Mindfulness Intervention for Attention-Deficit/Hyperactivity Disorder: Theory and Action Mechanisms

  • Poppy L. A. SchoenbergEmail author


Central and peripheral theory contiguous to associated working mechanisms of structured mindfulness intervention for the treatment of ADHD, are explored. Neurological/neuroanatomical alterations in brain structure and organization infer implications with attentional deficits. Conversely, amelioration in the hyperactivity/impulsivity domain is linked to optimization of pertinent neuroendocrine/neurohormonal regulatory mechanisms. Neurochemical alteration to adrenergic system metabolism and activity, associated with norepinephrine neurotransmission in mindfulness treatment of ADHD, is presently advocated. Less support is available for dopaminergic pathway clinical action. Connectedly, the scope to target sensory-visceral “bottom-up” signalling concomitant to enhanced cortical control in “top-down” neural circuitry has preliminary support. Rigorous and standardized studies remain necessary for this emerging translational field. For now, direct and indirect evidence presents mindfulness intervention as a polymorphic treatment pathway with the possibility for clinical action on neuroanatomical, neurochemical, neurohormonal, neurocognitive, and neuropsychological dimensions, within ADHD.


Mindfulness ADHD Intervention Disorder MBCT 


  1. 1.
    Zylowska L, Smalley SL, Schwartz JM. Mindful awareness and ADHD. In: Fabrizio D, editor. Clinical handbook of mindfulness. New York, NY: Springer; 2009. p. 319–38.CrossRefGoogle Scholar
  2. 2.
    Simon V, Czobbor P, Baliant S, Meszaros A, Bitter I. Prevalence and correlates of adult attention-deficit hyperactivity disorder: meta-analysis. Br J Psychiatry. 2009;194:204–11. doi: 10.1192/bjp.bp.107.048827.CrossRefPubMedGoogle Scholar
  3. 3.
    Hölzel BK, Lazar SW, Gard T, Schuman-Olivier Z, Vago DR, Ott U. How does mindfulness meditation work? Proposing mechanisms of action from a conceptual and neural perspective. Perspect Psychol Sci. 2011;6:537–59.CrossRefPubMedGoogle Scholar
  4. 4.
    Zylowska L, Ackerman DL, Yang MH, Futrell JL, Horton NL, Hale TS, et al. Mindfulness meditation training in adults and adolescents with ADHD: a feasibility study. J Atten Disord. 2008;11:737–46. doi:  10.1177/1087054707308502.Google Scholar
  5. 5.
    Mitchell JT, McIntyre EM, English JS, Dennis MF, Beckham JC, Kollins SH. A pilot trial of mindfulness meditation training for ADHD in adulthood: impact on core symptoms, executive functioning, and emotion dysregulation. J Atten Disord. 2015;2015:16 pages. doi: 10.1177/1087054713513328.Google Scholar
  6. 6.
    Schoenberg PLA, Hepark S, Kan CC, Barendregt HP, Buitelaar JK, Speckens AEM. Effects of mindfulness-based cognitive therapy on neurophysiological correlates of performance monitoring in adult attention-deficit/hyperactivity disorder. Clin Neurophysiol. 2014;125:1407–16.CrossRefPubMedGoogle Scholar
  7. 7.
    Giedd JN, Blumenthal J, Molloy E, Castellanos FX. Brain imaging of attention deficit/hyperactivity disorder. In: Wasserstein J, Wolf L, editors. Adult attention deficit disorder: brain mechanisms and life outcomes. Annals of the New York Academy Sciences, vol. 931. New York, NY: Academy of Sciences; 2001.Google Scholar
  8. 8.
    Valera EM, Faraone SV, Murray KE, Seidman LJ. Meta-analysis of structural imaging findings in attention-deficit/hyperactivity disorder. Biol Psychiatry. 2007;61:1361–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Bledsoe JC, Semrud-Clikeman M, Pilszka SR. Anterior cingulate cortex and symptom severity in attention-deficit/hyperactivity disorder. J Abnorm Psychol. 2013;122:558–65.CrossRefPubMedGoogle Scholar
  10. 10.
    Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL. A default mode of brain function. Proc Natl Acad Sci U S A. 2001;98:676–82.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Buckner RL, Andrews-Hanna J, Schachter D. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124:1–38.CrossRefPubMedGoogle Scholar
  12. 12.
    Cortese S, Kelly C, Chabernaud C, Proal E, Di Martino A, Milham MP, et al. Toward systems neuroscience of ADHD: a meta-analysis of 55 fMRI studies. Am J Psychiatry. 2012;169:1038–55.CrossRefPubMedGoogle Scholar
  13. 13.
    Hart H, Radua J, Nakao T, Mataix-Cols D, Rubia K. Meta-analysis of functional magnetic resonance imaging studies of inhibition and attention in attention-deficit/hyperactivity disorder: exploring task-specific, stimulant medication, and age effects. Arch Gen Psychiatry. 2013;70:85–198.Google Scholar
  14. 14.
    Uddin LQ, Kelly AMC, Biswal BB, Margulies DS, Shehzad Z, Shaw D, et al. Network homogeneity reveals decreased integrity of default-mode network in ADHD. J Neurosci Methods. 2008;169:249–54.CrossRefPubMedGoogle Scholar
  15. 15.
    Fair DA, Posner J, Nagel BJ, Bathula D, Dias TGC, Mills KL, et al. Atypical default network connectivity in youth with attention-deficit/hyperactivity disorder. Biol Psychiatry. 2010;68:1084–91.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Taylor VA, Daneault V, Grant J, Scavone G, Breton E, Roffe-Vidal S, et al. Impact of meditation training on the default mode network during restful state. Soc Cogn Affect Neurosci. 2013;8:4–14.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hasenkamp W, Barsalou LW. Effects of meditation experience on functional connectivity of distributed brain networks. Front Hum Neurosci. 2012;6:38. doi: 10.3389/fnhum.2012.00038.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Chen ACN, Feng W, Zhao H, Yin Y, Wang P. EEG default mode network in the human brain: spectral regional field powers. Neuroimage. 2008;41:561–74.CrossRefPubMedGoogle Scholar
  19. 19.
    Mantini D, Perrucci MG, Del Gratta C, Romani GL, Corbetta M. Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci U S A. 2007;104:13170–5.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Neuner I, Arrubla J, Werner CJ, Hitz K, Boers F, Kawohl W, et al. The default mode network and EEG regional spectral power: a simultaneous fMRI-EEG study. PLoS One. 2014;9, e88214. doi: 10.1371/journal.pone.0088214.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Berkovich-Ohana A, Glicksohn J, Goldstein A. Studying the default mode and its mindfulness-induced changes using EEG functional connectivity. Soc Cogn Affect Neurosci. 2013. doi: 10.1093/scan/nst153.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Lazar SW, Kerr CE, Wasserman RH, Gray JR, Greve DN, Treadway MT, et al. Meditation experience is associated with increased cortical thickness. Neuroreport. 2005;16:1893–7.Google Scholar
  23. 23.
    Fox KCR, Nijeboer S, Dixon ML, Floman JL, Ellamil M, Rumak SP, et al. Is meditation associated with altered brain structure? A systematic review and meta-analysis of morphometric neuroimaging in meditation practitioners. Neurosci Biobehav Rev. 2014;43:48–73.CrossRefPubMedGoogle Scholar
  24. 24.
    Tomasino B, Chiesa A, Fabbro F. Disentangling the neural mechanisms involved in Hinduism- and Buddhism-related meditations. Brain Cogn. 2014;90:32–40.CrossRefPubMedGoogle Scholar
  25. 25.
    Vestergaard-Poulsen P, van Beek M, Skewes J, Bjarkam CR, Stubberup M, Bertelsen J, et al. Long-term meditation is associated with increased gray matter density in the brain stem. Neuroreport. 2009;20:170–4.CrossRefPubMedGoogle Scholar
  26. 26.
    Hölzel BK, Carmody J, Vangel M, Congleton C, Yerramsetti SM, Gard T, et al. Mindfulness practice leads to increases in regional brain gray matter density. Psychiatry Res. 2011;191:36–43.Google Scholar
  27. 27.
