Advertisement

High Gap Maglev Model and Experimental Validation

  • Francesco Braghin
  • Francesco Castelli-Dezza
  • Stefano GhiringhelliEmail author
Conference paper
Part of the Conference Proceedings of the Society for Experimental Mechanics Series book series (CPSEMS)

Abstract

Magnetic Levitation is a powerful physical phenomena which, if correctly controlled, allows frictionless relative motion between two bodies. One of the main features of this system is that it could also provide active damping. However, in order to damp vibrations, a high gap is requested. The analytical model is insufficient to correctly describe the behaviour of such a system, as a lot of secondary effects rise. In order to study this problem in detail, the study of a simple single degree of freedom Maglev is proposed. The paper shows how the analytical model, which is used to build the active control, can influence the behaviour of the real system, and then a way to improve this model is discussed. Relying on FEM analysis, analytical and numerical models are compared, and the analytical one is improved, in order to guarantee a higher performance control. Both analytical and numerical model-based control are tested on an experimental test-bench. Results prove how the numerical model-based control can guarantee much better performance with the same computational costs.

Keywords

Active magnetic bearings Maglev Analytical model Numerical model Experimental test Active control 

References

  1. 1.
    Al-Muthairi, N.F., Zribi, M.: Sliding mode control of a magnetic levitation system, Math. Probl. Eng. 93–107 (2004)Google Scholar
  2. 2.
    Bleuler, H.: A survey of magnetic levitation and magnetic bearing types. JSME Int. J. Ser. 3 Vib. Control Eng. Eng. Ind. 35, 335–342 (1992)Google Scholar
  3. 3.
    Bleuler, H.: Overview on various types of AMBs and their respective potential for applications. In: 14th International Symposium on Magnetic Bearings (2014)Google Scholar
  4. 4.
    Bleuler, H., et al.: In: Swhweitzer, G., Maslen, E. (eds.). Magnetic Bearings: Theory, Design and Applications to Rotating Machinery. Springer, Berlin (2009)Google Scholar
  5. 5.
    Bohagen, B.: Magnetic Levitation, Norwegian University of Science and Technology (2003)Google Scholar
  6. 6.
    Bolzern, P., Scattolini, R., Schiavoni, N.: Fondamenti di controlli automatici. McGraw-Hill, New York, NY (2008)Google Scholar
  7. 7.
    Braghin, F.: Appunti del corso: Sistemi meccatronici e laboratorio A, Politecnico di Milano (2014)Google Scholar
  8. 8.
    Chiba, A., Fukao, T., Ichikawa, O., Oshima, M., Takemoto, M., Dorrell, D.: Magnetic Bearings and Bearingless Drives. Elsevier, Amsterdam (2005)Google Scholar
  9. 9.
    di Milano, P.: Modello e Controllo di Cuscinetti Magnetici Attivi ad Elevato Traferro, Politecnico, University of di Milano. Mechanical Engineering thesis, Mattia Fornoni (2014)Google Scholar
  10. 10.
    Diana, G., Cheli, F.: Dinamica dei sistemi meccanici, vol. 2. Polipress, Assago (2010)Google Scholar
  11. 11.
    Earnshaw: On the nature of molecular forces which regulate the constitution of lumiferous ether. Trans. Cambridge Philos. Soc. 7, 97–112 (1842)Google Scholar
  12. 12.
    Fornoni, M., Castelli-Dezza, F.: Cuscinetti a Levitazione Magnetica (2013)Google Scholar
  13. 13.
    Gerami, A., Allaire, P., Fittro, R.: Modeling and control of magnetic bearings with nonlinear magnetization. In: 14th International Symposium on Magnetic Bearings (2014)Google Scholar
  14. 14.
    Gerhard, S.: Active magnetic bearings-chances and limitations. International Centre for Magnetic Bearings, ETH Zurich (2006)Google Scholar
  15. 15.
    Giorgio, D., Cheli, F.: Dinamica dei sistemi meccanici, Politecnico di Milano, vol. 1 (2010)Google Scholar
  16. 16.
    Hossain, S.: Design of a Robust Controller for a Magnetic Levitation System, Graduate Student (ECE), Wichita State UniversityGoogle Scholar
  17. 17.
    Isidori, A.: Nonlinear Control System. Springer, New York (2000)Google Scholar
  18. 18.
    Knospe, C.R.: Active magnetic bearings for machining applications. Control Eng. Pract. 307–313 (2007)Google Scholar
  19. 19.
    Liu, G., Chen, Y.: Levitation force analysis of medium and low speed maglev vehicles. J. Mod. Transp. 93–97 (2012)Google Scholar
  20. 20.
    Repcic, N., Saric, I., Muminovic, A.: Opportunities to improve production using active magnetic bearing systems. In: 15th International Research/Expert Conference, “Trends in the Development of Machinery and Associated Technology” (2011)Google Scholar
  21. 21.
    Shameli, E., Behrad Khamesee, M., Paul Huissoon, J.: Real-time control of a magnetic levitation device based on instantaneous modeling of magnetic field. Mechatron. J. 536–544 (2008)Google Scholar
  22. 22.
    Smirnov, A., Jastrzebski, R., Hynynen, K., Pyrhonen, O.: Comparison of suboptimal control method in magnetic levitation system, pp. 1–10, 2-6 Sept. 2013Google Scholar
  23. 23.
    Yang, Z.-J., Tateishi, M.: Adaptive robust nonlinear control of a magnetic levitation system. Autom. J. 1125–1131 (2001)Google Scholar
  24. 24.
    Yin, L., Zhao, L.: Nonlinear control for a large air gap magnetic bearing system. In: Transactions, SMiRT 19, Toronto, August 2007 (2007)Google Scholar
  25. 25.
    Yoon, S.Y., et al.: Control of Surge in Centrifugal Compressor. Springer, Berlin (2013)Google Scholar

Copyright information

© The Society of Experimental Mechanics, Inc. 2016

Authors and Affiliations

  • Francesco Braghin
    • 1
  • Francesco Castelli-Dezza
    • 1
  • Stefano Ghiringhelli
    • 1
    Email author
  1. 1.Politecnico di MilanoDipartimento di MeccanicaMilanoItaly

Personalised recommendations