequence of base composition variation in the human genome. PLoS Genet 7:e1002036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veenendaal MVE, Painter RC, de Rooij SR et al (2013) Transgenerational effects of prenatal exposure to the 1944–45 Dutch famine. BJOG 120:548–553

    Article  CAS  PubMed  Google Scholar 

  • Vickers KC, Palmisano BT, Shoucri BM et al (2011) MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol 13:423–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vitale R, Fawcett DW, Dym M (1973) The normal development of the blood-testis barrier and the effects of clomiphene and estrogen treatment. Anat Rec 176:331–344

    Article  CAS  PubMed  Google Scholar 

  • Vitku J, Starka L, Bicikova M et al (2014) Endocrine disruptors and other inhibitors of 11β-hydroxysteroid dehydrogenase 1 and 2: tissue-specific consequences of enzyme inhibition. J Steroid Biochem Mol Biol. doi:10.1016/j.jsbmb.2014.07.007

    PubMed  Google Scholar 

  • Vojtech L, Woo S, Hughes S et al (2014) Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Res 42:7290–7304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wagner KD, Wagner N, Ghanbarian H et al (2008) RNA induction and inheritance of epigenetic cardiac hypertrophy in the mouse. Dev Cell 14:962–969

    Article  CAS  PubMed  Google Scholar 

  • Walker AK, Hawkins G, Sominsky L, Hodgson DM (2012) Transgenerational transmission of anxiety induced by neonatal exposure to lipopolysaccharide: implications for male and female germ lines. Psychoneuroendocrinology 37:1320–1335

    Article  CAS  PubMed  Google Scholar 

  • Waterland RA, Kellermayer R, Laritsky E et al (2010) Season of conception in rural gambia affects DNA methylation at putative human metastable epialleles. PLoS Genet 6:e1001252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weaver IC, Cervoni N, Champagne FA et al (2004) Epigenetic programming by maternal behavior. Nat Neurosci 7:847–854

    Article  CAS  PubMed  Google Scholar 

  • Wei Y-PPY, Yang C-RR, Zhao Z-AA et al (2014) Paternally induced transgenerational inheritance of susceptibility to diabetes in mammals. Proc Natl Acad Sci U S A 111:1873–1878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinstock M (2008) The long-term behavioural consequences of prenatal stress. Neurosci Biobehav Rev 32:1073–1086

    Article  CAS  PubMed  Google Scholar 

  • Weiss IC, Franklin TB, Vizi SS, Mansuy IM (2011) Inheritable effect of unpredictable maternal separation on behavioral responses in mice. Front Behav Neurosci 5:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolstenholme JT, Edwards M, Shetty SR et al (2012) Gestational exposure to bisphenol a produces transgenerational changes in behaviors and gene expression. Endocrinology 153:3828–3838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolstenholme JT, Goldsby JA, Rissman EF (2013) Transgenerational effects of prenatal bisphenol A on social recognition. Horm Behav 64:833–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamagata K, Yamazaki T, Miki H et al (2007) Centromeric DNA hypomethylation as an epigenetic signature discriminates between germ and somatic cell lineages. Dev Biol 312:419–426

    Article  CAS  PubMed  Google Scholar 

  • Zernecke A, Bidzhekov K, Noels H et al (2009) Delivery of microRNA-126 by apoptotic bodies induces CXCL12-dependent vascular protection. Sci Signal 2:ra81

    Article  PubMed  Google Scholar 

  • Zeybel M, Hardy T, Wong YK et al (2012) Multigenerational epigenetic adaptation of the hepatic wound-healing response. Nat Med 18:1369–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Q, Nie R, Prins GS et al (2002) Localization of androgen and estrogen receptors in adult male mouse reproductive tract. J Androl 23:870–881

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle M. Mansuy .

Editor information

Editors and Affiliations

Appendix 1: Experimental Methods to Examine Different Routes of Non-genetic Inheritance of Acquired Information in Rodents

Appendix 1: Experimental Methods to Examine Different Routes of Non-genetic Inheritance of Acquired Information in Rodents

Acquired information can be transmitted to the offspring via several routes that do not involve germ cells, and these factors can operate during mating, in utero, or peri- or postnatally in mammals. (1) During mating, seminal fluid is transmitted from male to female in addition to sperm. The composition of seminal fluid can change in response to environmental factors and influence the offspring independently from sperm (Perry et al. 2013). In flies, it was shown that seminal fluid can transfer acquired features from a male which mated but did not fertilize the female, to the offspring sired by a subsequent male (Crean et al. 2014). (2) In mammals, in utero components such as hormones, immune factors, nutrients, or toxins can influence the fetus and elicit persistent phenotypic traits later in life. Stress in gestating females can alter the offspring’s emotional, social, and cognitive abilities (Weinstock 2008; Moisiadis and Matthews 2014), in part by altering plasma glucocorticoids or androgens. Exposure to specific flavors or odors can also modulate the olfactory system and taste preference in the offspring (Schaal et al. 2000; Ong and Muhlhausler 2011; Todrank et al. 2011). In certain bird species, females can load antibodies against encountered pathogens into the eggs’ yolk, providing protection to their progeny (Frésard et al. 2013). (3) Peri- and postnatally, the amount and quality of maternal care strongly influence the offspring’s behavior in adulthood. Female pups receiving poor maternal care will also show reduced maternal behaviors themselves, which is associated with epigenetic dysregulation in the brain (Weaver et al. 2004; Champagne 2008). Additionally, milk composition during lactation (Liu et al. 2014), microbiota (Stilling et al. 2014), or odor cues (Debiec and Sullivan 2014) can also transfer environmental experiences from mother to offspring.

Distinguishing these germline-independent forms of inheritance from non-genetic germline-dependent components is challenging and requires specific experimental strategies. Using patrilines helps control the influence of some in utero and postnatal factors, but the presence of the male during mating may still exert an influence on the embryo. Additionally, rodent females have been reported to adjust maternal investment based on the sire’s fitness (Curley et al. 2011; Mashoodh et al. 2012). The following strategies can be used to control some of these confounding factors: (1) Cross-fostering of pups to a control dam can be used to exclude the contribution of peri-/postnatal maternal influences (Bohacek et al. 2015). (2) Artificial insemination or in vitro fertilization (IVF) can directly test transmission through the germline and avoid confounding effects of seminal fluid and interactions during mating (Dietz et al. 2011; Dias and Ressler 2014). IVF – routinely available in many facilities – involves in vitro culture conditions which, in addition to superovulation, can create further uncontrollable epigenetic confounds (Denomme and Mann 2012). Artificial insemination has rarely been used in mice, but new simplified protocols are now available and should be used more routinely in studies of non-genetic germline inheritance (Bohacek et al. 2016). (3) Embryo transfer can be particularly useful in female line studies to avoid in utero and postnatal maternal effects, but also involves in vitro biases. (4) Direct injection of molecules such as sperm RNAs into fertilized wild-type oocytes followed by transplantation in a pseudo-pregnant mother is another elegant approach to directly test the contribution of specific germline components (Rassoulzadegan et al. 2006; Gapp et al. 2014a). These procedures can help determine the germline dependence of non-genetic inheritance and should be employed more systematically but with caution since some can affect epigenetic reprogramming.

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bohacek, J., Mansuy, I.M. (2016). Epigenetic Risk Factors for Diseases: A Transgenerational Perspective. In: Spengler, D., Binder, E. (eds) Epigenetics and Neuroendocrinology . Epigenetics and Human Health. Springer, Cham. https://doi.org/10.1007/978-3-319-29901-3_4

Download citation

Publish with us

Policies and ethics