    English BA, Hahn MK, Gizer IR, Mazel-Robison M, Steele A, Kurnik DM, et al. Choline transporter gene variation is associated with attention-deficit hyperactivity disorder. J Neurodev Disord. 2009;1:252–63.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Bohnen NI, Bogan CW, Müller MLTM. Frontal and periventricular brain white matter lesions and cortical deafferentation of cholinergic and other neuromodulatory axonal projections. Eur Neurol J. 2009;1:33–50.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Schmahmann JD, Smith EE, Eichler FS, Filley CM. Cerebral white matter: neuroanatomy, clinical neurology, and neurobehavioral correlates. Ann NY Acad Sci. 2008;1142:266–309.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Makris N, Papadimitriou GM, Worth AJ, Jenkins BG, Garrido L, Sorenson AG, et al. Diffusion tensor imaging. In: Davis KL, Charney D, Coyle JT, Nemeroff C, editors. Neuropsychopharmacology: the fifth generation of progress. New York, NY: American College of Neuropsychopharmacology. Lippincott Williams & Wilkins; 2002. p. 357–71.Google Scholar
  31. 31.
    Ashtari M, Kumra S, Bhaskar SL, Clarke T, Thaden E, Cervellione KL, et al. Attention-deficit/hyperactivity disorder: a preliminary diffusion tensor imaging study. Biol Psychiatry. 2005;57:448–55.CrossRefPubMedGoogle Scholar
  32. 32.
    Harris KD, Mrsic-Flogel TD. Cortical connectivity and sensory coding. Nature. 2013;503:51–8.CrossRefPubMedGoogle Scholar
  33. 33.
    Martel MM, Klump K, Nigg JT, Breedlove SM, Sisk CL. Potential hormonal mechanisms of attention-deficit/hyperactivity disorder and major depressive disorder: a new perspective. Horm Behav. 2009;55:465–79.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Wang L-J, Chen C-K. The potential role of neuroendocrine in patients with attention-deficit/hyperactivity disorder. In: Banerjee S, editor. Attention-deficit hyperactivity disorder in children and adolescents. Rijeka: InTech; 2013.Google Scholar
  35. 35.
    De Escobar GM, Obregon MJ, del Rey FE. Maternal thyroid hormones early in pregnancy and fetal brain development. Best practice and research. Clin Endocrinol Metabol. 2004;18:225–48.Google Scholar
  36. 36.
    Al-Thwaini AN, Abdul-Wahid SSH, Jawad SQ. Level of thyroid stimulating hormone concentration in a sample of hyperactive versus pro-social school children in Iraqi city. Int J Pure Appl Biosci. 2014;2:118–23.Google Scholar
  37. 37.
    Hauser P, Soler R, Brucker-Davis F, Weintraub BD. Thyroid hormones correlate with symptoms of hyperactivity but not inattention in attention deficit hyperactivity disorder. Psychoneuroendocrinology. 1997;22:107–14.CrossRefPubMedGoogle Scholar
  38. 38.
    Stein MA, Weiss RE. Thyroid function tests and neurocognitive functioning in children referred for attention deficit/hyperactivity disorder. Psychoneuroendocrinology. 2003;28:304–16.CrossRefPubMedGoogle Scholar
  39. 39.
    Werner OR, Wallace RK, Charles B, Janssen G, Stryker T, Chalmers RA. Long-term endocrinologic changes in subjects practising the transcendental meditation and TM-Sidhi program. Psychosom Med. 1986;48:59–66.CrossRefPubMedGoogle Scholar
  40. 40.
    MacLean CRK. Effects of the transcendental meditation program on adaptive mechanisms: changes in hormone levels and responses to stress after 4 months of practise. Psychoneuroendocrinology. 1997;22:277–95.CrossRefPubMedGoogle Scholar
  41. 41.
    Isaksson J, Nilsson KW, Nyberg F, Hogmark A, Lindblad F. Cortisol levels in children with attention-deficit/hyperactivity disorder. J Psychiatr Res. 2012;46:1398–405. doi: 10.1016/j.jpsychires.2012.08.021.CrossRefPubMedGoogle Scholar
  42. 42.
    Kariyawasam SH, Zaw F, Handley SL. Reduced salivary cortisol in children with comorbid attention deficit hyperactivity disorder and oppositional defiant disorder. Neuroendocrinol Lett. 2002;23:45–8.PubMedGoogle Scholar
  43. 43.
