Observer-Based Distributed Controllers Design for a Cantilever Beam

  • Xueji ZhangEmail author
  • Zhongzhe Dong
  • Cassio Faria
  • Kristian Hengster-Movric
  • Wim Desmet
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)


Advancement of piezoelectric transducer technology enables distributed actuation and sensing along flexible structures for vibration suppression. This study addresses the controller design under the paradigm of cooperative control and optimisation. A finite element model of a cantilever beam, coupled with piezoelectric actuators and accelerometers is constructed and then validated with a physical setup. Based on the finite element model, distributed controllers are designed. Considering the existence of feed-through terms in the system, each controller applies its control action based not only on its local measurement and state estimations from a few neighboring agents, but also on the exact control actions of all the other controllers as well, to realize global vibration suppression. The control design problem is reformulated as optimising a scalar subject to a set of linear matrix inequalities (LMIs). The vibration suppression performance of the cooperative control scheme is examined in both time domain and frequency domain via simulations.


Vibration damping FEM Observer Cooperative control LMIs 



This work is supported by the European Commission under the framework of FP7-PEOPLE-2013-ITN—Marie-Curie Action: “Innovative Training Networks”: ARRAYCON—applications of distributed control on smart structures, with project reference 605087.


  1. 1.
    Li, K.: Structural vibration damping with synchronized energy transfer between piezoelectric patches. Ph.D. dissertation, INSA de Lyon (2012)Google Scholar
  2. 2.
    Halim, D.: Vibration analysis and control of smart structures. Ph.D. dissertation, The University of Newcastle (2002)Google Scholar
  3. 3.
    Cavallo, A., De Maria, G., Natale, C., Pirozzi, S.: Robust control of flexible structures with stable bandpass controllers. Automatica 44(5), 1251–1260 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Hu, Y.-R., Ng, A.: Active robust vibration control of flexible structures. J. Sound Vib. 288(1), 43–56 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Balas, G.J., Doyle, J.C.: Robustness and performance trade-offs in control design for flexible structures. IEEE Trans. Control Syst. Technol. 2(4), 352–361 (1994)CrossRefGoogle Scholar
  6. 6.
    Raji, R.S.: Smart networks for control. IEEE, Spectrum 31(6), 49–55 (1994)CrossRefGoogle Scholar
  7. 7.
    McCammon, I.D., Jacobsen, S.C.: Communication and control for distributed microsystems. IEEE Control Syst. Mag. 10(2), 48–50 (1990)CrossRefGoogle Scholar
  8. 8.
    Ayres, G., Paganini, F.: Convex method for localized control design in spatially invariant systems. In: Proceedings of the IEEE Conference on Decision and Control, pp. 3751–3756 (2000)Google Scholar
  9. 9.
    Engels, W.P., Baumann, O.N., Elliott, S.J., Fraanje, R.: Centralized and decentralized control of structural vibration and sound radiation. J. Acoust. Soc. Am. 119(3), 1487–1495 (2006)CrossRefGoogle Scholar
  10. 10.
    Elliott, S.J., Gardonio, P., Sors, T.C., Brennan, M.J.: Active vibroacoustic control with multiple local feedback loops. J. Acoust. Soc. Am. 111(2), 908–915 (2002)CrossRefGoogle Scholar
  11. 11.
    Spencer, B.F., Ruiz-Sandoval, M.E., Kurata, N.: Smart sensing technology: opportunities and challenges. Struct. Control Health Monit. 11(4), 349–368 (2004)CrossRefGoogle Scholar
  12. 12.
    Frampton, K.D.: Vibro-acoustic control with a distributed sensor network. J. Acoust. Soc. Am. 119(4), 2170–2177 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Frampton, K.D., Baumann, O.N., Gardonio, P.: A comparison of decentralized, distributed, and centralized vibro-acoustic control. J. Acoust. Soc. Am. 128(5), 2798–2806 (2010)CrossRefGoogle Scholar
  14. 14.
    Lewis, F.L., Zhang, H., Hengster-Movric, K., Das, A.: Cooperative Control of Multi-Agent Systems, Communications and Control Engineering. Springer, London (2014)CrossRefzbMATHGoogle Scholar
  15. 15.
    Orihuela, L., Millan, P., Vivas, C., Rubio, F.R.: Distributed control and estimation scheme with applications to process control. IEEE Trans. Control Syst. Technol. 23(4), 1563–1570 (2015)CrossRefzbMATHGoogle Scholar
  16. 16.
    Hassan, H., Yves, B., Razek, A.: Finite element model of a beam structure with piezoelectric patches using RL shunt circuits. In: AC2011, 14th International Conference on Active Systems for Dynamics Markets, pp. 124–131 (2011)Google Scholar
  17. 17.
    De Marqui Junior, C., Erturk, A., Inman, D.J.: An electromechanical finite element model for piezoelectric energy harvester plates. J. Sound Vib. 327(1), 9–25 (2009)CrossRefGoogle Scholar
  18. 18.
    Gawronski, W.K.: Advanced Structural Dynamics and Active Control of Structures. Mechanical Engineering Series. Springer, New York (2004)CrossRefzbMATHGoogle Scholar
  19. 19.
    Hespanha, J.P.: Linear Systems Theory. Princeton University Press, Princeton (2009)zbMATHGoogle Scholar
  20. 20.
    Olfati-Saber, R., Fax, J.A., Murray, R.M.: Consensus and cooperation in networked multi-agent systems. Proc. IEEE 95(1), 215–233 (2007)CrossRefGoogle Scholar
  21. 21.
    CVX Research, I.: CVX: Matlab Software for Disciplined Convex Programming, Version 2.0 (2012)Google Scholar
  22. 22.
    Welch, P.D.: The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans. Audio Electroacoust. AU-15(2), 70–73 (1967)Google Scholar
  23. 23.
    Bontsema, J., Curtain, R.F.: A note on spillover and robustness for flexible systems. IEEE Trans. Autom. Control 33(6), 567–569 (1988)CrossRefzbMATHGoogle Scholar

Copyright information

© The Society of Experimental Mechanics, Inc. 2016

Authors and Affiliations

  • Xueji Zhang
    • 1
    • 2
    • 3
    Email author
  • Zhongzhe Dong
    • 1
    • 2
    • 3
  • Cassio Faria
    • 2
  • Kristian Hengster-Movric
    • 1
  • Wim Desmet
    • 3
  1. 1.Faculty of Electrical EngineeringČVUT v PrazePrague 2Czech Republic
  2. 2.Engineering Service DivisionSiemens Industry Software NVLeuvenBelgium
  3. 3.Department of Mechanical EngineeringKU LeuvenHeverleeBelgium

Personalised recommendations