    Kim SH, Schneider SM, Bevans M, Kravitz L, Mermier C, Qualls C, et al. PTSD symptom reduction with mindfulness-based stretching and deep breathing exercise: randomized controlled clinical trial of efficacy. J Clin Endocrinol Metab. 2013;98:2984–92.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Rafael JI, Peran F, Martinez M, Roldan A, Poyatos R, Ruiz F, et al. ACTH and β-endorphin in transcendental meditation. Physiol Behav. 1998;64:311–5.CrossRefGoogle Scholar
  45. 45.
    Schutte NS, Malouff JM. A meta-analytic review of the effects of mindfulness meditation on telomerase activity. Psychoneuroendocrinology. 2014;42:45–8.CrossRefPubMedGoogle Scholar
  46. 46.
    Costa DS, Rosa DVF, Barros AGA, Romano-Silva MA, Malloy-Diniz LF, Mattos P, et al. Telomere length is highly inherited and associated with hyperactivity-impulsivity in children with attention deficit/hyperactivity disorder. Front Mol Neurosci. 2015;8:28. doi: 10.3389/fnmol.2015.00028.CrossRefPubMedCentralGoogle Scholar
  47. 47.
    Kim CH, Hahn MK, Joung Y, Steele AH, Gizer I, Cohen BM, et al. A polymorphism in the norepinephrine transporter gene alters promoter activity and is associated with attention-deficit hyperactivity disorder. Proc Natl Acad Sci U S A. 2006;103:19164–9.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Mazei-Robison MS, Couch RS, Blakely RD. Sequence variation in the human dopamine transporter gene in children with attention deficit hyperactivity disorder. Neuropharmacology. 2005;49:724–36.CrossRefPubMedGoogle Scholar
  49. 49.
    Nikolas M, Friderici K, Waldman I, Jernigan K, Nigg JT. Gene x environment interactions for ADHD: synergistic effect of 5HTTLPR genotype and youth appraisals of interparental conflict. Behav Brain Funct. 2010;6:23. doi: 10.1186/1744-9081-6-23.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Potter AS, Schaubhut G, Shipman M. Targeting the nicotinic cholinergic system to treat attention-deficit/hyperactivity disorder: rationale and progress to date. CNS Drugs. 2014;28:1103–13.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Miyake A, Friedman NP, Emerson MJ, Witzki AH, Howerter A, Wager TD. The united and diversity of executive functions and their contributions to complex “frontal lobe: tasks: a latent variable analysis. Cogn Psychol. 2000;41:49–100.CrossRefPubMedGoogle Scholar
  52. 52.
    Sonuga-Barke EJ. The dual pathway model of AD/HD: an elaboration of neuro-developmental characteristics. Neurosci Biobehav Rev. 2003;27:593–604.CrossRefPubMedGoogle Scholar
  53. 53.
    Mrazek MD, Franklin MS, Phillips DT, Baird B, Schooler JW. Mindfulness training improves working memory capacity and GRE performance while reducing mind wandering. Psychol Sci. 2013;24:776–81.CrossRefPubMedGoogle Scholar
  54. 54.
    Barkley RA. Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychol Bull. 1997;121:65–94.CrossRefPubMedGoogle Scholar
  55. 55.
    Ventura R, Latagliata EC, Morrone C, La Mela I, Puglisi-Allegra S. Prefrontal norepinephrine determines attribution of “high” motivational salience. PLoS One. 2008;3, e3044.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Tang YY, Posner MI. Tools of the trade: theory and method in mindfulness neuroscience. Soc Cogn Affect Neurosci. 2013;8:118–20.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Britton W, Lindahl J, and colleagues. Accessed 31 July 2015.
  58. 58.
    Compson J. Meditation, trauma and suffering in silence: raising questions about how meditation is taught and practiced in western contexts in light of a contemporary trauma resiliency model. ConBuddh. 2014. doi: 10.1080/14639947.2014.935264.Google Scholar
  59. 59.
    Dimidjian S, Hollon SD. How would we know if psychotherapy were harmful? Am Psychol. 2010;65:21–33.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Departments of Psychiatry and Cognitive NeuroscienceRadboud University Medical CenterNijmegenThe Netherlands

Personalised recommendations